
1

The Concurrent, Continuous Fluent Calcu-
lus

MICHAEL THIELSCHER
Department of Computer Science, Dresden University of Technology, 01062
Dresden (Germany)
e-mail : mit@inf.tu-dresden.de

Abstract. The Fluent Calculus belongs to the established predicate cal-
culus formalisms for reasoning about actions. Its underlying concept of state
update axioms provides a solution to the basic representational and inferen-
tial Frame Problems in pure first-order logic. Extending a recent research
result, we present a Fluent Calculus to reason about domains involving con-
tinuous change and where actions occur concurrently.

0.1 Introduction

Research into Cognitive Robotics aims at explaining and modeling intelli-
gent acting in a dynamic world. Whenever intelligent behavior is understood
as resulting from correct reasoning on correct representations, the classical
Frame Problem [6] is a fundamental theoretical challenge: Given a represen-
tation of the effects of the available actions, how can one formally capture a
crucial regularity of the real world, namely, that an action usually does not
have arbitrary other effects? Explicitly specifying for each single potential
effect that it is actually not an effect of a particular action, is obviously
unsatisfactory both as a representation technique and as regards efficient in-
ferencing [2]. The predicate calculus formalism of the Fluent Calculus [14],
which roots in the logic programming approach of [5], provides a basic so-
lution to both the representational and the inferential aspect of the Frame
Problem. The simple Fluent Calculus has been extended into various direc-
tions, including nondeterministic actions [15], ramifications [12], and sensing
actions [16].

In [13], we have developed a theory based on the Fluent Calculus of rea-
soning about actions and planning in domains involving continuous change.
In being applicable to planning problems with incomplete knowledge of world
states, this approach has been shown to provide a better generalization of
Green’s classical definition of planning by deduction [4] than the Situation
Calculus-based formalism of [8]. The latter, on the other hand, supports

2

concurrent actions while [13] applies only to non-concurrent worlds.

In this paper, we extend our theory so as to obtain a Fluent Calculus
which allows for specifying and reasoning about domains involving contin-
uous change and where actions occur concurrently. With the resulting ax-
iomatization technique we will be able to solve planning problems of the
following kind: Suppose you want to boil an egg for exactly 15 minutes. The
only available tool for measuring time are two sandglasses, one of which runs
for 7 minutes while the other one runs for 11 minutes. This problem involves
continuous change and requires to turn the two sandglasses simultaneously
at some point. Which sequence of actions achieves the goal?1

0.2 Fluents, Processes, and States

The Fluent Calculus is a sorted language of classical logic with equality.
There are four standard sorts, namely, fluent, state (of which fluent
is a sub-sort), action, and sit. For the concurrent, continuous Fluent Cal-
culus, we add the two sorts concurrent (of which action is a sub-sort)
and real, to be interpreted as the real numbers. The latter is accompanied
by the usual arithmetic operations along with their standard interpretation.

For our example planning problem, we additionally introduce the domain
sort sandglass, with just two elements:2

g = G7 ∨ g = G11 (1)

along with the specification of their sand load,

Capacity(G7) = 7 ∧ Capacity(G11) = 11 (2)

The so-called fluents are the basic entities to describe states of a dynamic
system. Each fluent represents an atomic property that may be affected by
actions and hence change in the course of time. In the continuous Fluent

1If the reader considers this instance too simple, try the problem of measuring 9 minutes
with two sandglasses running for 4 and 7 minutes, respectively.

2A word on the notation: Predicate and function symbols, including constants, start
with a capital letter whereas variables are in lower case, sometimes with sub- or super-
scripts. Free variables in formulas are assumed universally quantified. Throughout the
paper, fluent variables are denoted by the letter f , state variables by the letter z , action
variables by the letter a, concurrency variables by the letter c, situation variables by
the letter s, real-valued variables by the letters d and t, and sandglass variables by the
letter g , all possibly with sub- or superscript.

0.2. FLUENTS, PROCESSES, AND STATES 3

Calculus, a fluent can represent a complex continuous process, such as the
constant flow of sand through a sandglass. The various states in our example
domain will be modeled on the basis of the following four fluents:

Idle : sandglass 7→ fluent
Running : sandglass× real× real 7→ fluent

Boiling : real 7→ fluent
Boiled : real 7→ fluent

Fluent Idle(g) indicates that sandglass g is idling; fluent Running(g, d, t)
indicates the process of sandglass g running, having started at time t
with an amount of sand in the top that lasts for exactly d minutes;3 flu-
ent Boiling(t) says that the egg is being boiled, having started at time t;
and fluent Boiled(t) holds if the egg has been taken out of the pot and has
been boiled for t minutes. In addition to domain fluents, the continuous Flu-
ent Calculus includes one pre-defined fluent, StartTime : real 7→ fluent,
an instance of which in a state indicates the time at which the system has
entered that state. Adopting a notation from [1], we introduce the following
axioms of uniqueness of names for our example domain:

UNA[G7,G11] ∧ UNA[Idle,Running ,Boiling ,Boiled ,StartTime] (3)

The distinctive feature of the Fluent Calculus in comparison with the
Situation Calculus of [7], or the Event Calculus of [10], is its explicit, abstract
notion of a state besides that of a situation.4 We have said that fluent
is a sub-sort of state. Each single fluent represents the particular state
in which just this fluent holds and nothing else is true. State terms can be
joined together by the binary function “ ◦ ” of sort state×state 7→ state,
denoting the state in which precisely the elements of both arguments hold.
We write this function symbol in infix notation. In addition, the special
constant ∅ of sort state denotes the state in which no fluents at all hold.

