
AAAI'08 Tutorial

General Game Playing

Michael Thielscher, Dresden

Some of the material presented in this tutorial originates 
in work by Michael Genesereth and the Stanford Logic 
Group. We greatly appreciate their contribution.

Chess Players

The Turk (18th Century) Alan Turing & Claude Shannon (~1950)



Deep-Blue Beats World Champion (1997)

In the early days, game playing machines were considered a 
key to Artificial Intelligence (AI).

But chess computers are highly specialized systems.
Deep-Blue's intelligence was limited. It couldn't even play a 
decent game of Tic-Tac-Toe or Rock-Paper-Scissors.

With General Game Playing many of the original expectations 
with game playing machines get revived.

A General Game Player is a system that

understands formal descriptions of arbitrary strategy games

learns to play these games well without human intervention
A General Game Player needs to exhibit much broader intelligence:

abstract thinking
strategic planning
learning

Traditional research on game playing focuses on
constructing specific evaluation functions
building libraries for specific games

The intelligence lies with the programmer, not with the program!



Rather than being concerned with a specialized solution to a narrow
problem, General Game Playing encompasses a variety of AI areas:

Game Playing
Knowledge Representation
Planning and Search
Learning

General Game Playing is considered a grand AI Challenge

General Game Playing and AI

Games Agents
 Deterministic, complete information  Competitive environments
 Nondeterministic, partially observable  Uncertain environments
 Rules partially unknown  Unknown environment model
 Robotic player  Real-world environments

Application (1)
Commercially available chess computers can't be used
for a game of Bughouse Chess.

An adaptable game computer would allow the user to
modify the rules for arbitrary variants of a game.

Application (2): Economics

A General Game Playing system could be used for negotiations,
marketing strategies, pricing, etc.

It can be easily adapted to changes in the business processes and
rules, new competitors, etc.

The rules of an �-marketplace can be formalized as a game, so that
agents can automatically learn how to participate.



Example Games

Single-Player, Deterministic

Single-Player, Deterministic Two-Player, Zero-Sum, Deterministic



Two-Player, Zero-Sum, Deterministic Two-Player, Zero-Sum, Nondeterministic

n-Player, Deterministic n-Player, Incomplete Information, Nondeterministic



General Game Playing Initiative

(deterministic games w/ complete information only)

Game description language
Variety of games/actual matches
Basic player available for download
Annual world cup @AAAI (since 2005)
Price money: US$ 10,000

games.stanford.edu

Roadmap

The Game Description Language GDL:
Knowledge Representation
How to make legal moves:
Automated Reasoning
How to solve simple games:
Planning & Search
How to play well:
Learning

Game Description Language

Every finite game can be modeled as a state transition system

But direct encoding impossible in practice

 ~ 1043 legal positions19,683 states



Modular State Representation: Fluents

cell(X,Y,C)

X ∈ {a,...,h}
Y ∈ {1,...,8}
C ∈ {whiteKing,...,blank}

control(P)

P ∈ {white,black}

 a    b   c   d    e    f    g   h

 8
 7
 6
 5
 4
 3
 2
 1

Fluent Representation for Chess (2)

canCastle(P,S)

P ∈ {white,black}
S ∈ {kingsSide,queensSide}

enPassant(C)

C ∈ {a,...,h}

 a    b   c   d    e    f    g   h

 8
 7
 6
 5
 4
 3
 2
 1

Actions

move(U,V,X,Y)
U,X ∈ {a,...,h}
V,Y ∈ {1,...,8}

promote(X,Y,P)

X,Y ∈ {a,...,h}
  P ∈ {whiteQueen,...}

 a    b   c   d    e    f    g   h

 8
 7
 6
 5
 4
 3
 2
 1

Players

Initial position

Legal Moves

init(cell(a,1,whiteRook)) �   ...

roles([white,black])

legal(white,promote(X,Y,P)) <=  

   true(cell(X,7,whitePawn)) �  ...

Game Rules (I)



Position updates

End of game

Result

terminal <=                                    
    checkmate 

�

 stalemate

next(cell(X,Y,C)) <=           
   does(P,move(U,V,X,Y))

    �    true(cell(U,V,C)) 

goal(white,100) <=                       
       true(control(black))�  checkmate  
goal(white, 50) <=  stalemate

Game Rules (II) Clausal Logic
Variables: X, Y, Z
Constants: a, b, c
Functions: f, g, h
Predicates: p, q, r, =
Logical Operators: ¬, � �

, , <=

Terms: X, Y, Z, a, b, c, f(a), g(a,X), h(a,b,f(Y))
Atoms: p(a,b)
Literals: p(a,b), ¬q(X,f(a))

