The Art and Science
of Action Programming Languages

Michael Thielscher

Art and Science of Action Programming 1/65

Chapter 1

Introduction

Art and Science of Action Programming 2/65

Introduction

This tutorial is concerned with knowledge
representation and reasoning techniques
for systems that In a
complex environment.

Art and Science of Action Programming 3/65

Introduction

The aim is to endow these systems with
of how their world functions, in
particular knowledge of their own abilities to act.

about this knowledge allows to
» make autonomous decisions
» exhibit goal-oriented behavior

Art and Science of Action Programming 4/65

Introduction

Foundations
» Symbolic representation
» Logical reasoning

Advantages

» High degree of abstraction

» High-level action programming languages

» Large amount of diverse knowledge

» Uncertainty via disjunction / existential quantification

Art and Science of Action Programming 5/65

Application I: Multiagent Systems

Multiagent systems consist of autonomous, intelligent agents

L=, Step 105
spain Score =]
germmany Score 2
L, Depat i14,14)
Goldl 64
Size 30,301
Fog Prob 1%
Skill Prob 983
it O:Name spainl
0:Action up
= 1:Name spain2
1:Action up
2:Name spain3
2:Action left
3:Name spaind
P o 3:Action down
4:Name germanyl
4:Action up
S5:Name germmany2
S:Action right
G:Name germmany3
G:Action down
7T:Name germanyd
T:Action left
e =
<3
= <A IS
<3
e ol el
[,
o <

CLIMA-06 Contest: Two competing teams of agents

Art and Science of Action Programming 6/65

Reasoning Tasks

» Veritying applicability of actions
Can | go forward now?

» Prediction
Where will the gold be after moving forward?

> Planning / Goal-oriented behavior
Which part of the environment shall | explore?

Art and Science of Action Programming 7/65

Application ll: Cognitive Robots

Autonomous robots making high-level decisions

Museum Guide RHINO Coffee Delivery Robot

Art and Science of Action Programming 8/65

Art and Science o

Reasoning Tasks

» Veritying applicability of actions
Can | deliver coffee now?

» Prediction
Where will the coffee be after picking it up?

> Planning / Goal-oriented behavior
In which order shall | satisfy the requests?

» Explanation
| can't deliver coffee now, what went wrong?

f Action Programming

9/65

Application lll: General Game Playing

A General Game Player is a system that

> understands formal descriptions of arbitrary games
Solitaire, 4-dimensional Chess,
n-player Monopoly, Texas Hold'Em, ...

> plays these games without human intervention

Art and Science of Action Programming

10/65

Reasoning Tasks

» Verifying applicability of actions (aka moves)
Can | move my king now?

» Prediction
WIll | still be able to castle afterwards?

> Planning / Goal-oriented behavior
How can | win the game?

Art and Science of Action Programming 11/65

The Game Playing Metaphor

Agent in static world
Single-Player Game

Agent/Robot in dynamic world
Two-Player Game (world as opponent)

System with multiple agents
n-Player Game

Art and Science of Action Programming 12/65

Example

& =4

Three autonomous agents.
Goal of and . checkmate

Art and Science of Action Programming 13/65

Historical Development

1963 Situation Calculus — the oldest KR formalism

1969 Frame Problem
1972f STRIPS and other planning languages

1991f Solving the frame problem:
Situation-, Event-, Fluent Calculus
1997f GOLOG, FLUX — action programming languages

Art and Science of Action Programming 14/65

Chapter 2

Situation Calculus and the Frame Problem

Art and Science of Action Programming 15/65

Representation

8 oo

5 » Fluents

6 Cell (agent, x,vy)

)

;‘ > Actions

, Move (agent,u, v, X,V)
1 @ E

A BCDETFGH

Art and Science of Action Programming 16/65

Time Structure: Situation Tree

Art and Science of Action Programming 17/65

Knowledge I: Abilities

» State Knowledge
Holds (Cell (WhiteKing,A,1),S,) A
Holds (Cell (WhiteRook,H,1),S,)

» Precondition Axioms
Poss (Move (WhiteKing,u,v,X,V),S) &

Holds (Cell (WhiteKing,u,v),s)A
Legal-King-Move(u,v,X,VY,S)

Poss (Move (WhiteRook,u,v,Xx,vy),s) «

Holds (Cell (WhiteRook,u,v),s)A
Legal-Rook-Move(u,v,Xx,y,S)