Fundamental axioms for states stipulate crucial properties of the connec-
tion function “ ◦ ”. Firstly, it is an associative-commutative operation and
has ∅ as unit element, so that states are equal if they differ only in the order

3For example, if G7 is turned upside down at time t = 7 and again at time t = 11,
then the fluent Running(G7, 4, 11) will hold afterwards (for at most 4 minutes).

4To clarify terminology, a situation is characterized by a sequence of actions whereas a
state is characterized by the fluents that hold.

4

zc

za

zb
zd

z3

z4

z2

z1 ⇒ ∃ za, zb, zc, zd=

Figure 1: The Levi axiom:5 If some state (symbolized by a square) can be
partitioned into z1, z2 as well as into z3, z4, then it can be partitioned into
za, zb, zc, zd as depicted.6

in which their elements are composed together:

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3)
z1 ◦ z2 = z2 ◦ z1
z ◦ ∅ = z

(F1)

(The law of associativity allows us to omit parentheses in nested applications
of “ ◦”.) Secondly, the following axiom states that each fluent is a non-empty,
irreducible state, and so represents a state in which just this fluent holds:

z = f ⊃ z 6= ∅ ∧ [z = z′ ◦ z′′ ⊃ z′ = ∅ ∨ z′′ = ∅] (F2)

Finally, Levi’s axiom is needed to conclude inequality of two state terms if
they do not contain the same fluents:

z1 ◦ z2 = z3 ◦ z4 ⊃
(∃za, zb, zc, zd) (z1 = za ◦ zb ∧ z2 = zc ◦ zd ∧ z3 = za ◦ zc ∧ z4 = zb ◦ zd)

(F3)

Figure 1 gives an illustrative graphical interpretation of this axiom.

The conjunction of these foundational axioms along with a set of domain-
dependent unique names-axioms UNA, like, e.g., (3), is denoted by EUNA.
A logical consequence of these axioms are, as has been shown in [11], the
following two laws, which are of great practical value when it comes to
calculating with state equations.

5The naming comes from a lemma in trace theory [3].
6It should be noted, however, that the picture is slightly misleading: In case z1, z2, z3, z4

contain multiple occurrences of sub-terms, the states za, zb, zc, zd are not necessarily
uniquely determined, as the reader may verify with the example (f ◦ f) ◦ (f ◦ f) =
f ◦ (f ◦ f ◦ f).

0.2. FLUENTS, PROCESSES, AND STATES 5

Proposition 1 (Cancellation Law) In all models of EUNA we have

f ◦ z = f ◦ z′ ⊃ z = z′

Proposition 2 (Distribution Law) In all models of EUNA we have

f1 6= f2 ⊃ f1 ◦ z1 = f2 ◦ z2 ⊃ (∃z′) z1 = f2 ◦ z′ ∧ (∃z′) z2 = f1 ◦ z′

For example, given (3) the state equation Idle(G11) ◦ Running(G7, d, t) =
Running(g, 5, t0) ◦ z can be simplified, with the help of these two laws, to
g = G7, d = 5, t = t0, and z = Idle(G11).

Based on the concept of state terms, the function State : sit 7→ state
relates a situation to the state of the world in that situation. It is, however,
never assumed that world states can be completely specified. Rather, the
abstract term State(σ) may be constrained by means of equations and in-
equations specifying what is known about situation σ. As an example, let
the constant S0 be a denotation of the initial situation, then the following
formula specifies some assumptions about the initial state for our planning
problem, namely, that the start time is 0, the two sandglasses idle, and the
egg is neither boiling nor boiled:

(∃z) (State(S0) = Idle(G7) ◦ Idle(G11) ◦ StartTime(0) ◦ z
∧ (∀t, z′) z 6= Boiling(t) ◦ z′ ∧ (∀t, z′) z 6= Boiled(t) ◦ z′) (4)

Put in words, of State(S0) we assume that it includes each of Idle(G7),
Idle(G11), and StartTime(0). Arbitrary other fluents z may hold, too,
except for Boiling(t) and Boiled(t), which are thus specified to be false
in S0 for any t.