Clauses: Head <= Body
Head: relational sentence
Body: logical sentence built from � , � , literal

Game-Independent Vocabulary

Relations
roles(list-of(player))
init(fluent)
true(fluent)
does(player,move)
next(fluent)
legal(player,move)
goal(player,value)
terminal

cell(X,Y,M)

X,Y ∈ {1,2,3}
M ∈ {x,o,b}

control(P)

P ∈ {xplayer,oplayer}

Axiomatizing Tic-Tac-Toe: Fluents

3

2

1

1 2 3



Axiomatizing Tic-Tac-Toe: Actions

3

2

1

1 2 3

mark(X,Y)

X,Y ∈ {1,2,3}

noop

Tic-Tac-Toe: Vocabulary
Constants
xplayer, oplayer Players
x, o, b Marks
Functions
cell(number,number,mark) Fluent
control(player) Fluent
mark(number,number) Action
Predicates
row(number,mark)
column(number,mark)
diagonal(mark)
line(mark)
open

Players and Initial Position

roles([xplayer,oplayer])
init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(xplayer))

Preconditions

legal(P,mark(X,Y)) <=
  true(cell(X,Y,b)) �

  true(control(P))

legal(xplayer,noop) <=
  true �(cell(X,Y,b)) 
  true(control(oplayer))

legal(oplayer,noop) <=
  true �(cell(X,Y,b)) 
  true(control(xplayer))



Update

next(cell(M,N,x))<= does(xplayer,mark(M,N))

next(cell(M,N,o))<= does(oplayer,mark(M,N))

next(cell(M,N,W))<= true(cell(M,N,W)) � ¬W=b
next(cell(M,N,b))<= true(cell(M,N,b)) �

    does(P,mark(J,K))

�

(¬M=J

�

¬N=K)

next(control(xplayer)) <= true(control(oplayer))

next(control(oplayer)) <= true(control(xplayer))

Termination

terminal <= line(x) 
�

 line(o)
terminal <= ¬open

line(W) <= row(M,W)
line(W) <= column(N,W)
line(W) <= diagonal(W)

open <= true(cell(M,N,b))

Supporting Concepts
   row(M,W) <= true �(cell(M,1,W)) 
  true �(cell(M,2,W)) 
  true(cell(M,3,W))

column(N,W) <= true

�

(cell(1,N,W)) 
  true

�

(cell(2,N,W)) 
 true(cell(3,N,W))

diagonal(W) <= true �(cell(1,1,W)) 
  true

�
(cell(2,2,W)) 

  true(cell(3,3,W))

diagonal(W) <= true �(cell(1,3,W)) 
  true �(cell(2,2,W)) 
  true(cell(3,1,W))

Goals

goal(xplayer,100) <= line(x)
goal(xplayer,50)  <= ¬ �line(x)  ¬ �line(o)  ¬open
goal(xplayer,0)   <= line(o)

goal(oplayer,100) <= line(o)
goal(oplayer,50)  <= ¬ �line(x)  ¬ �line(o)  ¬open
goal(oplayer,0)   <= line(x)



Finite Games

Finite Environment
Game “world” with finitely many states
One initial state and one or more terminal states
Fixed finite number of players
Each with finitely many “percepts” and “actions”
Each with one or more goal states

Causal Model
Environment changes only in response to moves
Synchronous actions

Games as State Machines

a

b

c

d

e

f

g

h

i

j

k

Initial State and Terminal States

a

b

c

d

e

f

g

h

i

j

k

Simultaneous Actions

a

b

c

d

e

f

g

h

i

j

ka/b a/b

a/aa/a

b/aa/b

a/b

a/ba/a

a/a

a/a

a/aa/a

a/b

b/b
b/a

b/b

b/b

b/bb/a



Game Model

An n-player game is a structure with components:
S – set of states
A1, ..., An – n sets of actions, one for each player

l1, ..., ln – where li 

�  Ai × S, the legality relations
u: S × A1 × ... × An 

�  S – update function

s1

�  S – initial game state
t �  S – the terminal states
g1, ... gn – where gi

�  S × �, the goal relations

GDL for Trading Games: Example
(English Auction)

role(bidder_1) 

�

 ... 

