
Hidden Information General Game
Playing with Deep Learning and Search

Zachary Partridge and Michael Thielscher(B)

UNSW Australia, Sydney, Australia
{z.partridge,mit}@unsw.edu.au

Abstract. General Game Playing agents are capable of learning to play
games they have never seen before, merely by looking at a formal descrip-
tion of the rules of a game.Recent developments in deep learning have influ-
enced the way state-of-the-art AI systems can learn to play games with per-
fect information like Chess and Go. This development is popularised by the
success of AlphaZero and was subsequently generalised to arbitrary games
describable in the general Game Description Language, GDL. Many real-
world problems, however, are non-deterministic and involve actors with
concealed information, or events with probabilistic outcomes. We describe
a framework and system for General Game Playing with self-play rein-
forcement learning and search for hidden-information games, which can be
applied to any game describable in the extended Game Description Lan-
guage for imperfect-information games, GDL-II.

Keywords: General game playing · Reinforcement learning ·
Imperfect information

1 Introduction

The field of Artificial Intelligence has been around almost as long as computers
have existed, and the development of algorithms to play games has been central
to AI development. Games provide a great testbed for developing and measuring
the success of an algorithm which could eventually be deployed into the real
world as they can possess the same core challenges without the noise [19]. As
technology has been improving, humans are surpassed in more and more games:
AlphaGo in the game of Go [19], Pluribus in six player poker [3], and AlphaStar
in Starcraft 2 [22].

These are very impressive achievements for AI, but the algorithms are spe-
cialised: they cannot play any of the other games at even a beginner level. Whilst
most AI algorithms are built for a singular purpose, the field of general game
playing (GGP) attempts to broaden this concept. In the general game playing
setting, an agent should be able to solve any problem (play any game) that is
given to it in a formal game description language (GDL). Such an agent may
not be as strong as an agent that was specifically designed for a single game but
makes up for it in its generalisability. AlphaZero (a successor to AlphaGo) was
able to achieve state of the art performance across multiple games (Go, Chess

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13631, pp. 161–172, 2022.
https://doi.org/10.1007/978-3-031-20868-3_12

162 Z. Partridge and M. Thielscher

and Shogi) [20] indicating its potential for GGP. Consequently, AlphaZero has
recently been further generalised to learn to play any game described by GDL,
not just the two-player, turn-based games that AlphaZero could play [11]. How-
ever, GDL only describes deterministic games with perfect information, meaning
that there are still a large class of hidden information games that cannot be
solved with the current methods.

A successor to GDL (GDL-II) was developed to describe a larger, more gen-
eral class of games that include hidden information and stochastic events [21].
Some real world problems such as auctions, network traffic, cybersecurity, pric-
ing, negotiations and politics are all part of this wider class of imperfect infor-
mation scenarios, and such games and are quite difficult to solve for traditional
algorithms. There has been little research done into applying deep reinforcement
learning to hidden information games and just one recent work Player of Games
[16] that applies this to a range of games. Player of Games incorporates some
game specific knowledge, e.g. poker bet size abstractions and game specific net-
work architectural designs. Also, all information states per public state must be
enumerated, limiting the approach to games with small action space.

In this paper, we address these limitations and generalise the approach fur-
ther by developing a method and system that can successfully learn to play
hidden information games described in GDL-II with the help of the recently
developed technique of recursive belief-based learning (ReBeL) [2]. A first exper-
imental evaluation shows that our system can even outperform handcrafted algo-
rithms in some games.

2 Background

2.1 General Game Playing

State of the art in General Game Playing is revealed by the International General
Game Playing competition, which was run from 2005 to 2016, where teams
submitted algorithms that would compete in a set of unseen games. For each
game, the rules are described to the players in the standard Game Description
Language, and players are given a fixed amount of time to prepare for the game
(in the order of minutes). At each step of the game, the game manager sends a
play message to each of the players describing how everyone has played on the
last turn. The players then have a fixed time limit to respond with their moves
for the next turn. This is continued until the end of the game and the players
are rewarded for how well they performed [9].

Multiple approaches can be used for GGP. Over time they improve as would
be expected, and as more research is put into a new technique, it can start to
dominate the leaderboard. Initially, the prevailing technique was Minimax with
a heuristic function for evaluating leaf nodes [6], then Upper Confidence Bounds
on Trees (UCT) dominated the field for the majority of the competition [8] until
it was surpassed by a Constraint Satisfaction Programming (CSP) algorithm in
2016 [12].