Fluent Calculus specifications frequently use the expression Holds(f, z)
along with the common Holds(f, s)—stating that fluent f holds in state z
and situation s, respectively—, though they are not part of the signature
but mere abbreviations of equality sentences:

Holds(f, z)
def
= (∃z′) z = f ◦ z′

Holds(f, s)
def
= Holds(f,State(s))

With these macros at hand the initial situation in our planning problem
could have equally well been specified as follows:

Holds(Idle(G7), S0) ∧Holds(Idle(G11), S0) ∧Holds(StartTime(0), S0)∧
(∀t) (¬Holds(Boiling(t), S0) ∧ ¬Holds(Boiled(t), S0))

6

The Holds expressions also help increasing the readability of specifica-
tions like domain-dependent state constraints, which are formulas that are
supposed to hold in all states which can occur in reality. To formally char-
acterize these so-called consistent states, we use the predicate Cons : state.
By the following foundational axiom, all states associated with a situation
are required to be consistent:

Cons(State(s)) (F4)

Our example domain, for instance, exhibits the following constraints, which
state, respectively, that a sandglass is running just in case it is not idling; that
a sandglass cannot be running in two different ways in the same situation;
that a sandglass cannot be running with no sand in its top nor with more
than what its capacity allows; that the egg cannot both boil and already
being boiled in the same situation; and that the egg cannot be boiling nor
being boiled for two different time spans:

Cons(z) ⊃ (∃d, t0) Holds(Running(g, d, t0), z) ≡ ¬Holds(Idle(g), z)

Cons(z) ⊃ Holds(Running(g, d, t0), z) ∧Holds(Running(g, d′, t′0), z) ⊃
t0 = t′0 ∧ d = d′

Cons(z) ⊃ Holds(Running(g, d, t0), z) ⊃ 0 < d ≤ Capacity(g)

Cons(z) ⊃ ¬[Holds(Boiling(t), z) ∧Holds(Boiled(t′), z)]

Cons(z) ⊃ Holds(Boiling(t), z) ∧Holds(Boiling(t′), z) ⊃ t = t′

Cons(z) ⊃ Holds(Boiled(t), z) ∧Holds(Boiled(t′), z) ⊃ t = t′

(5)

In addition, a foundational state constraint says that multiple occur-
rences of fluents are prohibited:

Cons(z) ⊃ (∀f, z′) z 6= f ◦ f ◦ z′ (F5)

(It will be explained in the following section why “ ◦ ” is not required to be
idempotent instead.) The continuous Fluent Calculus includes one further
foundational state constraint, which stipulates that the starting time of a
state associated with a situation be unique:

Cons(z) ⊃ (∃!t) Holds(StartTime(t), z) (F6)

The standard function Start : state 7→ real denotes the starting time of
a state by referring to the fluent StartTime , provided it is unique:

(∃!t) Holds(StartTime(t), z) ⊃
(∀t) (Holds(StartTime(t), z) ⊃ Start(z) = t)

(F7)

0.3. ACTIONS, CONCURRENCY, AND SUCCESSOR STATES 7

0.3 Actions, Concurrency, and Successor States

States change as the result of the performance of actions. In continuous
worlds, a distinction is usually made between deliberative actions and so-
called natural ones, which happen ‘automatically’ [9, 8]. For our example
we shall use the following four actions, the second of which is a natural one:

Turn : sandglass 7→ action
Stops : sandglass 7→ action

StartBoiling : 7→ action
EndBoiling : 7→ action

Action Turn(g) denotes turning upside down sandglass g; natural action
Stops(g) denotes automatic termination of sandglass g running; and actions
StartBoiling and EndBoiling denote, respectively, the action of starting and
ending the boiling of the egg. The following closure axiom says that these
are all actions in our domain:

(∃g) a = Turn(g) ∨ (∃g) a = Stops(g)
∨ a = StartBoiling ∨ a = EndBoiling

(6)

In order to represent the concurrent performance of actions, single action
terms may be composed to terms of sort concurrent by a binary function.
The latter is denoted by “ · ” and written in infix notation. This function,
which is of type concurrent×concurrent 7→ concurrent, is assumed
to be an associative-commutative operation with unit element ε (read: no-
op) of sort concurrent. The foundational axioms for concurrent action
terms are analogous to those for state terms:

(c1 · c2) · c3 = c1 · (c2 · c3)
c1 · c2 = c2 · c1
c · ε = c

(F8)

c = a ⊃ c 6= ε ∧ [c = c′ · c′′ ⊃ c′ = ε ∨ c′′ = ε] (F9)

c1 · c2 = c3 · c4 ⊃
(∃ca, cb, cc, cd) (c1 = ca · cb ∧ c2 = cc · cd ∧ c3 = ca · cc ∧ c4 = cb · cd)

(F10)

In addition, the following second-order closure axiom restricts concurrent
actions to finite collections of single actions:

(∀Π) {Π(ε) ∧ (∀a, c) (Π(c) ⊃ Π(a · c)) ⊃ (∀c) Π(c) } (F11)

8

Similar to the Holds macro we use the abbreviation In(c1, c) to denote
that concurrent action c1 is included in concurrent action c:

In(c1, c)
def
= (∃c′) c = c1 · c′

Preconditions of actions are specified using the standard predicate Poss :
concurrent×real×state, meaning that a (concurrent) action is possible
at a certain time in a certain state. A standard way of defining preconditions
in concurrent domains is to first give preconditions separately for each single
action and, then, to define the possibility of concurrent executions. In our
example planning domain, suitable precondition axioms for the single actions
are the following ones.