�

 role(bidder_n)

init(highestBid(0))

init(round(0))

legal(P,bid(X)) <= 
true(highestBid(Y)) 

�

 greaterthan(X,Y)

legal(P,noop)

terminal <= true(round(10))

next(winner(P)) <= does(P,bid(X)) 

�

 bestbid(X)�

next(highestBid(X)) <= does(P,bid(X))  bestbid(X)�next(winner(P)) <= true(winner(P))  not bid�

next(highestBid(X)) <= true(highestBid(X)  not bid

next(round(N)) <= true(round(M)), successor(M,N)

bid <= does(P,bid(X)) �

bestbid(X) <= does(P,bid(X))  not overbid(X)�overbid(X) <= does(P,bid(Y))  greaterthan(Y,X)

Try it Yourself: Play this Game!

role(you)

init(step(1))

init(cell(1,onecoin))

init(cell(Y,onecoin)) <= succ(X,Y)

succ(1,2) � � � succ(2,3)  ...  succ(7,8)

next(step(Y)) <= true(step(X)) � succ(X,Y)
next(cell(X,zerocoins)) <= does(you,jump(X,Y))

next(cell(Y,twocoins)) <= does(you(jump(X,Y))

next(cell(X,C)) <= does(you,jump(Y,Z)) 

�

                   true(cell(X,C)) �

                   distinct(X,Y)

�

distinct(X,Z)

terminal <= ~continuable

continuable <= legal(you,M)

goal(you,100) <= true(step(5))

goal(you,0) <= true(cell(X,onecoin))

legal(you,jump(X,Y)) <=

   true(cell(X,onecoin)) � true(cell(Y,onecoin)) �

   ( twobetween(X,Y) | twobetween(Y,X) )

zerobetween(X,Y) <= succ(X,Y)

zerobetween(X,Y) <= succ(X,Z) � true(cell(Z,zerocoins))
                    

�

 zerobetween(Z,Y)

onebetween(X,Y) <= succ(X,Z) � true(cell(Z,zerocoins))
                   

�

 onebetween(Z,Y)

onebetween(X,Y) <= succ(X,Z) � true(cell(Z,onecoin))
                   

�

 zerobetween(Z,Y)

twobetween(X,Y) <= succ(X,Z) 

�
 true(cell(Z,zerocoins))

                   � twobetween(Z,Y)
twobetween(X,Y) <= succ(X,Z) 

�
 true(cell(Z,onecoin))

                   � onebetween(Z,Y)
twobetween(X,Y) <= succ(X,Z) � true(cell(Z,twocoins))
                   � zerobetween(Z,Y)

Automated Reasoning



Game descriptions are a good example of knowledge representation
with formal logic.

Automated reasoning about actions necessary to
determine legal moves
update positions
recognize end of game

Background: Reasoning about Actions

McCarthy's Situation Calculus (1963)
    s0

        ...      do(Aj,do(Ai,s0)) ...     

      do(A1,s0)          do(An,s0)

Reasoning about Actions using Situations

Effect Axioms:

( �S)( �M,N) cell(M,N,x,do(xplayer,mark(M,N),S))

The Frame Problem (McCarthy & Hayes, 1969) arises because
 mere effect axioms do not suffice to infer non-effects!

How does cell(2,2,o,s) imply cell(2,2,o,do(xplayer,mark(3,3),s))?

The Frame Problem

A frame axiom for Tic-Tac-Toe:
( �S)( �...) cell(M,N,W,do(P,mark(J,K),S)) <= 
   cell(M,N,W,S) �  (M 	 �J  N 	K)

Compare this to the GDL axiom
next(cell(M,N,W))<= true(cell(M,N,W))

�

¬W=b

next(cell(M,N,b))<= true(cell(M,N,b)) �

    does(P,mark(J,K)) � (¬M=J �

¬N=K)

In a domain with m actions and n fluents, in the order of n·m frame
axioms are needed.



Successor State Axioms

“If AI can be said to have a classic problem, then the Frame
Problem is it. Like all good open problems it is subtle,
challenging, and it has led to significant new technical and
conceptual developments in the field.” (Reiter, 1991)


( P,A,S) �(do(P,A,S)) <=> �+ 
  [ � � �(S)  �- ]

A successor state axiom (Reiter, 1991) for every fluent �

avoids extra frame axioms:

�+:reasons for � to become true�-: reasons for � to become false

Successor State Axioms for Tic-Tac-Toe

�+

�+

�-

� �( P,A,S)( ...) cell(M,N,W,do(P,A,S)) <=>� � �W=x  P=xplayer  A=mark(M,N) � � �W=o  P=oplayer  A=mark(M,N) � �cell(M,N,W,S)  A=mark(M,N)

� �( P,A,S)( R) control(R,do(P,A,S) <=> � �R=xplayer  control(oplayer,S) �R=oplayer  control(xplayer,S)

The Computational Frame Problem

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

S0

S1

S2

S3

Fluent Calculus

A state update axiom (T., 1999) for every action � avoids 
separate update axioms for every fluent:

  �( S) �

1

� �(S)  state(do(P, ,S)) = state(S) - �

1
- + �

1
+

   �  �... 
  �

k

� �(S)  state(do(P, ,S)) = state(S) - �

k
- + �

k
+

  �+: fluents that become true
  �-: fluents that become false

(where subtraction z- �- and addition z �+ + axiomatically defined) 