Art and Science of Action Programming 18/65

Example

@)=¢
ABCDEFGH

- NN W s~ 01 OO N O

Poss (Move (WhiteKing,A,1,B,2),S,)

Art and Science of Action Programming 19/65

Knowledge Il: Effects

» Effect Axioms

Holds (Cell (agent, x,Vv),
Do (Move (agent,u,v,x,y),s))

-Holds (Cell (agent,u,v),
Do (Move (agent,u,v,X,Vy),s))

Holds (Cell(c,x,Vv),s) -
“Holds (Cell (¢, x,Vv),
Do (Move (agent,u,v,X,vy),s))

Art and Science of Action Programming 20/65

Example

&

S, Do (Move (WhiteKing,
AlllBlz)ISO)

Art and Science of Action Programming 21/65

The Frame Problem (1969)

» The effect axioms do allow to conclude

Holds (Cell (WhiteRook,H, 1),
Do (Move (WhiteKing,A,1,B,2),S,))

» Additional are needed
Holds (Cell(c,i,j),Do(Move(p,u,v,X,VY),S))
« Holds(Cell(c,i,j),s)A
[iFUuVj#V] A[1#FxV]j#Fy]
» Representation not succinct
» Reasoning inefficient

Art and Science of Action Programming 22/65

On the Frame Problem

Daniel Dennett:

A new, deep epistemological problem — accessible in
principle but unnoticed by generations of philosophers —
brought to light by the novel methods of Al and still far
from being solved.

Art and Science of Action Programming 23/65

On the Frame Problem

Ray Reiter:

If Al can be said to have a classic problem, then
the Frame Problem is it.

Like all good open problems it is subtle,
challenging, and it has led to significant new
technical and conceptual developments in the field.

Art and Science of Action Programming 24/65

STRIPS (1972)

Move (p,u,Vv,X,V)
ADD-LIST: {Cell(p,x,vy)}
DEL-LIST: {Cell(p,u,v)}

{Cell (WhiteKing,A, 1),
Cell (WhiteRook,H,1),
Cell (BlackKing,E, 8) }

{Cell (WhiteKing,B, 2),
Cell (WhiteRook,H,1),
Cell (BlackKing,E, 8) }

Art and Science of Action Programming 25/65

Other Planning Languages:
ADL (1989), PDDL (1998)

» Conditional effects
» Fluents that are unknown

» Efficient planning techniques
» Partial Order Planning

» Graphplan

» Planning as satisfiability
» Limited expressiveness:
No disjunctive state knowledge, quantification,...
(k) (Holds (Dist(x),S)A 3.8sx<4.7)

Art and Science of Action Programming 26/65

Successor State Axioms (1991)

Holds (Fluent,Do(a,s)) e
effect,(a, s)
V [Holds (Fluent,s) ANmeffect_(a, s)]

Holds (Cell(c,x,vy),Do(a,s))
a=Move(c,u,v,Xx,Vy)
V [Holds (Cell(c,x,y),s)A
(u,v)a# Move(c,x,y,u,Vv)A

(Dpr u,v)a# Move(p,u,v,Xx,y)]

Art and Science of Action Programming

27165

Example

&
& =4 o

S, Do (Move (WhiteKing,
AlllBlz)ISO)

Art and Science of Action Programming 28/65

Basic Action Theories

» Precondition axioms for all actions
» Successor state axioms for all fluents

» Initial state axiom

Art and Science of Action Programming 29/65

Extensions

> Knowledge and sensing via modality

> Nondeterministic actions

» Indirect effects of actions (Problem)
» Probabilities

> Time and continuous processes

Art and Science of Action Programming 30/65

Chapter 3

Action Programming in GOLOG

Art and Science of Action Programming 31/65

Example Program

proc
while (Ob)wantsCoffee (p) A—hasCoffee (p) do

To.goto (coffeeMachine); pickUp(Coffee);
goto(p); giveCoffee(p)

endWhile
endProc

proc
if robotLocation(rloc) thendrive (rloc, loc) endif
endProc

Art and Science of Action Programming 32/65

Programming Constructs

primitive actions a

tests b
sequence 0,: 0,
nondeterministic choice x. 0 (x)

nondeterministic choice 0, O,
nondeterministic iteration O

b 0, 0, [¢?;5 04] | [7p?; O]
¢ do O [7?5 0] 5 ~¢p?

