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Introduction

This tutorial is concerned with knowledge
representation and reasoning techniques
for systems that In a
complex environment.

Art and Science of Action Programming 3/65



Introduction

The aim is to endow these systems with
of how their world functions, in
particular knowledge of their own abilities to act.

about this knowledge allows to
» make autonomous decisions
» exhibit goal-oriented behavior
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Introduction

Foundations
» Symbolic representation
» Logical reasoning

Advantages

» High degree of abstraction

» High-level action programming languages

» Large amount of diverse knowledge

» Uncertainty via disjunction / existential quantification

Art and Science of Action Programming 5/65



Application I: Multiagent Systems

Multiagent systems consist of autonomous, intelligent agents
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CLIMA-06 Contest: Two competing teams of agents
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Reasoning Tasks

» Veritying applicability of actions
Can | go forward now?

» Prediction
Where will the gold be after moving forward?

> Planning / Goal-oriented behavior
Which part of the environment shall | explore?
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Application ll: Cognitive Robots

Autonomous robots making high-level decisions

Museum Guide RHINO Coffee Delivery Robot
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Art and Science o

Reasoning Tasks

» Veritying applicability of actions
Can | deliver coffee now?

» Prediction
Where will the coffee be after picking it up?

> Planning / Goal-oriented behavior
In which order shall | satisfy the requests?

» Explanation
| can't deliver coffee now, what went wrong?

f Action Programming
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Application lll: General Game Playing

A General Game Player is a system that

> understands formal descriptions of arbitrary games
Solitaire, 4-dimensional Chess,
n-player Monopoly, Texas Hold'Em, ...

> plays these games without human intervention
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Reasoning Tasks

» Verifying applicability of actions (aka moves)
Can | move my king now?

» Prediction
WIll | still be able to castle afterwards?

> Planning / Goal-oriented behavior
How can | win the game?
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The Game Playing Metaphor

Agent in static world
Single-Player Game

Agent/Robot in dynamic world
Two-Player Game (world as opponent)

System with multiple agents
n-Player Game
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Example

& =4

Three autonomous agents.
Goal of and . checkmate
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Historical Development

1963 Situation Calculus — the oldest KR formalism

1969 Frame Problem
1972f STRIPS and other planning languages

1991f Solving the frame problem:
Situation-, Event-, Fluent Calculus
1997f GOLOG, FLUX — action programming languages
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Chapter 2

Situation Calculus and the Frame Problem
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Representation

8 oo

5 » Fluents

6 Cell (agent, x,vy)
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;‘ > Actions

, Move (agent,u, v, X,V)
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Time Structure: Situation Tree
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Knowledge I: Abilities

» State Knowledge
Holds (Cell (WhiteKing,A,1),S,) A
Holds (Cell (WhiteRook,H,1),S,)

» Precondition Axioms
Poss (Move (WhiteKing,u,v,X,V),S) &

Holds (Cell (WhiteKing,u,v),s)A
Legal-King-Move(u,v,X,VY,S)

Poss (Move (WhiteRook,u,v,Xx,vy),s) «

Holds (Cell (WhiteRook,u,v),s)A
Legal-Rook-Move(u,v,Xx,y,S)
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Example
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Poss (Move (WhiteKing,A,1,B,2),S,)
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Knowledge Il: Effects

» Effect Axioms

Holds (Cell (agent, x,Vv),
Do (Move (agent,u,v,x,y),s))

-Holds (Cell (agent,u,v),
Do (Move (agent,u,v,X,Vy),s))

Holds (Cell(c,x,Vv),s) -
“Holds (Cell (¢, x,Vv),
Do (Move (agent,u,v,X,vy),s))
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Example

&

S, Do (Move (WhiteKing,
AlllBlz)ISO)
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The Frame Problem (1969)

» The effect axioms do allow to conclude

Holds (Cell (WhiteRook,H, 1),
Do (Move (WhiteKing,A,1,B,2),S,))

» Additional are needed
Holds (Cell(c,i,j),Do(Move(p,u,v,X,VY),S))
« Holds(Cell(c,i,j),s)A
[iFUuVj#V] A[1#FxV]j#Fy]
» Representation not succinct
» Reasoning inefficient
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On the Frame Problem

Daniel Dennett:

A new, deep epistemological problem — accessible in
principle but unnoticed by generations of philosophers —
brought to light by the novel methods of Al and still far
from being solved.
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On the Frame Problem

Ray Reiter:

If Al can be said to have a classic problem, then
the Frame Problem is it.