A sandglass automatically stops running as soon as it ran out of sand:

Poss(Stops(g), t, z) ≡ (∃d, t0) (Holds(Running(g, d, t0), z)∧ t = t0 + d) (7)

In order to be able to keep track of the time that has passed, turning a
sandglass g upside down shall be possible only at the beginning, where we
have set the time to 0, or when some sandglass (which could be g itself)
stops running:

Poss(Turn(g), t, z) ≡ t = 0 ∧ t ≥ Start(z) ∨ (∃g′) Poss(Stops(g′), t, z) (8)

Likewise, starting to boil the egg shall be possible only at the very be-
ginning or when a sandglass has just stopped; further preconditions are that
the egg is not currently being boiled nor boiled already:

Poss(StartBoiling , t, z) ≡
[t = 0 ∧ t ≥ Start(z) ∨ (∃g) Poss(Stops(g), t, z)]
∧¬(∃t0) (Holds(Boiling(t0), z) ∨Holds(Boiled(t0), z))

(9)

Finally, boiling can be brought to an end at any point in time measured by
the stopping of a sandglass:

Poss(EndBoiling , t, z) ≡
(∃t0) Holds(Boiling(t0), z) ∧ (∃g) Poss(Stops(g), t, z)

(10)

A standard requirement for the possibility to perform a concurrent ac-
tion c is that it is not empty, that each involved single action be possible
at that time, and that no action term occurs twice in c.7 Additional con-
straints may state that two or more actions are in mutual conflict. No such

7The last condition is similar to foundational axiom (F5). Requiring “ · ” to be idem-
potent instead would not do, as will become clear shortly.

0.3. ACTIONS, CONCURRENCY, AND SUCCESSOR STATES 9

restriction applies to our example domain, hence the following precondition
axiom for the concurrent performance of actions:

Poss(c, t, z) ≡ c 6= ε∧ (∀a) (In(a, c) ⊃ Poss(a, t, z))∧¬(∃a) In(a·a, c) (11)

In the simple Fluent Calculus, effects of actions are specified by means
of so-called state update axioms, whose core is an equation relating a state
after the performance of an action to the state prior to it. These equations
do not mention non-effects, which is how the Fluent Calculus solves the rep-
resentational Frame Problem. Moreover, one equation always describes the
entire change caused by an action, so that a single state equation suffices
to infer the result of an action. This is how the Fluent Calculus solves the
inferential Frame Problem. An extension of this basic solution is provided
by what shall be called recursive state update axioms, which allow for spec-
ifying the effect of an action relative to the effect of arbitrary other actions
performed concurrently. Let Succ : concurrent×real× state 7→ state
denote the successor state of performing a (concurrent) action at a certain
time in a certain state, then this is the general form of recursive state update
axioms:

∆(t, z) ⊃ (∃~y)Succ(α(~x) · c, t, z) ◦ ϑ− = Succ(c, t, z) ◦ ϑ+

Here, ∆(t, z) is a first-order formula specifying conditions on execution
time t and state z for the update equation to apply; ~y are the variables
which occur in ϑ−, ϑ+ but not in ~x; and the two terms ϑ− and ϑ+ are
the additional negative and positive, respectively, effects which occur if α
is performed besides c.8

Consider the action of starting to boil the egg at time t. Its only effect
is to initiate the Boiling(t) fluent:

Poss(StartBoiling · c, t, z) ⊃
Succ(StartBoiling · c, t, z) = Succ(c, t, z) ◦ Boiling(t)

(12)

The action of ending the boiling of the egg at some time t has the neg-
ative effect of terminating fluent Boiling(t0), where t0 is the time at which

8This way of representing negative effects is the reason for not stipulating that “ ◦ ”
be idempotent, contrary to what one might intuitively expect. For if the function were
idempotent, then the equation in the update axiom would not imply that each fluent in ϑ−

be false in Succ(α(~x) · c, t, z). Likewise, if function “ · ” were idempotent, then α(~x) · c
could equal c, in which case the update axioms gave rise to a circular equation, which is
likely to be inconsistent.