Hidden Information General Game Playing with Deep Learning and Search 163

GDL-II. GDL-II (Game Description Language with Incomplete Information)
provides a fundamental extension of the existing game description language to
describe truly general games [21]. The addition of just two keywords to the lan-
guage can achieve this effect: In addition to the normal players, games are allowed
to have a random player who can choose the outcome of stochastic events like the
roll of a die. The other keyword is sees, which is used to control which, and how,
players have access to hidden information. This simple and elegant modification
fundamentally changes the way agents must play the game. Games can no longer
be fully described by the information available to a player, who now must reason
about what other players know about each other and themselves [17].

2.2 Generalised AlphaZero

In 2017 DeepMind released a system that the system could learn to play Go
without any human knowledge, it learnt everything purely from self play. By
just using Monte Carlo Tree Search and reinforcement learning, it was then also
deployed to other games as well. As a result, AlphaZero learnt to play Go, Chess
and Shogi and surpassed the previous state of the art in all three games [20].
But while AlphaZero may be able to play multiple games, it is still a long way
from being able to play all games, so it was further generalised to a system that
can read in any game rules in GDL and can learn to play via reinforcement
learning using MCTS and a neural network similar to AlphaZero but with many
of the restrictions removed [11]. The Generalised AlphaZero system is no longer
restricted to only two-player, zero-sum, turn-based, and player-symmetric games
[11]. However, it still cannot play hidden information games.

2.3 Recursive Belief-Based Learning

Recursive Belief-based Learning (ReBeL) is a recent (2020) general RL and
search algorithm applied to play the hidden information game of poker [2]. Fun-
damentally this algorithm can translate any imperfect information game into a
perfect information game. This is done through removing any information that
is local (only seen by a subset of players), and instead of stating what actions
to take, an agent states their policy (what is the probability they would make
an action for all possible states they could currently be in). This process unfor-
tunately will take a game from being discrete to having a continuous state and
action space—the policy probabilities. It would theoretically be possible to train
an AlphaZero or MCTS type algorithm on a discretised version of this now,
but the high dimensionality of it would cause it to take an impractical amount
of time. Instead this continuous perfect information game can be solved better
with fictitious play (FP) [1] or counterfactual regret minimisation (CFR) [23],
because the problem is a convex optimisation problem. While both FP and CFR
can be used, it has been shown that CFR achieves superior performance [2].

For both training and inference the same procedure is used to find an optimal
policy: sample many of the possible perfect information states from the current

164 Z. Partridge and M. Thielscher

imperfect information state, run a depth limited version of CFR (CFR-D) and
evaluate leaf nodes with the learnt value network. This procedure is then iterated
many times as the yielded policy is dependent on the original policy. The average
policy will converge to a Nash equilibrium for two-player zero-sum games and is
expected to also perform well outside of that domain [2]. The starting policy can
just be uniform random, but faster convergence can be achieved by initialising
it with a learnt policy network. At inference time the only limitation is that
the policies of the other players are not known, so instead CFR-D is run for a
random number of iterations and it is assumed that the players are following
that policy. By stopping CFR-D at a random iteration it reduces exploitation
even if the opponents have access to the algorithms being used.

3 Method

3.1 Propositional Networks for GDL-II

Adapting the aproach takein by Generalised AlphaZero for general GDL-games,
GDL-II game descriptions can be converted into a propositional network (prop-
net) as this provides a simpler interface for interacting with the game and a well
defined state to input to the neural network [15]. This can be done based on
freely available code from ggp-base [18], but needs to be extended to account for
the additional sees keyword in GDL-II to feed into the neural network the state-
dependent observations that players make according to the game rules. Once the
game is in propnet format, we can build on previous work done on generalised
AlphaZero [11] and again expand to include processing of the additional sees
information.

For each game that the agent is asked to play, the propnet that is generated
can be queried for: extracting the game input state from the current game data—
this is used for input to the neural network; the valid moves for a given role and
game state; updating the game data to the next step when provided with a valid
action for all players (for non-simultaneous games some agents will make a no-op
action); specific to GDL-II and imperfect-information games, a list of all that is
visible for a given role and game state. In a large number of games tested, the
computational bottleneck is in transitioning from one state to the next. In [11],
the whole propnet framework was optimised in Cython, which provided a 6x
speedup. Here we note that the process of running CFR requires going back and
forth between the same states many times over, and hence a least recently used
cache (LRU) can be used to store these state transitions. We implemented an
LRU in our system and found that it can provide up to a further 10x speedup.