� �( S)( ...) control(oplayer,S) �  state(do(xplayer,mark(M,N),S)) =
  state(S) – control(oplayer)
  + control(xplayer) + cell(M,N,o)
  � control(xplayer,S) �  state(do(oplayer,mark(M,N),S)) =
  state(S) – control(xplayer)
  + control(oplayer) + cell(M,N,x)

� �( S)( P) state(do(P,noop)) = state(S)

�

1
-

�

2
+

�

2
-

�

1
+

State Update Axioms for Tic-Tac-Toe Action Programming Languages

Morgan & Claypool Publishers

Action Programming 
Languages

Michael Thielscher

Synthesis Lectures on Artificial
Intelligence and Machine Learning

2008

The Fluent Calculus and FLUX A General Architecture

Game
Description

Compiled
Theory

Reasoner

Move
List

Termination
& Goal

State
Update



Planning and Search

Game Tree Search (General Concept)

Breadth-First Search

a  b  c  d  e  f  g  h  i  j
Advantage: Finds shortest solution
Disadvantage: Consumes large amount of space

a

jihgfe

dcb

Depth-First Search

a  b  e  f  c  g  h  d  i  j
Advantage: Small intermediate storage
Disadvantage: Susceptible to garden paths
Disadvantage: Susceptible to infinite loops

a

jihgfe

dcb



Time and Space Comparison

Worst case for search depth d, solution at depth k

Time Binary Branching b
______________________________________________________________________________________________________________________________________________________

Depth-First   2d – 2d-k

Breadth-First  2k - 1

bd� bd � k
b� 1

bk� 1
b� 1

Space Binary  Branching b
_____________________________________________________________________________________________________________________________________________________

Depth-First    d        (b - 1) � (d - 1) + 1

Breadth-First  2k-1           bk-1

Iterative Deepening

Run depth-limited search repeatedly
starting with a small initial depth d

incrementing on each iteration d := d + 1

until success or run out of alternatives

Example

d = 1: a
d = 2: a  b  c  d
d = 3: a  b  e  f  c  g  h  d  i  j
Advantage: Small intermediate storage
Advantage: Finds shortest solution
Advantage: Not susceptible to garden paths
Advantage: Not susceptible to infinite loops

a

jihgfe

dcb

Time Comparison
Worst case for branching factor 2
Depth  Iterative Deepening Depth-First
1      1 1
2      4 3
3     11 7
4     26     15
5     57       31
n 2n+1 – n – 2   2n – 1

Theorem: The cost of iterative deepening search is 
b/(b-1) times the cost of depth-first search (where b 
is the branching factor).



Game Rules

legal(P,mark(X,Y)) <= true(cell(X,Y,b)) �

 true(control(P))

next(cell(M,N,x)) <= does(xplayer,mark(M,N))

next(cell(M,N,W)) <= true

�

(cell(M,N,W))  ¬W=b

terminal <= line(x) 

�

 line(o)

goal(xplayer,100) <= line(x)

Basic Subroutines for Search

function legals (role, node)
findall(X, legal(role,X), node.position �  gamerules)

function simulate (node,moves)
findall(true(P), next(P), node.position �  moves �  gamerules)

function terminal (node)
prove(terminal, node.position �  gamerules)

function goal (role, node)
findone(X, goal(role,X), node.position �  gamerules)

Game
Description

Compiled
Theory

Reasoner

Move
List

Termination
& Goal

State
Update

Search

A General Architecture Node Expansion (Single Player Games)

 function expand(node)
 begin

 al := [];
 for a in legals(role,node) do

 data := simulate(node,{does(role,a)});
 new := create_node(data);

 al := {(a,new)} �  al
 end-for;

 return al
 end



Best Move (Single Player Games)

function bestmove(alist)
begin

max := 0;
best := head(node.actionlist);
for a in node.actionlist do

score := maxscore(a.new.alist);
if score = 100 then return a;
if score > max then 

max := score; best := a
end-if

end-for;
return best

end

function maxscore(alist) % returns best score among the alist actions

State-Space Search with Multiple Players

s1

s2

s3

s4

e

f

g

h

i

j

ka/b a/b

a/aa/a

b/aa/b

a/b

a/ba/a

a/a

a/a

a/aa/a

a/b

b/b
b/a

b/b

b/b

b/bb/a

Single Player Game Graph

s1

s4

s3

s2

Multiple Player Game Graph

s1

s4

s3

s2

ab

bb

ba

aa



Bipartite Game Graph

s1

s4

s3

s2

bb

ba

aa

a ab

b

Move Lists

Simple move list
[(a,s2),(b,s3)]