10

boiling has started, and of initiating fluent Boiled(t′), where t′ denotes the
amount of time the egg has been boiled. Obviously, t′ = t − t0; hence the
following state update axiom:

Poss(EndBoiling · c, t, z) ⊃
(∃t0) Succ(EndBoiling · c, t, z) ◦ Boiling(t0) =

Succ(c, t, z) ◦ Boiled(t− t0)
(13)

On the basis of recursive state update axioms, the overall effect of a
particular concurrent action α1 · . . . ·αn (n ≥ 1) performed at some time τ
in some state ζ is determined by a set of recursive equations, which are
obtained as the consequents of instances of the appropriate update axioms:

Succ(α1 · α2 · α3 · . . . · αn, τ, ζ) ◦ ϑ−1 = Succ(α2 · α3 . . . · αn, τ, ζ) ◦ ϑ+1
Succ(α2 · α3 · . . . · αn, τ, ζ) ◦ ϑ−2 = Succ(α3 · . . . · αn, τ, ζ) ◦ ϑ+2

...
Succ(αn, τ, ζ) ◦ ϑ−n = Succ(ε, τ, ζ) ◦ ϑ+n

With the help of these equations, the result of the concurrent action is in-
ferred by decomposing the latter and successively inferring the effects of the
components. Any such chain of inference steps ends in the base case defined
by the following foundational axiom, which states that the only effect of the
empty concurrent action at time t is to give rise to a new starting time:

(∃t′) Succ(ε, t, z) ◦ StartTime(t′) = z ◦ StartTime(t) (F12)

Inferring the cumulative effect via separate state update axioms allows
one to specify effects of actions in a modular way, that is, separately for each
single action. At the same time, non-effects of concurrent actions are carried
through each equational inference step and so need no extra axioms to be
inferred as such. This is how the approach generalizes the solution to the
representational and inferential Frame Problem from a single one to a whole
chain of state update axioms for concurrency.

Concurrently performed actions may not be independent, in which case
the combined effect is not a mere accumulation. To account for such ex-
ceptions, a recursive state update axiom may be qualified using the reserved
predicate Affects : concurrent×concurrent. An instance Affects(c, c′)
shall indicate that if c is performed concurrently with c′ at time t in
state z, then the usual effects of c′ will not materialize. Our example do-
main exhibits one such case of interference: Whenever a sandglass is turned

0.3. ACTIONS, CONCURRENCY, AND SUCCESSOR STATES 11

upside down at the very time it stops running, the Stops(g) action will not
produce its usual effect (namely, the idling of g).

We therefore first define

Affects(c, c′) ≡ (∃g) (In(Turn(g), c) ∧ In(Stops(g), c′)) (14)

On this basis, we can specify the effect, upon non-cancellation, of a sandglass
to stop running—the run is terminated and the sandglass starts to idle:

Poss(Stops(g) · c, t, z) ∧ ¬Affects(c,Stops(g)) ⊃
(∃d, t0) Succ(Stops(g) · c, t, z) ◦ Running(g, d, t0) =

Succ(c, t, z) ◦ Idle(g)
(15)

For the action of turning a sandglass upside down, we have to distinguish
three cases. First, the sandglass may be idling at the time the action is
performed, in which case the idling is terminated and the sandglass starts
running with maximal load:

Poss(Turn(g) · c, t, z) ∧Holds(Idle(g), z) ⊃
Succ(Turn(g) · c, t, z) ◦ Idle(g) =

Succ(c, t, z) ◦ Running(g,Capacity(g), t)
(16)

Second, if the sandglass is turned upside down while running and it is not
about to stop at the same time, then the Running fluent is replaced by
a modified one. The expected runtime of the new run is calculated as the
difference between the capacity and what is still in the upper bowl of the
sandglass at the time of turning:

Poss(Turn(g) · c, t, z) ∧ (∃d, t0) Holds(Running(g, d, t0), z)
∧¬Affects(Turn(g), c)
⊃ (∃d, t0) Succ(Turn(g) · c, t, z) ◦ Running(g, d, t0) =

Succ(c, t, z) ◦ Running(g,Capacity(g)− d+ t− t0, t)

(17)

Third, if turning and stopping happen at the very same time, then the
combined effect of both actions is that the current run is terminated and a
new one is initiated:

Poss(Turn(g) · Stops(g) · c, t, z) ⊃
(∃d, t0) Succ(Turn(g) · Stops(g) · c, t, z) ◦ Running(g, d, t0) =

Succ(c, t, z) ◦ Running(g,Capacity(g)− d+ t− t0, t)
(18)

The reader may notice the difference to the preceding axiom: Here, the
concurrent Stops action is processed, too, hence no update axiom for this

12

action will apply during the recursion for the remaining actions c. In this
way we avoid calculating the usual effect of Stops , namely, to introduce
idling (cf. (15)).

Recall, for example, the specification of the initial state in our planning
problem, (4), and consider the concurrent action C1 = Turn(G7)·Turn(G11)·
StartBoiling to be performed at time 0. From (4) and the relevant precondi-
tion axioms, (8), (9), and (11), it follows that Poss(C1, 0,State(S0)). Draw-
ing appropriate instances of the state update axioms (16) and (12), after
evaluating the condition parts of these axioms we obtain this set of recursive
state equations (with the last equation being the appropriate instance of
foundational axiom (F12)):

Succ(Turn(G7) · Turn(G11) · StartBoiling , 0,State(S0)) ◦ Idle(G7) =

Succ(Turn(G11) · StartBoiling , 0,State(S0)) ◦ Running(G7, 7, 0)