3.2 Sampling GDL-II States

In order to estimate the optimal policy when there is hidden information, an
agent samples plausible states based on all information it has gathered through-
out the game. For each state, an optimal policy is found. The final policy is a
weighted average of these policies, based on how likely it is in each state.

Hidden Information General Game Playing with Deep Learning and Search 165

Näıve Sampling. A näıve method for sampling possible states in general GDL-
II games is to:

1. Start a new game
2. Select the first action recorded for the agent and for all other agents, randomly

select a valid move.
3. Repeat 2. until the recorded history is exhausted.
4. If the sampled state ever does not match the recorded observations, restart.

Unfortunately, this approach cannot be realistically scaled up to larger games.
When searching for a state later in the game, there can be a vast number of possible
states to choose from but there may only be a small handful of those states that
match the recorded history. Finding this handful of valid states can be particularly
difficult if the states are only found to be invalid deep into the search.

Training Method. We improve upon the näıve method in two ways. Firstly,
in order to reduce the computational limitations, we introduce a cache for all
states that are invalid each game. If all the states a step deeper into the game are
invalid, then the parent state is also added to the invalid state cache. This means
that invalid states won’t be investigated more than once and whole segments of
the game tree will no longer need to be searched. Secondly, we introduce a bias
into this sampling distribution. The neural network (NN) that is used for policy
approximation for the output of CFR-D is also used here to bias the sampler
towards choosing actions for the other players that the NN predicts are more
likely to be played. Formally, the probability of choosing action a in state s for
player i is given by P (s, i, a) = f(s, i, a) + 1

|Actions(s,i)| , where the function f

represents the output of the policy neural network. This bias is not required,
but we found that it drastically decreases the training time needed to reach
convergence. Introducing this bias during training ensures that the true state is
sampled with higher frequency and areas of the game tree that the NN views as
more interesting get explored more.

Evaluation Method. The method used for training is sufficiently fast and leads
to efficient game exploration during training but does not translate optimally to
play against unknown other agents, which may play via a vastly different policy.
An additional problem with the caching method as used for training (without the
bias) is that it eventually leads to all valid leaf nodes being sampled with equal
frequency even when this should not be the case. As an example, in the Monty
Hall problem [17] the agent would view the two possible valid states equally
(similar to many humans) and would hence adopt a policy of switching only
50% of the time. In order to maintain the same leaf node selection distribution
as the näıve method whilst caching, the probabilities of reaching each node need
to be stored on the node and updated every time it is accessed. The first time that
a state node is accessed, all possible combinations of moves are listed, shuffled
randomly and the first child set of moves is chosen to act as the transition to

166 Z. Partridge and M. Thielscher

the first child node. Also, the probability of reaching this node from the root
is stored for future use. Upon subsequent access to the node, the next child
set of moves c is returned until the list is exhausted. Once every child node
has been explored exactly once, the probability of reaching this node from the
root is updated on each access, as is the probability of reaching each child node
conditional on having already reached the current node.

3.3 CFR Search

Systems for playing perfect information games, such as AlphaZero, use Monte
Carlo Tree Search to explore future possible game states [20]. This does not
translate well to the hidden information games as it does not depend on the
policies of other agents. Instead, a form of Counterfactual Regret Minimisation
(CFR) can be used to search for the optimal policies. The most suitable specific
form of CFR is depth-limited deep CFR as is described by [2,4]. CFR is a self-
play algorithm, meaning that it learns by playing repeatedly against itself. Our
version of CFR-D can be run in any grounded sub-tree of the complete game.
Once a state is sampled at the correct depth, we run the algorithm down the
tree until the maximum depth or terminal leaf nodes are reached. The value
of depth limited leaf nodes are approximated via a neural network whereas the
known values are used for terminal states.