Multiple player move list
[([a,a],s2),([a,b],s1),
 ([b,a],s3),([b,b],s4)]

Bipartite move list
[(a,[([a,a],s2),([a,b],s1)]),
 (b,[([b,a],s3),([b,b],s4)])]

Multiple Player Node Expansion
 function expand (node)
 begin

 al := []; jl := [];
 for a in legals(role,node) do

 for j in joints(role,a,node) do
 data := simulate(node,jointactions(j));
 new := create_node(data);
 jl := {(j,new)} �  jl

 end-for;
 al := {(a,jl)} �  al

 end-for;
 return al

 end
function joints (role,action) % returns combinatorial list of all legal joint actions

   % where role does action
function jointactions(j) % returns set of does atoms for joint action j

Best Move
function bestmove (node)
begin

max := 0;
(best,jl) := head(node.alist);
for (a,jl) in node.alist do

score := minscore(jl);
if score = 100 then return a;
if score > max then 

max := score; best := a
end-if

end-for;
return best

end

Note: This makes the paranoid assumption that the other 
players make the most harmful (for us) joint move.



40
       max

       40        40       10        min

75 40 50 80 40 60 35 20 10

Minimax for Two-Person Zero-Sum Games

40
       max

       40     � 40 �                35       min

75 40 50 80 40 60 35 20 10

The � �- -Principle: �-Cutoffs

The � �- -Principle: � �- and -Cutoffs

       max

             60             � 60   �         60 min

      60               � 60              50       40 max

    60       45      75       90      10       50     35       30      35       40     20      15

� = 0  = 100

� = 60  = 100

� = 0  = 100

� = 0  = 100

� = 0  = 60

� = 60  = 100

State Collapse

The game tree for Tic-Tac-Toe has approximately 700,000 
nodes. There are approximately 5,000 distinct states. 
Searching the tree requires 140 times more work than 
searching the graph.

Recognizing a repeat state takes time that varies with the 
size of the graph thus far seen. Solution: Transposition tables



Symmetry

Symmetries can be logically derived from the rules of a game.

A symmetry relation over the elements of a domain is an 
equiva-lence relation such that

two symmetric states are either both terminal or non-terminal
if they are terminal, they have the same goal value
if they are non-terminal, the legal moves in each of them are 
symmetric and yield symmetric states

Reflectional Symmetry

Connect-3

Rotational Symmetry

Capture Go

Factoring Example

Branching factor as given to players: a · b
Fringe of tree at depth n as given: (a · b)n

Fringe of tree at depth n factored: an + bn

Hodgepodge = Chess + Othello

Branching factor: bBranching factor: a



Double Tic-Tac-Toe

Branching factor: 81, 64, 49, 36, 25, 16, 9, 4, 1
Branching factor (factored): 9, 8, 7, 6, 5, 4, 3, 2, 1 (times 2)

Game Factoring and its Use
A set ! of fluents and moves is a behavioral factor if and only if 
there are no connections between the fluents and moves in !  
and those outside of !.
1. Compute factors

Behavioral factoring
Goal factoring

2. Play factors
3. Reassemble solution

Append plans
Interleave plans
Parallelize plans with simultaneous actions

Competition vs. Cooperation

The “paranoid” assumption says that opponents choose the joint 
move that is most harmful for us. 

This is usually too pessimistic for other than zero-sum games 
and games with n > 2 players. A rational opponent chooses the 
move that's best for him rather than the one that's worst for us.
Moreover, from a game theoretic point of view, it is incorrect to 
model simultaneous moves as a sequence of our move followed 
by the joint moves of our opponents.
Example: Rock-Paper-Scissors

Mathematical Game Theory: Strategies

Game model:
S – set of states
A1, ..., An – n sets of actions, one for each player
l1, ..., ln – where li 

�  Ai × S, the legality relations
g1, ..., gn – where gi 

�  S × � , the goal relations

A strategy xi for player i maps every state to a legal move for i
xi : S �  Ai                                    ( such that (xi 

�(S),S)  li ) 

(Remark: The set of strategies is always finite in a finite game. 
However, there are more strategies in Chess than atoms in 
the universe ...)



An n-player game in normal form is an n+1-tuple

� = (X1, ..., Xn,u)
where Xi is the set of strategies for player i and

u = (u1, ..., un): 

"  Xi 

� � i

are the utilities of the players for each n-tuple of strategies.

(Remark: Each n-tuple of strategies determines directly the 
outcome of a match, even if this consists of sequences of 
moves.)

Games in Normal Form

n

i=1

Equilibria

ГLet   = (X1, ..., Xn,u) be an n-player game.