Succ(Turn(G11) · StartBoiling , 0,State(S0)) ◦ Idle(G11) =

Succ(StartBoiling , 0,State(S0)) ◦ Running(G11, 11, 0)

Succ(StartBoiling , 0,State(S0)) = Succ(ε, 0,State(S0)) ◦ Boiling(0)

(∃t′) Succ(ε, 0,State(S0)) ◦ StartTime(t′) = State(S0) ◦ StartTime(0)

Given (4), these equations entail, applying the cancellation and distribution
laws of Propositions 1 and 2 and repeating the relevant negative information
about z,

(∃z) (Succ(C1, 0,State(S0)) = z ◦ StartTime(0) ◦ Boiling(0) ◦
Running(G11, 11, 0) ◦ Running(G7, 7, 0)

∧ (∀t, z′) z 6= Boiled(t) ◦ z′)

From (7) it then follows that Poss(Stops(G7), 7,Succ(C1, 0,State(S0))); and
the reader may verify that if, say, C2 = Stops(G7) · Turn(G7), then we can
conclude

(∃z) (Succ(C2, 7,Succ(C1, 0,State(S0))) = z ◦ StartTime(7) ◦ Boiling(0) ◦
Running(G11, 11, 0) ◦ Running(G7, 7, 7)

∧ (∀t, z′) z 6= Boiled(t) ◦ z′)

0.4 Situations, Natural Actions, and Trajectories

In worlds which involve continuous change it is likely that at some point
processes terminate automatically, or that two or more ongoing processes

0.4. SITUATIONS, NATURAL ACTIONS, AND TRAJECTORIES 13

eventually affect each other. To reflect this, the Fluent Calculus for continu-
ous change includes the distinction between deliberative and natural actions.
The latter are not subject to the free will of a planning agent. Rather they
happen automatically under certain conditions. An example taken from our
planning problem is the natural action of a sandglass to stop running. The
standard predicate Natural of sort action (adopted from [8]) is used to
discriminate the actions of a domain which are natural ones, as in

Natural(a) ≡ (∃g) a = Stops(g) (19)

For a suitable treatment of natural actions, and in particular for model-
ing the autonomous state updates they cause, the crucial notion underlying
the Fluent Calculus for continuous change is that of a situation tree with
trajectories [13]. As in the basic Situation Calculus of [7], situations are
characterized by sequences of actions performed by an agent. The standard
function Do of sort concurrent×real×sit 7→ sit denotes the situation
which results from performing a (concurrent) deliberative action at a certain
time in a situation. Natural actions, on the other hand, may in any situation
cause an autonomous evolution of the state associated with that situation.9

To this end, each situation has a trajectory. A trajectory is a sequence of
states. The world state resulting from a deliberative action is always the first
one on a trajectory. The further evolution of that trajectory is determined
by the natural actions that are expected to happen. The performance of a
deliberative action, on the other hand, brings about another situation again,
with its own trajectory; see Figure 2.

The evolution of a trajectory is modeled using the predicate Trajectory :
state × state, an instance Trajectory(z, z′) of which indicates that z′

occurs on the trajectory rooted in z. The correct evolution is given by
considering all natural actions that, if considered in isolation, are expected to
happen eventually and then to let those define the next state update which
happen next in time [9]. To facilitate the formalization of this principle,
we first introduce two macros. The expression ExpectedNatActions(c, t, z)
shall indicate that in state z actions c are all the natural actions that are
expected to happen at time t:

ExpectedNatActions(c, t, z)
def
= c 6= ε ∧ ¬(∃a) In(a · a, c) ∧

(∀a) (In(a, c) ≡ Natural(a) ∧ Poss(a, t, z))

9Our theory differs in this respect from the Situation Calculus-based approach of [8],
where deliberative and natural actions are intertwined in situation terms.

14

trajectory for S0S0

t0 t1

z0

t2

z1 z2

trajectory for S1S1 = Do(A1, t
′
0, S0)

t′0 z′0

t′1

z′1

trajectory for S2S2 = Do(A2, t
′′
0 , S0)

t′′0

z′′0

Figure 2: Each situation has its own trajectory, which describes how the
state evolves according to the expected natural actions. In the example
shown here, at the time t′0 when the deliberative action A1 is performed in
situation S0, the world is no longer in the initial state z0 due to a natural
action happening at time t1 < t′0, which causes state z1 to arise. The effect
of A1 is to transform z1 into z′0, which thus becomes the initial state of
the trajectory for situation Do(A1, t

′
0, S0). If deliberative action A2 were

performed in S0 at time t′′0 , then this gave rise to yet another development
of the world, etc.