Art and Science of Action Programming 33/65

Execution Modes
So

S'

execution: Find terminating run, then execute
= Planning with search heuristics
proc main
while ~goal do anyAction endWhile
endProc

» Interleaved /Offline execution

Art and Science of Action Programming 34/65

ConGOLOG

concurrent execution 0,/ 0,
concurrency w/ priorities 0,>> 0,
concurrent iteration 0

interrupt ¢ 0

Art and Science of Action Programming 35/65

Knowledge-Based GOLOG

knowledge tests

sensing actions

Art and Science of Action Programming 36/65

WWW.Cs.toronto.edu/cogrobo/

People Systems Publ

Slides Whe|

@@ @@ The Cognitive Robatics Group University of Toronto Cou Meetings Lin

The Cognitive Robotics Group is concerned with endowing robotic or software agents with higher level cognitive functions that involve reasoning, for example, about goals, perception, actions, the mental states of other agents,

collaborative task execution, etc. To do this, it is necessary to describe, in a language suitable for automated reasoning, enough of the properties of the robet, its abilities, and its environment, to permit it to make high-level decisions

about how to act. The group has p ive methods for rep iting and reasoning about the prerequisites and effects of actions, perception and other knowledge-producing actions, and natural events and actions by
other agents. These methods have been incorporated into a logic programming language for agents called GOLOG (alGOI in LOGic). A prototype implementation of the language has been developed. Experiments have been
conducted in using the language to build a high-level robot controller, some software agent applications (e.g. meeting scheduling), and more recently business process modeling tools

Publications

=

People

Links

-

J

Slides

Ve

Courses

s

7

Where are we?

S

Art and Science of Action Programming 37/65

Chapter 4

Fluent Calculus and FLUX

Art and Science of Action Programming 38/65

The Frame Problem Revisited

& Holds (Cell(c,x,vy),Do(a,s)) o
a=Move(c,u,v,X%x,V)
V [Holds (Cell(c,x,y),8)A
(d)a# Move(c,x,y,u,Vv)A
& o ()a # Move(p,u,v,x,y)]

» 64 instances needed to update the state
» Regression requires to roll back an entire history

Art and Science of Action Programming 39/65

Regression vs. Progression

Regression
SoQ DO(aZCr)So) Dob?aleo(all Sy))
Progression
O > p

®b,[S,] P,[Do(a,;,S,)] P,[Do(a,,Do(a,,S,))]

Art and Science of Action Programming 40/65

State Update Axioms (1999)

A(s) - State(Do(Action,s))=
State(s) — effects_+ effects,

Holds (Cell(c,x,V),S) -
State (Do (Move (p,u,V,X,y),s))=
State(s) —Cell(c,x,v)
— Cell(p,u,v) +Cell(p,x,V)

» Axiomatic definition of + and

Art and Science of Action Programming 41/65

Fluent Calculus: Basic Action Theories

» Precondition axioms for all actions
» State update axioms for all actions

» Initial state axiom

Art and Science of Action Programming 42/65

Extensions

» Knowledge and sensing via modality

» Nondeterministic actions

» Indirect effects of actions (Problem)
> Unexpected action failure (Problem)
> Probabillities

> Time and continuous processes

Art and Science of Action Programming 43/65

Action Programming with FLUX

» Constraint Logic Programming-based language

> State update as Constraint Rewriting
> Progression

» Interleaved Online-/Offline execution

Art and Science of Action Programming 44/65

Example: Wumpus World

I
[-
3

Art and Science of Action Programming 45/65

A Systematic Exploration Strategy

Initialize

N9_Can explore?

yes

Backtrack? —~ 1O

Stop

Art and Science of Action Programming

46/65

1000

100

10

avg. time

0,1
4x4

Art and Science of Action Programming

Runtime Comparison

5x5

6x6
number of rooms

<7

golog
+ flux

8x8

47/65

Runtime Comparison
06
05
0.4
0,3 golog

N\ flux

0,2

time per action

0,1

0 i
oo o oo oo oo
O AT R P

o\o

oD

o\o o\o g"\u

o\ o\o o
NS @ AN P

progress

Art and Science of Action Programming 48/65

www.fluxagent.org

FLUX is a high-level programming system for cognitive agents of all kinds, including autonomous robots. Cognitive agents control themselves using an internal
Home g))))
model of their environment. The FLUX kernel system endows agents with the general cognitive ability to reason about their actions and sensor data they acquire.

b

w
w
—_-

FLUX agents are also able to plan ahead their actions in order to achieve specific goals. FLUX allows to implement complex strategies with concise and modular
agent programs. An efficient constraint logic program, the FLUX system scales up well to domains which require large states and long action sequences.