(x1*, ..., xn*) equilibrium

if for all i = 1, ..., n and all xi
� Xi

ui(x1*, ..., xi-1*, xi, xi+1*, ..., xn*) 

# ui(x1*, ..., xn*)

An equilibrium is a tuple of optimal strategies: No player has a 
reason to deviate from his or her strategy, given the opponent's 
strategies.

Dominance

A strategy x � Xi dominates a strategy y � Xi if

ui(x1, ..., xi-1, x, xi+1, ..., xn) 

$ ui(x1, ..., xi-1, y, xi+1, ..., xn)

for all (x1, ..., xi-1, xi+1, ..., xn

�)  X1 × ... × Xi-1 × Xi+1 × ... × Xn.

A strategy x � X
i 
strongly dominates a strategy y � Xi if

x dominates y and y does not dominate x.

Assume that opponents are rational:
They don't choose a strongly dominated strategy.

Dominance: Example

Consider a game where both players have strategies {a, b, c, d, e}.
Let the goal values be given by

a b c d e

a
0 7 8 0 4

10 7 6 9 8

b
2 8 2 5 6

10 4 6 9 5

c
3 6 1 4 5

9 7 9 8 8

d
9 4 6 0 9

2 6 4 3 7

Player 2

Player 1



Dominance: Example (ctd)

a b c d e

a
0 7 8 0 4

10 7 6 9 8

b
2 8 2 5 6

10 4 6 9 5

c
3 6 1 4 5

9 7 9 8 8

d
9 4 6 0 9

2 6 4 3 7

Player 2

Player 1

Dominance: Example (ctd)

a b c d e

a
0 7 8 0 4

10 7 6 9 8

c
3 6 1 4 5

9 7 9 8 8

Player 2

Player 1

Dominance: Example (ctd)

b c

a
7 8

7 6

c
6 1

7 9

Player 2

Player 1

  (60,50)
       Player 1

    (40,40)     (60,50)    (20,60)       Player 2

(75,25)  (40,40)  (50,30)  (80,40)  (40,40)  (60,50)  (35,60)  (20,60)  (10,50)

Game Tree Search with Dominance



       

      (40,40)          � 40? �        35?       

(75,25)  (40,40)  (50,30)  (80,40)  (40,40)  (60,50)  (35,60)  (20,60)  (10,50)

The � �- -Principle does not Apply Mixed Strategies

Let (X1, ..., Xn, u) be an n-player game, then its mixed extension is

 Г = (P1, ..., Pn, (e1, ..., en))

where for each i=1, ..., n 

Pi = {pi: pi probability measure over Xi}

and for each (p1, ..., pn) 
�  P1 × ... × Pn

ei(p1, ..., pn) = 

% %
 ...  ui(x1, ..., xn) · p1(x1) · ... · pn(xn)

Nash's Theorem: Every mixed extension of an n-player game has 
at least one equilibrium.

 x1

&X1   xn

& Xn

Then p1 =             dominates p1' = (0,1,0).
Hence, for all (pa', pb', pc') 

�  P1 with pb' > 0 there exists 
a dominating strategy (pa, 0, pc) 

�  P1.

Iterated Row Dominance for Mixed Strategies

a b c
   a 10 0 8
   b 6 4 4
   c 3 8 7

Let a zero-sum game be given by

'

1
2 ,0 , 1

2

(

Iterated Row Dominance for Mixed Strategies (ctd)

a b c
   a 10 0 8
   b 6 4 4
   c 3 8 7

Now p2 =             dominates p2' = (0,0,1).

'

1
2 , 1

2 ,0

(



Iterated Row Dominance for Mixed Strategies (ctd)

a b c
   a 10 0 8

   c 3 8 7

The unique equilibrium is

) '

1
3 ,0 , 2

3

(

,

'

1
2 , 1

2 ,0

( *

.

Learning

Roadmap

Heuristics
Detecting Structures

Generating Evaluation Functions

The Viking Method

Complete vs. Incomplete Search

Simple games like Tic-Tac-Toe and Rock-Paper-Scissors can be 
searched completely.

"Real" games like Peg Jumping, Chinese Checkers, Chess cannot.



Incomplete Search

e e  e e e e e e  e   estimated val's     

Requires to automatically generate evaluation functions

Towards Good Play

Besides efficient inference and search algorithms, the ability to
automatically generate a good evaluation function distinguishes
good from bad General Game Playing programs.