Recall, for example, state Z2 = Succ(C2, 7,Succ(C1, 0,State(S0))), which
has been shown to equal

Running(G11, 11, 0) ◦ Running(G7, 7, 7) ◦ Boiling(0) ◦ StartTime(7) ◦ z

for some z. From axiom (19) in conjunction with the precondition axiom for
Stops(g), viz. (7), and the fact that we have just two sandglasses, axiom (1),
which both were not running in S0, axiom (4) in conjunction with (F4)
and (5), it follows that

ExpectedNatActions(c, t, Z2) ≡
c = Stops(G11) ∧ t = 11 ∨ c = Stops(G7) ∧ t = 14

Given this notion, the macro NextNatActions(c, t, z) stands for concurrent
action c being all natural actions that happen in z at time t with t being
the earliest timepoint at which natural actions are expected:

NextNatActions(c, t, z)
def
= ExpectedNatActions(c, t, z)∧
¬(∃t′, c′) (ExpectedNatActions(c′, t′, z) ∧ t′ < t)

0.4. SITUATIONS, NATURAL ACTIONS, AND TRAJECTORIES 15

For example, NextNatActions(Stops(G11), 11, Z2) according to what has
been concluded above. On this basis, the collection of all natural actions
that happen next determine one step further on a trajectory:

Trajectory(z, z)∧
[Trajectory(z, z′) ∧NextNatActions(c, t, z′) ⊃

Trajectory(z,Succ(c, t, z′))]
(F13)

The trajectory rooted in Z2, e.g., thus contains Succ(Stops(G11), 11, Z2)—
followed by the state Succ(Stops(G7), 14,Succ(Stops(G11), 11, Z2)).

Axiom (F13) leaves open the possibility that arbitrary other states oc-
cur on a trajectory, too. The foundational axiom by which trajectories are
linearized defines the function ActualState of type sit × real 7→ state,
which maps a situation s and a timepoint t to the actual state of the world
in s at time t:

Trajectory(State(s), z) ∧ t ≥ Start(z)
∧ (∀a, t′) (Natural(a) ∧ Poss(a, t, z) ⊃ t′ > t)

⊃ ActualState(s, t) = z
(F14)

That is to say, the actual state z in situation s at time t must lie on
the trajectory for s and must not have started later than t, and all nat-
ural actions expected in z must happen later. For example, from the
above considerations it follows that if for some situation, say S2, we have
State(S2) = Z2, then ActualState(S2, 13) = Succ(Stops(G11), 11, Z2) and
ActualState(S2, 15) = Succ(Stops(G7), 14,Succ(Stops(G11), 11, Z2)).

A complication raised by combining concurrency and natural actions is
that natural actions may coincidentally happen at the very same time at
which a (compound) deliberative action shall be performed. This needs to
be taken into account both when verifying the preconditions of a deliberative
action and when inferring its effect. For defining the preconditions, we in-
troduce the expression Poss(c, t, s), representing that a concurrent action c
is possible in a situation s at time t.10 This expression is a mere macro
and is defined as follows:

Poss(c, t, s)
def
= (∀a)(In(a, c) ⊃ ¬Natural(a))∧

(∀c′) (ExpectedNatActions(c′, t,ActualState(s, t)) ⊃
Poss(c · c′, t,ActualState(s, t)))

10Notice that thus far we have used the predicate Poss with the third argument being
a state.

16

That is, a collection of deliberative actions is possible just in case it is possible
together with all natural actions expected at the very same time in the
actual state. Accordingly, the state in the successor situation Do(c, t, s)
of performing concurrent deliberative action c at time t in situation s is
obtained by adding to c all concurrent natural actions happening in the
actual state of the world at time t:

Poss(c, t, s) ∧ ExpectedNatActions(c′, t,ActualState(s, t)) ⊃
State(Do(c, t, s)) = Succ(c · c′, t,ActualState(s, t))

(F15)

This completes the general theory of axiomatizing, by means of the Flu-
ent Calculus, domains which involve continuous change and in which actions
may happen concurrently. We are now in a position to extend the defini-
tion of planning by deduction in continuous worlds from [13] to continuous
and concurrent domains: Consider a set of formulas Axioms containing a
domain specification and in particular given knowledge of the initial situa-
tion S0. Furthermore, let G(s) be a formula stipulating that the planning
goal is achieved in situation s. Then a planning problem is defined as the
problem of finding a term σ = Do(cn, tn, . . . ,Do(c1, t1, S0) . . .) (n ≥ 0) such
that11

Axioms ∪ {(F1)–(F15)} |= POSS (σ) ∧G(σ)

Let, for example, Axioms be the domain axioms (1)–(19), and consider
our original planning goal

G(s) ≡ (∃t) Holds(Boiled(15), s, t)

where Holds(f, s, t)
def
= Holds(f,ActualState(s, t)). The following situation

can be inferred as a solution to this problem:

Do(EndBoiling , 15,Do(Turn(G7), 11,Do(Turn(G7), 7,
Do(Turn(G7) · Turn(G11) · StartBoiling , 0, S0))))

Figure 3 depicts the sequence of state terms that occur during the execution
of this solution.12

11Below, POSS(σ) def= Poss(c1, t1, S0) ∧ . . . ∧ Poss(cn, tn,Do(cn−1, tn−1, . . . , S0) . . .).
12Here is a solution to the second planning problem, mentioned at the end of the in-

troduction, of measuring 9 minutes with two sandglasses of a capacity of 4 and 7 min-
utes, respectively: Do(EndBoiling , 9,Do(Turn(G7), 8,Do(Turn(G7), 7,Do(Turn(G4), 4,

Do(Turn(G4) · Turn(G7) · StartBoiling , 0, S0))))).