Publications
. FLUX is an implementation of the Fluent Calculus. A versatile action representation formalism, this calculus provides a basic solution to the classical frame
Projects

problem using the concept of state update axioms. The Fluent Calculus allows to address a variety of aspects in reasoning about actions, such as

; People

® Ramifications (i.e., indirect effects of actions)

. ® Qualifications (i.e., unexpected action failure)

' Tatks ® Nondeterministic actions
FAUQ'S ® Concurrent actions

"Disclaimer @ Continuous change

® Sensors and effectors with noise

Last updated:
Jul 28 2005
Web-Admin

~ HTML
- 4.01

Art and Science of Action Programming 49/65

Chapter 5

Event Calculus and Other Formalisms

Art and Science of Action Programming 50/65

Linear Time Structure

o

Situation Calculus
Fluent Calculus

Event Calculus

Art and Science of Action Programming 51/65

Event Calculus

f holds attime t
e happens between times s and t

e Initiates £ between s and t
e terminates £ between s and t

Art and Science of Action Programming 52/65

Event Calculus: Basic Theories

> Narrative (using Happens)

» Observations (using Holds)
» Effect axioms (using Initiates / Terminates)

> Frame Problem solved by

Art and Science of Action Programming 53/65

Extensions

» Concurrent events
» Nondeterministic events
» Planning by abduction

» Gontinuous processes

Art and Science of Action Programming 54/65

Other Agent Programming Systems

> A Behavior Language (ABL)
» Practical Reasoning System (PRS)

» SRI Procedural Agent Realization Kit (SPARK)

Art and Science of Action Programming 55/65

Systematic Assessment Methods

Meta Action Theories allow to systematically assess
the of specific calculi.

» Features-and-Fluents [Sandewall, 1994]

> Action Description Languages [Lifschitz etal, 1993f]

Art and Science of Action Programming 56/65

Chapter 6

Applications and Future Challenges

Art and Science of Action Programming 57/65

Application: Museum Tour Guide Robot

> Experiences with an interactive museum tour-guide robot
[Wolfram Burgard etal, 1999]

» GOLEX: Bridging the gap between logic (GOLOG) and a
real robot [Rainer Hahnel etal, 1998]

Art and Science of Action Programming 58/65

Application: Upper-Torso Humanoid Robot

Event Calculus for perception and cognition

www.lis.ee.ic.ac.uk/~mpsha/ludwig/

Art and Science of Action Programming 59/65

Application: UAVs

A UAV for traffic control monitors the ground and can
autonomously track down and follow a car if necessary.

www.ida.liu.se/ext/witas/

Art and Science of Action Programming 60/65

Application: FLUXPLAYER

>-

]
= -

-

y

Evaluation
Function

Art and Science of Action Programming H

61/65

GGP World Championship 2006

°
@ @

Last Moves (step 49):
® O @ e

move(wp,f,c3,d,c5)

Piece Count RED: | BLACK: 7

Cylindrical Checkers: The Championship Final @AAAI-06

www.fluxagent.org

Art and Science of Action Programming 62/65

Future Challenge 1: Uncertainty
» Logic

= Controlled uncertainty in logic via incomplete state
descriptions (disjunction, ...)

= Symbolic reasoning can deal with large state spaces
thanks to abstraction and local inference

» Probability
= Robot control in real-world environments requires
probabilistic knowledge representation

*P(z,s) = probability of z to be actual state in s

Art and Science of Action Programming 63/65

Future Challenge 2: Symbol Grounding

» Symbols (like "Sandra's-coffee-mug") need to be grounded
in actual perceptions of the real world

» In today's systems, the grounding of symbols is pre-defined

» Cognitive robots should ultimately be able to ground
symbols autonomously

Art and Science of Action Programming 64/65

Art and Science

Recommended Literature

Raymond Reiter: Logic in Action. MIT Press 2001

Michael Thielscher: Reasoning Robots. Springer 2005

Murray Shannahan: Solving the Frame Problem.
MIT Press 1996
Erik Mueller: Commonsense Reasoning.
Morgan Kaufmann 2006

of Action Programming 65/65