Existing approaches:
Mobility and Novelty Heuristics
Structure Detection
Fuzzy Goal Evaluation
The Viking Method: Monte-Carlo Tree Search

Constructing an Evaluation Function

Mobility

More moves means better state
Advantage:
In many games, being cornered or forced into making a move is 
quite bad
- In Chess, having fewer moves means having fewer pieces,
 pieces of lower value, or less control of the board
- In Chess, when you are in check, you can do relatively few

things compared to not being in check
- In Othello, having few moves means you have little control of

the board

Disadvantage: Mobility is bad for some games



Worldcup 2006: Cluneplayer vs. Fluxplayer Inverse Mobility

Having fewer things to do is better
This works in some games, like Nothello and Suicide Chess, 
where you might in fact want to lose pieces

How to decide between mobility and inverse mobility heuristics?

Novelty

Changing the game state is better
Advantage:
- Changing things as much as possible can help avoid getting stuck
- When it is unclear what to do, maybe the best thing is to throw in

some directed randomness
Disadvantage:
- Changing the game state can happen if you throw away your own 

pieces ...
- Unclear if novelty per se actually goes anywhere useful for
 anybody

Designing Evaluation Functions

Typically designed by programmers/humans
A great deal of thought and empirical testing goes into choosing 
one or more good functions
E.g.
- piece count, piece values in chess
- holding corners in Othello

But this requires knowledge of the game's structure, semantics, 
play order, etc.



Identifying Domains

Domains of fluents identified by dependency graph
    

step/1

succ/1

succ/2

0

1

2

3

 succ(0,1) + succ(1,2) + succ(2,3)
init(step(0))
next(step(X)) <=  true(step(Y)) + succ(Y,X)

Identifying Structures: Relations

A successor relation is a binary relation that is antisymmetric, 
functional, and injective.

Example:

An order relation is a binary relation that is antisymmetric and 
transitive.

Example:
+ + +succ(1,2)  succ(2,3)  succ(3,4)  ...+ + +

next(a,b)  next(b,c)  next(c,d)  ...

lessthan(A,B) <= succ(A,B) +lessthan(A,C) <= succ(A,B)  lessthan(B,C)

Boards and Pieces

An (m-dimensional) board is an n-ary fluent (n ,  m+1) with
m arguments whose domains are successor relations
1 output argument

Example:

A marker is an element of the domain of a board's output argument.
A piece is a marker which is in at most one board cell at a time.
Example: Pebbles in Othello, White King in Chess

+ +
cell(a,1,whiterook)  cell(b,1,whiteknight)  ...

 goal(xplayer,100) <= 
        line(x)
 line(P) <= row(P)
            

-

 col(P)
            

-

 diag(P)

Fuzzy Goal Evaluation: Example

Value of intermediate state = Degree to which it satisfies the goal

1        2        3

1

2

3



goal(xplayer,100) <= line(x)

line(P) <= row(P) 

.

 col(P) 

.

 diag(P)

row(P) <= true(cell(1,Y,P)) 

/

 true(cell(2,Y,P)) 

/

 
true(cell(3,Y,P))

col(P) <= true(cell(X,1,P)) 

/

 true(cell(X,2,P)) 

/

 
true(cell(X,3,P))

diag(P) <= true(cell(1,1,P)) 

/

 true(cell(2,2,P)) 

/

 
true(cell(3,3,P))

diag(P) <= true(cell(3,1,P)) 

/

 true(cell(2,2,P)) 

/

 
true(cell(1,3,P))

Full Goal Specification After Unfolding
goal(x,100) <= true(cell(1,Y,x)) /  true(cell(2,Y,x)) /  

  true(cell(3,Y,x))
  .

 true(cell(X,1,x)) /  true(cell(X,2,x)) /  
 true(cell(X,3,x))
  .

 true(cell(1,1,x)) /  true(cell(2,2,x)) /  
 true(cell(3,3,x))
  .
 true(cell(3,1,x))

/  true(cell(2,2,x)) /  
 true(cell(1,3,x))

3 literals are true after  does(x,mark(1,1)) 
2 literals are true after  does(x,mark(1,2))
4 literals are true after  does(x,mark(2,2))

Our t-norms: Instances of the Yager family (with parameter q)

Evaluating Goal Formula (Cont'd)

           T(a,b) = 1 – S(1-a,1-b)                                          
           S(a,b) = (a^q + b^q) ^ (1/q)

Evaluation function for formulas

            eval(f +  g) = T'(eval(f),eval(g))                            
            eval(f .  g) = S'(eval(f),eval(g))                            
            eval( 0f) = 1 - eval(f)

(1-p) - (1-p) * 1 (b,a) / |dom(f(x))|
Degree to which f(x,a) is true given that f(x,b) holds:

With p =  0.9, eval(cell(green,e,5)) is
0.082  if  true(cell(green,f,10)) 
0.085  if  true(cell(green,j,5))

 (f,10)

 (j,5) (e,5)



Advanced Fuzzy Goal Evaluation: Example

init(cell(green,j,13)) +

 ...

goal(green,100) 
   <= true(cell(green,e,5)
      

+  ...