0.5. SUMMARY 17

Idle(G7) ◦ Idle(G11) ◦ StartTime(0) ◦ z

?
Running(G7, 7, 0) ◦ Running(G11, 11, 0) ◦ Boiling(0) ◦ StartTime(0) ◦ z

?
Running(G7, 7, 7) ◦ Running(G11, 11, 0) ◦ Boiling(0) ◦ StartTime(7) ◦ z

?
Running(G7, 4, 11) ◦ Idle(G11) ◦ Boiling(0) ◦ StartTime(11) ◦ z

?
Idle(G7) ◦ Idle(G11) ◦ Boiled(15) ◦ StartTime(15) ◦ z

Figure 3: The sequence of states initially associated with the situations that
occur in the course of our solution to the sandglass planning problem.

0.5 Summary

The Fluent Calculus has been proved versatile by extending its basic solution
to the Frame Problem into various directions, such as nondeterminism and
uncertainty, ramifications, knowledge and sensing, and continuous change.
However, the existence of models for each one of these aspects does not imply
that there be a unique model which covers them all. Rather the extensions
have mostly been investigated in isolation. As a consequence, combining
co-existing models for different phenomena can be a problem as challenging
as addressing new aspects.

In this paper, we have introduced the concept of recursive state update
axioms and reconciled it with the notion of process fluents and trajectories.
The resulting Fluent Calculus allows for specifying and reasoning about do-
mains involving continuous change and where actions occur concurrently. It
remains an important challenge for future work to integrate the other ex-
isting Fluent Calculus extensions into a uniform, expressive axiomatization
language for Cognitive Robotics.

18

Bibliography

[1] Andrew B. Baker. A simple solution to the Yale Shooting problem. In
R. Brachman, H. J. Levesque, and R. Reiter, editors, Proceedings of the
International Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 11–20, Toronto, Kanada, 1989. Morgan
Kaufmann.

[2] Wolfgang Bibel. Let’s plan it deductively! Artificial Intelligence, 103(1–
2):183–208, 1998.

[3] Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces.
World Scientific, Singapore, 1995.

[4] Cordell Green. Theorem proving by resolution as a basis for question-
answering systems. Machine Intelligence, 4:183–205, 1969.

[5] Steffen Hölldobler and Josef Schneeberger. A new deductive approach
to planning. New Generation Computing, 8:225–244, 1990.

[6] John McCarthy and Patrick J. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. Machine Intelligence,
4:463–502, 1969.

[7] Ray Reiter. The frame problem in the situation calculus: A simple
solution (sometimes) and a completeness result for goal regression. In
V. Lifschitz, editor, Artificial Intelligence and Mathematical Theory of
Computation, pages 359–380. Academic Press, 1991.

[8] Ray Reiter. Natural actions, concurrency and continuous time in the
situation calculus. In L. C. Aiello, J. Doyle, and S. Shapiro, editors,
Proceedings of the International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), pages 2–13, Cambridge, MA,
November 1996. Morgan Kaufmann.

19

20 BIBLIOGRAPHY

[9] Erik Sandewall. Combining logic and differential equations for describ-
ing real-world systems. In R. Brachman, H. J. Levesque, and R. Re-
iter, editors, Proceedings of the International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), pages 412–420,
Toronto, Kanada, 1989. Morgan Kaufmann.

[10] Murray Shanahan. A circumscriptive calculus of events. Artificial In-
telligence, 77:249–284, 1995.

[11] Hans-Peter Störr and Michael Thielscher. A new equational foundation
for the fluent calculus. In J. Lloyd etal, editor, Proceedings of the In-
ternational Conference on Computational Logic (CL), volume 1861 of
LNAI, London (UK), July 2000. Springer.

[12] Michael Thielscher. Ramification and causality. Artificial Intelligence,
89(1–2):317–364, 1997.

[13] Michael Thielscher. Fluent Calculus planning with continuous change.
Electronic Transactions on Artificial Intelligence, 1999. (Submitted.)
URL: http://www.ep.liu.se/ea/cis/1999/011/.

[14] Michael Thielscher. From Situation Calculus to Fluent Calculus: State
update axioms as a solution to the inferential frame problem. Artificial
Intelligence, 111(1–2):277–299, 1999.

[15] Michael Thielscher. Nondeterministic actions in the fluent calculus:
Disjunctive state update axioms. In S. Hölldobler, editor, Intellectics
and Computational Logic, pages 327–345. Kluwer Academic, 2000.

[16] Michael Thielscher. Representing the knowledge of a robot. In A.
Cohn, F. Giunchiglia, and B. Selman, editors, Proceedings of the In-
ternational Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 109–120, Breckenridge, CO, April 2000. Morgan
Kaufmann.