Algorithm 1. High level training loop
while Time left to train do

Reinitialise game state
while Game not finished do

Perform CFR on current game state
Add triple of (state, π, q) to the replay buffer � π and q represent the

policies and values for all agents
for each agent do

Perform CFR on states sampled with this agent’s history
Make moves proportionally to new policy probabilities

end for
Sample and train neural network on 20 mini-batches from replay buffer

end while
end while

CFR typically starts with uniform random policies, but to speed up conver-
gence, all policies can be initialised using the neural network as an estimation
of the final policies. Then it simulates playing the game against itself and after
every game, it revisits each decision and finds ways to improve the policy. This
process can be iterated indefinitely and it is the average policy that eventually
approximates the game’s optimal policy or Nash equilibrium. The final policy
used for move selection is the weighted average of policies at all sampled states,
weighted by how frequently each state is sampled.

Hidden Information General Game Playing with Deep Learning and Search 167

3.4 Reinforcement Learning

Large scale reinforcement learning projects often use a separate process dedicated
to evaluating positions, one for training on new data and many for generating
games [5]. On more modest hardware, for efficiency and simplicity, it has been
implemented by running a game, adding the recorded data to the replay buffer,
training on a small number, say 20, of mini-batches from the replay buffer and
repeating as indicated in Algorithm 1.

Fig. 1. Sample Neural Network Architecture

The neural network takes in a single grounded game state, and outputs the
value and policy for all agents. For each agent, the value of the state is the expected
final reward and the policy is the estimated optimal policy in this current state. It is
possible to have separate models for each player’s values and each player’s policies,
but it should be noted that all of these models would learn to extract the same fea-
tures. For this reason, it is possible to combine the early layers into a shared model
head to extract the useful game features as shown in Fig. 1. From this shared inter-
nal representation a single linear layer is used to estimate the values for all players,
and an additional hidden layer is added before estimating the policies separately
for each player. Figure 1 represents only a small toy game for simplicity. This sim-
ple game only has a state size of 5 and two players, one with 4 possible actions and
the other with 3. In a larger and more interesting game like, for example, Blind
Tic Tac Toe [10], the input and hidden layers would be of size 199 and the output
policy size for each player would be of 9.

4 Experiments

4.1 Evaluation Methodology

We have tested our solution on several GDL-II games known from the literature
[7,17]. The easy games can be compared with known optimal solutions and harder
games were tested against both random play and handcrafted solutions. The fol-
lowing results tables for the harder games show the final scores over 100 games

168 Z. Partridge and M. Thielscher

achieved by the agents listed on the left. Column names correspond to the oppo-
nents that each of these agents were playing against; these opponents will be play-
ing the opposing role to that listed next to the agent.The agents iteratively increase
CFR search depth until the time expires and between 60 and 100 states have been
generated with replacement at each depth. Explicitly, they search until maximum
game depth or for a minimum of 1 s, and a maximum of 15 s.

The two easy games that we tested on were the Monty Hall Problem (a game
of probability that most people find very counterintuitive [14], formalised as a
single-player GDL-II game [17]) and a variant of Scissors–Paper–Rock where
winning with scissors is worth twice as much, so that optimal play probabilities
are: Rock = 0.4, Paper = 0.4, Scissors = 0.2.

Table 1. Scores out of 100 games of Meier against various opponents

Random Hand crafted

CFR + trained NN player 1 97 81

CFR + trained NN player 2 80 41

CFR only player 1 83 64

CFR only player 2 80 40

Random player 1 33 21

Random player 2 72 35

The three harder games were Meier, Blind Tic Tac Toe and Biased Blind
Tic Tac Toe. Meier, otherwise known as liar’s dice [13], is an asymmetric dice
game requiring the ability to deceive and to detect an opponent’s deception.
The game involves rolling two dice and announcing the outcome to the other
player or bluffing that it was a better roll. Unlike Meier, Blind Tic Tac Toe is
a symmetrical and simultaneous game. The difference from the traditional Tic
Tac Toe is that agents play simultaneously and cannot see where their opponents
have played. They only get told if their last move was successful or not. If both
players attempt to play in the same cell at the same time, one of them is chosen
randomly to be successful [10]. Biased Blind Tic Tac Toe is very similar, but in
cases where both agents choose the same cell at the same time, the “X” player
is given the cell every time.