Like all good open problems it is subtle,
challenging, and it has led to significant new
technical and conceptual developments in the field.
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STRIPS (1972)

Move (p,u,Vv,X,V)
ADD-LIST: {Cell(p,x,vy)}
DEL-LIST: {Cell(p,u,v)}

{Cell (WhiteKing,A, 1),
Cell (WhiteRook,H,1),
Cell (BlackKing,E, 8) }

{Cell (WhiteKing,B, 2),
Cell (WhiteRook,H,1),
Cell (BlackKing,E, 8) }
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Other Planning Languages:
ADL (1989), PDDL (1998)

» Conditional effects
» Fluents that are unknown

» Efficient planning techniques
» Partial Order Planning

» Graphplan

» Planning as satisfiability
» Limited expressiveness:
No disjunctive state knowledge, quantification,...
(k) (Holds (Dist(x),S)A 3.8sx<4.7)
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Successor State Axioms (1991)

Holds (Fluent,Do(a,s)) e
effect,(a, s)
V [Holds (Fluent,s) ANmeffect_(a, s) ]

Holds (Cell(c,x,vy),Do(a,s))
a=Move(c,u,v,Xx,Vy)
V [Holds (Cell(c,x,y),s)A
(u,v)a# Move(c,x,y,u,Vv)A

(Dpr u,v)a# Move(p,u,v,Xx,y) ]
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Example

&
& =4 o

S, Do (Move (WhiteKing,
AlllBlz)ISO)
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Basic Action Theories

» Precondition axioms for all actions
» Successor state axioms for all fluents

» Initial state axiom
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Extensions

> Knowledge and sensing via modality

> Nondeterministic actions

» Indirect effects of actions ( Problem)
» Probabilities

> Time and continuous processes
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Chapter 3

Action Programming in GOLOG
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Example Program

proc
while (Ob)wantsCoffee (p) A—hasCoffee (p) do

To.goto (coffeeMachine); pickUp(Coffee);
goto(p); giveCoffee(p)

endWhile
endProc

proc
if robotLocation(rloc) thendrive (rloc, loc) endif
endProc
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Programming Constructs

primitive actions a

tests b
sequence 0,: 0,
nondeterministic choice x. 0 (x)

nondeterministic choice 0, O,
nondeterministic iteration O

b 0, 0, [¢?;5 04] | [7p?; O]
¢ do O [7?5 0] 5 ~¢p?
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Execution Modes
So

S'

execution: Find terminating run, then execute
= Planning with search heuristics
proc main
while ~goal do anyAction endWhile
endProc

» Interleaved /Offline execution
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ConGOLOG

concurrent execution 0,/ 0,
concurrency w/ priorities 0,>> 0,
concurrent iteration 0

interrupt ¢ 0
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Knowledge-Based GOLOG

knowledge tests

sensing actions
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WWW.Cs.toronto.edu/cogrobo/

People Systems Publ

Slides Whe|

@@ @@ The Cognitive Robatics Group University of Toronto Cou Meetings Lin

The Cognitive Robotics Group is concerned with endowing robotic or software agents with higher level cognitive functions that involve reasoning, for example, about goals, perception, actions, the mental states of other agents,

collaborative task execution, etc. To do this, it is necessary to describe, in a language suitable for automated reasoning, enough of the properties of the robet, its abilities, and its environment, to permit it to make high-level decisions

about how to act. The group has p ive methods for rep iting and reasoning about the prerequisites and effects of actions, perception and other knowledge-producing actions, and natural events and actions by
other agents. These methods have been incorporated into a logic programming language for agents called GOLOG (alGOI in LOGic). A prototype implementation of the language has been developed. Experiments have been
conducted in using the language to build a high-level robot controller, some software agent applications (e.g. meeting scheduling), and more recently business process modeling tools
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Chapter 4

Fluent Calculus and FLUX
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The Frame Problem Revisited

& Holds (Cell(c,x,vy),Do(a,s)) o
a=Move(c,u,v,X%x,V)
V [Holds (Cell(c,x,y),8)A
(d)a# Move(c,x,y,u,Vv)A
& o ()a # Move(p,u,v,x,y) ]

» 64 instances needed to update the state
» Regression requires to roll back an entire history
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Regression vs. Progression

Regression
SoQ DO(aZCr)So) Dob?aleo(all Sy) )
Progression
O > p

®b,[S,] P,[Do(a,;,S,)] P,[Do(a,,Do(a,,S,))]
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State Update Axioms (1999)

A(s) - State(Do(Action,s))=
State(s) — effects_+ effects,

Holds (Cell(c,x,V),S) -
State (Do (Move (p,u,V,X,y),s))=
State(s) —Cell(c,x,v)
— Cell(p,u,v) +Cell(p,x,V)