 (j,13)

 (e,5)

Truth degree of goal literal = (Distance to current value)-1

Identifying Metrics

Order relations  Binary, antisymmetric, functional, injective
    

succ(1,2).  succ(2,3).  succ(3,4).
file(a,b).  file(b,c).  file(c,d).

Order relations define a  metric  on  functional  features

1

(cell(green,j,13),cell(green,e,5)) = 13

Degree to which f(x,a) is true given that f(x,b): 

(1-p) - (1-p) * 1 (b,a) / |dom(f(x))|

With p =  0.9, eval(cell(green,e,5)) is
0.082  if  true(cell(green,f,10)) 
0.085  if  true(cell(green,j,5))

 (f,10)

 (j,5) (e,5)

A General Architecture

Game
Description

Compiled
Theory

Reasoner

Move
List

Termination
& Goal

State
Update

Evaluation
Function

Search



Fuzzy goal evaluation works particularly well for games with

independent  sub-goals
          15-Puzzle

converge  to the goal
          Chinese Checkers

quantitative  goal
          Othello

partial goals
          Peg Jumping, Chinese Checkers with >2 players

Assessment An Alternative Approach: The Viking Method

aka Monte Carlo Tree Search
used by Cadiaplayer (Reykjavik University)

        horizon

  100     0       50

    Game Tree Seach MC Tree Search

 ... ... ...

Monte Carlo Tree Search

Value of move = Average score returned by simulation

n = 60
v = 40

n = 22
v = 20

n = 18
v = 20

n = 20
v = 80

n = 60
v = 70

Play one random game for each move
For next simulation choose move

          confidence boundargmaxi

2

v i

3 C 4 5

log n
ni

6

Confidence Bounds

 ...  . . . ...
n1 = 4
v1 = 20

n2 = 24
v2 = 65

n3 = 32
v3 = 80



Assessment

Monte Carlo Tree Search works particularly well for games which
converge to the goal

Checkers
reward greedy behavior

have a large branching factor

do not admit a good heuristics

The World Cup

Game Master

Player1 Player2 Playern...

Game description
Time to think: 1,800 sec
Time per move: 45 sec
Your role

Game Master

Player1 Player2 Playern...

Game description
Time to think: 1,800 sec
Time per move: 45 sec
Your role



Game Master

Player1 Player2 Playern...

Start

Game Master

Player1 Player2 Playern...

Your move, please

Game Master

Player1 Player2 Playern...

Individual moves

Game Master

Player1 Player2 Playern...

Joint move



Game Master

Player1 Player2 Playern...

End of game

1st World Championship 2005 in Pittsburgh

1. UCLA (Clune)
2. Florida
3. Fluxplayer

UT Austin

 Player Points

2690.75

 2. UCLA 2573.75

 3. UT Austin 2370.50

 4. Florida 1948.25

 5. TU Dresden II 1575.00

7

 1. Fluxplayer

     2nd World Championship 2006 in Boston:      
Final Leaderboard 

 Player Points

2724

 2. Fluxplayer 2356

 3. Paris 2253

 4. UCLA 2122

 5. UT Austin 1798

7

 1. Reykjavik

     3rd World Championship 2007 in Vancouver:   
 Final Leaderboard 



Summary

The GGP Challenge

Much like RoboCup, General Game Playing
combines a variety of AI areas
fosters developmental research
has great public appeal
has the potential to significantly advance AI

In contrast to RoboCup, GGP has the advantage to
focus on high-level intelligence
have low entry cost
make a great hands-on course for AI students

A Vision for GGP

Natural Language Understanding
Rules of a game given in natural language

Robotics
Robot playing the actual, physical game

Computer Vision
Vision system sees board, pieces, cards, rule book, ...

Uncertainty
Nondeterministic games with incomplete information

Resources

Stanford GGP initiative games.stanford.edu
- GDL specification
- Basic player
GGP in Germany general-game-playing.de
- Game master

Palamedes palamedes-ide.sourceforge.net
- GGP/GDL development tool



Recommended Papers

J. Clune
Heuristic evaluation functions for general game playing
AAAI 2007
H. Finnsson, Y. Björnsson
Simulation-based approach to general game playing
AAAI 2008
M. Genesereth, N. Love, B. Pell
General game playing
AI magazine 26(2), 2006
G. Kuhlmann, K. Dresner, P. Stone
Automatic heuristic construction in a complete general game player
AAAI 2006
S. Schiffel, M. Thielscher
Fluxplayer: a successful general game player
AAAI 2007