4.2 Results and Discussion

Due to the small total number of states in the easy games, they can be completely
searched to terminal states at inference time with CFR. In the Scissors–Paper–
Rock variant, the optimal solution of Rock = 0.4, Paper = 0.4, Scissors = 0.2 is
found quickly at inference time even without any training time. For the Monty
Hall Problem, the interesting feature of this game is how often the candidate
switches—where it is optimal to always switch. There are two possible states that

Hidden Information General Game Playing with Deep Learning and Search 169

the agent could be in at this stage, and if the state sampling is done correctly, we
should see the agent sample the “switch” state twice as often as the state that
already has the car. Therefore the weighted average policy that the agent plays
by is to switch with p = 2

3 . While this is not optimal play, it is still superior
to random or standard human play, and an extension is discussed in Sect. 5 in
which it will switch with p = 1.

As Table 1 shows, our agent playing Meier easily beats a random player select-
ing valid moves from a uniform distribution and even the CFR only agent (using
an untrained neural network) wins at least 80% of games. We also supplied a
handcrafted opponent that will bluff in proportion to the value of its own roll and
will call the opponent’s bluff in proportion to their claim. Our untrained agent
managed to play on a similar level to the handcrafted solution. After the neural
network has finished training, performance is significantly improved against both
the random and handcrafted agents.

Table 2. Scores out of 100 games of Blind Tic Tac Toe against various opponents

Random Hand crafted

CFR + trained NN x 79.5 48

CFR + trained NN o 79.5 55

CFR only x 54 25

CFR only o 60 20

Random x 48 23.5

Random o 52 21.5

As Blind Tic Tac Toe is symmetrical, the small differences for X and O
players in Table 2 must be attributed to random chance. By applying CFR with
the untrained NN, performance is slightly improved over random but is still very
weak in comparison to the handcrafted algorithm. After training, performance
is improved significantly against both a random opponent and the handcrafted
solution. Our method is designed to approximate a non-exploitable policy but
does not attempt to exploit other players. The handcrafted solution it played
against was strong but could be easily exploited by an adversary that knows its
policy, but it also does not attempt to exploit other players.

As can be expected from the removal of player symmetry, the results are in
the favour of “X”. Table 3 shows that the trained defensive “O” players only win
around 25% of games against the other trained players, but against the hand-
crafted player they can win almost half the games while playing at a significant
disadvantage.

Both seeds eventually settle into very similar strategies and consequently
very similar performance against all opponents. This is not the case all the way
through training however, for example if we evaluate a snapshot of the networks
from halfway through the training process against a handcrafted “O” player,

170 Z. Partridge and M. Thielscher

Table 3. Scores out of 100 games of Very Biased Blind Tic Tac Toe against various
opponents

Random Hand crafted Trained (seed 1) Trained (seed 2)

CFR + trained NN x (seed1) 89.5 79.5 66 75.5

CFR + trained NN o (seed1) 46 44 34 26

CFR + trained NN x (seed2) 91.5 80.5 74 73

CFR + trained NN o (seed2) 52 45 24.5 27

CFR only x 84 40.5

CFR only o 36 14.5

Random x 80.5 35

Random o 18 11

seed 1 wins 100% of games and seed 2 only wins 23%. These non-converged
players are both quite exploitable at this stage in training, even seed 1 which
won 100% of games against the handcrafted player just can be seen as lucky
with its match-up because when it plays against the final version of seed 1, it
only scores a very modest 54.5.

5 Conclusion and Future Work

Our work has successfully demonstrated that hidden information games can be
played at a high standard by using a combination of CFR search, state sampling
and reinforcement learning. This approach can, in principle, be applied to any
GDL-II game and is not limited to zero-sum, a set number of players, turn-based
or symmetrical games.

An evaluation of the system shows that small games can be played opti-
mally even without training or with only minimal training. Larger, more complex
games can be learnt in the order of 24 h on a single CPU to such a degree that it
outperforms even handcrafted algorithms specifically designed for the individual
games.

The current time spent in training is much longer than a conventional 10 min
start clock used in GGP competitions, however with parallelised training and
further optimisations mentioned below, many games could still be played very
well within the reduced time limitations.

Future Work

Optimisation. The proposed algorithm has the potential to be massively par-
allelised. During training, almost the entire time is spent on playing out many
self-play games and these games can efficiently be played in parallel without any
need for communication during the game as described in [5]. Even within a sin-
gle game at training or inference time, there are many independent components
that can be run in parallel. At inference time and sometimes during training

Hidden Information General Game Playing with Deep Learning and Search 171

as well, sampling the states is the bottleneck, but every state could be sampled
on a separate processor. During training, the bottleneck normally is in running
CFR for longer on the true current state to use as the training target. There is
no reason that this needs to be done at the same time as the practice game is
being played. Instead only the states need to be stored and the optimal policy
for each state could be calculated in parallel separately.