» Axiomatic definition of + and

Art and Science of Action Programming 41/65



Fluent Calculus: Basic Action Theories

» Precondition axioms for all actions
» State update axioms for all actions

» Initial state axiom
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Extensions

» Knowledge and sensing via modality

» Nondeterministic actions

» Indirect effects of actions ( Problem)
> Unexpected action failure ( Problem)
> Probabillities

> Time and continuous processes
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Action Programming with FLUX

» Constraint Logic Programming-based language

> State update as Constraint Rewriting
> Progression

» Interleaved Online-/Offline execution
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Example: Wumpus World
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A Systematic Exploration Strategy

Initialize

N9_Can explore?

yes

Backtrack? —~ 1O

Stop
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Runtime Comparison
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www.fluxagent.org

FLUX is a high-level programming system for cognitive agents of all kinds, including autonomous robots. Cognitive agents control themselves using an internal
Home g ) . . . . ) ) )
model of their environment. The FLUX kernel system endows agents with the general cognitive ability to reason about their actions and sensor data they acquire.

b

w
w
—_-

FLUX agents are also able to plan ahead their actions in order to achieve specific goals. FLUX allows to implement complex strategies with concise and modular
agent programs. An efficient constraint logic program, the FLUX system scales up well to domains which require large states and long action sequences.

Publications
. FLUX is an implementation of the Fluent Calculus. A versatile action representation formalism, this calculus provides a basic solution to the classical frame
Projects

problem using the concept of state update axioms. The Fluent Calculus allows to address a variety of aspects in reasoning about actions, such as

; People

® Ramifications (i.e., indirect effects of actions)

. ® Qualifications (i.e., unexpected action failure)

' Tatks ® Nondeterministic actions
FAUQ'S ® Concurrent actions

"Disclaimer @ Continuous change

® Sensors and effectors with noise

Last updated:
Jul 28 2005
Web-Admin

~ HTML
- 4.01
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Chapter 5

Event Calculus and Other Formalisms
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Linear Time Structure

o

Situation Calculus
Fluent Calculus

Event Calculus
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Event Calculus

f holds attime t
e happens between times s and t

e Initiates £ between s and t
e terminates £ between s and t
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Event Calculus: Basic Theories

> Narrative (using Happens)

» Observations (using Holds)
» Effect axioms (using Initiates / Terminates)

> Frame Problem solved by
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Extensions

» Concurrent events
» Nondeterministic events
» Planning by abduction

» Gontinuous processes
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Other Agent Programming Systems

> A Behavior Language (ABL)
» Practical Reasoning System (PRS)

» SRI Procedural Agent Realization Kit (SPARK)
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Systematic Assessment Methods

Meta Action Theories allow to systematically assess
the of specific calculi.

» Features-and-Fluents [Sandewall, 1994]

> Action Description Languages [Lifschitz etal, 1993f]
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Chapter 6

Applications and Future Challenges
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Application: Museum Tour Guide Robot

> Experiences with an interactive museum tour-guide robot
[Wolfram Burgard etal, 1999]

» GOLEX: Bridging the gap between logic (GOLOG) and a
real robot [Rainer Hahnel etal, 1998]
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Application: Upper-Torso Humanoid Robot

Event Calculus for perception and cognition

www.lis.ee.ic.ac.uk/~mpsha/ludwig/
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Application: UAVs

A UAV for traffic control monitors the ground and can
autonomously track down and follow a car if necessary.

www.ida.liu.se/ext/witas/

Art and Science of Action Programming 60/65



Application: FLUXPLAYER
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GGP World Championship 2006

°
@ @

Last Moves (step 49):
® O @ e

move(wp,f,c3,d,c5)

Piece Count RED: | BLACK: 7

Cylindrical Checkers: The Championship Final @AAAI-06

www.fluxagent.org
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Future Challenge 1: Uncertainty
» Logic

= Controlled uncertainty in logic via incomplete state
descriptions (disjunction, ...)

= Symbolic reasoning can deal with large state spaces
thanks to abstraction and local inference

» Probability
= Robot control in real-world environments requires
probabilistic knowledge representation

*P(z,s) = probability of z to be actual state in s
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Future Challenge 2: Symbol Grounding

» Symbols (like "Sandra's-coffee-mug") need to be grounded
in actual perceptions of the real world

» In today's systems, the grounding of symbols is pre-defined

» Cognitive robots should ultimately be able to ground
symbols autonomously
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