Larger Games. Once sufficient optimisations have been made, our approach
could be extended to larger, more difficult games. Eventually, real-world prob-
lems could be cast into GDL-II or the algorithm could be exported to other
domains such that it could be used to make a positive impact on society.

Exploiting Opponents. Our approach aims to approximate a policy that
is non-exploitable, but does not yet attempt to exploit other players. Future
work on exploitation could model the policies of other players, estimate their
weaknesses and slowly deviate from the existing policy to capitalise on any biases
they may have.

References

1. Brown, G.W.: Iterative solution of games by fictitious play. In: Koopmans, T. (ed.)
Activity Analysis of Production and Allocation. Wiley (1951)

2. Brown, N., Bakhtin, A., Lerer, A., Gong, Q.: Combining deep reinforcement learn-
ing and search for imperfect-information games. CoRR abs/2007.13544 (2020).
arXiv:2007.13544

3. Brown, N., Sandholm, T.: Superhuman AI for multiplayer poker. Science
365(6456), 885–890 (2019). https://doi.org/10.1126/science.aay2400

4. Brown, N., Sandholm, T., Amos, B.: Depth-limited solving for imperfect-
information games. In: Proceedings of NeurIPS, pp. 7674–7685 (2018).
arXiv:1805.08195

5. Clemente, A.V., Mart́ınez, H.N.C., Chandra, A.: Efficient parallel methods for deep
reinforcement learning. CoRR abs/1705.04862 (2017). arXiv:1705.04862

6. Clune, J.: Heuristic evaluation functions for general game playing. In: Proceedings
of AAAI, pp. 1134–1139 (2007)

7. Edelkamp, S., Federholzner, T., Kissmann, P.: Searching with partial belief states
in general games with incomplete information. In: Glimm, B., Krüger, A. (eds.) KI
2012. LNCS (LNAI), vol. 7526, pp. 25–36. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33347-7 3

8. Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing.
In: Proceedings of AAAI, pp. 259–264 (2008)

9. Genesereth, M., Björnsson, Y.: The international general game playing competi-
tion. AI Mag. 34(2), 107–111 (2013)

10. Genesereth, M., Thielscher, M.: General Game Playing. Morgan & Claypool Pub-
lishers (2014)

11. Goldwaser, A., Thielscher, M.: Deep reinforcement learning for general game play-
ing. In: Proceedings of AAAI, pp. 1701–1708, April 2020. https://doi.org/10.1609/
aaai.v34i02.5533, https://ojs.aaai.org/index.php/AAAI/article/view/5533

172 Z. Partridge and M. Thielscher

12. Koriche, F., Piette, S.L.É., Tabary, S.: General game playing with stochastic CSP.
Constraints 21(1), 95–114 (2016)

13. Liar’s dice: Liar’s dice – Wikipedia, the free encyclopedia (2021). https://en.
wikipedia.org/wiki/Liar%27s dice. Accessed Nov 2021

14. Rosenhouse, J.: The Monty Hall Problem. Oxford University Press, Oxford (2009)
15. Schkufza, E., Love, N., Genesereth, M.: Propositional automata and cell automata:

representational frameworks for discrete dynamic systems. In: Proceedings of the
Australasian Joint Conference on AI. LNCS, vol. 5360, pp. 56–66 (2008)

16. Schmid, M., et al.: Player of games. CoRR abs/2112.03178 (2021).
arXiv:2112.03178

17. Schofield, M., Thielscher, M.: General game playing with imperfect information.
J. Artif. Intell. Res. 66, 901–935 (2019)

18. Schreiber, S., et al.: GGP-base. https://github.com/ggp-org/ggp-base (2010).
Accessed June 2021

19. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2016). https://doi.org/10.1038/nature16961

20. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362, 1140–1144 (2018). https://doi.org/
10.1126/science.aar6404

21. Thielscher, M.: A general game description language for incomplete information
games. In: Proceedings of AAAI, pp. 994–999, January 2010

22. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning. Nature 575 (2019). https://doi.org/10.1038/s41586-019-1724-z

23. Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in
games with incomplete information. In: Proceedings of NeurIPS, pp. 1729–1736
(2007)

