
Declarative Strategies for Agents with Incomplete Knowledge

Gerhard Brewka and Hannes Strass
Computer Science Institute

University of Leipzig
{brewka, strass}@informatik.uni-leipzig.de

Michael Thielscher
School of Computer Science and Engineering

The University of New South Wales
mit@cse.unsw.edu.au

Abstract

Definite Agent Logic Programs (definite ALPs), recently in-
troduced by Drescher, Schiffel and Thielscher, provide an in-
teresting alternative to imperative languages like GOLOG for
specifying agent behavior. The main advantages of ALPs is
that they are fully declarative and independent of the underly-
ing action theory. In this paper we extend the expressiveness
of ALPs by introducing nonmonotonic negation in rule bod-
ies. This allows us to handle incomplete knowledge, and to
represent preferences among different agent behaviors. The
semantics of ALPs with negation is based on a variant of an-
swer set semantics.

Introduction
Knowledge representation languages for actions and change
are traditionally concerned with formalizing preconditions
and effects of actions. Agents can then use this knowledge
to reason about the consequences of their actions and to
plan. A variety of approaches have been developed in the
past, including the classical Situation Calculus (McCarthy
1968), the Event Calculus (Mueller 2006), and Action Lan-
guages (Gelfond and Lifschitz 1998), to mention but a few.

In practice, however, intelligent agents do not just rely
on action knowledge. While for example Action Languages
like A and C and their straightforward implementations in
answer set programming (Gelfond 2008) can represent the
dynamics of a given domain, they offer no possibility to
express heuristic strategies of an agent acting in this do-
main. A strategy, intuitively, is a specification of how an
agent should proceed in order to achieve a goal. For this
purpose, knowledge-based agents additionally employ be-
havioral knowledge, which resides on top of the domain
knowledge and guides agents’ actions under different cir-
cumstances.

The need to specify strategies led to the development of
GOLOG, a procedural language for agents that use a Situa-
tion Calculus theory to reason about their actions (Levesque
et al. 1997). As an alternative, (Drescher, Schiffel, and
Thielscher 2009) recently developed (definite) Agent Logic
Programs, a declarative language for providing agents with
strategies using the syntax of Horn clauses. The basic un-
derlying idea is the following: a strategy can be viewed as
a way of splitting a goal into sequences of actions and sub-
goals, possibly depending on certain conditions that need to

hold in a particular situation. This can conveniently be rep-
resented using rules with goals in the heads and a sequence
of actions/subgoals, possibly augmented by additional tests,
in the body.1 As an example, consider this simple strategy
for going to the airport:

goToAirport← Holds(At(Car,Home)),

Does(Drive(Airport))

goToAirport← Holds(At(Car,Office)), goByTaxi

Intuitively, the rules say: the goal go to the airport can be
achieved by the action drive to the airport in case the car is
at home. If the car is at the office it can be achieved by going
by taxi. Going by taxi here is a subgoal for which the Agent
Logic Program needs to have further strategies, that is, rules
specifying possible ways of achieving this subgoal.

The declarative semantics of definite Agent Logic Pro-
grams is given by the standard interpretation of definite logic
programs in combination with an action theory to evaluate
the special predicates Holds and Does. The operational
semantics is obtained by incorporating a reasoner for the
agent’s background action knowledge into standard SLD-
resolution, whereby the action theory is effectively seen as
a black box and reasoning about the domain is out-sourced.
(See also Figure 1 on the next page.) This entails in par-
ticular that Agent Logic Programs are completely indepen-
dent of the underlying action formalism, which allows to
use them in combination with (almost) any action calcu-
lus (Drescher, Schiffel, and Thielscher 2009). Given the
vast number of different action formalisms in the literature,
this independence is a significant advantage in comparison
to other languages for specifying agent behavior. The afore-
mentioned GOLOG, for example, is restricted to action the-
ories formulated in the language of the Situation Calculus
(Levesque et al. 1997).

The restriction to Horn clauses, however, severely limits
the usability of definite Agent Logic Programs as they can be
meaningfully applied only for agents with complete knowl-
edge of all relevant aspects of their environments. If, say,
in the above example the agent does not know where the

1Thus, the order of elements in the rule body does matter. The
semantics of the rules will later be defined in terms of expansions
of the rules which contain additional variables. The expanded rules
indeed are order-independent and thus fully declarative.

Formalism

Agent Logic Program

Action Theory

Purpose

• represent behavioral knowledge
• deliberate desired world states

• represent domain knowledge
• reason about world dynamics

Holds(ϕ, s) Does(α, s, t)

Figure 1: Agent logic programs serve to express strategic information used by an agent to guide its actions. Action theories
express information about the domain and how it changes in response to actions. Agent logic programs employ action theories
to reason about domain dynamics, where the information flow is strictly from action theory to agent logic program. Through a
carefully designed interface of two special predicates, ALPs can be used with a wide variety of existing action theories.

car is, then neither of the behavioral rules can be applied.
Moreover, it does not help to use the extended expressive-
ness described in (Drescher, Schiffel, and Thielscher 2009)
of querying an action theory with arbitrary formulas using
the special predicate Holds, as in

goToAirport← Holds(¬At(Car,Home)), goByTaxi (1)

To apply this clause, it is not enough for the agent not to
know that the car is at home; rather, the agent’s background
theory must explicitly entail that the car is not at home.

In this paper, we therefore substantially extend the con-
cept of (definite) Agent Logic Programs by nonmonotonic
negation. This will allow us to replace a rule like (1) with

goToAirport← not Holds(At(Car,Home)), goByTaxi

The operational meaning of this rule is very different
from (1), as the new clause will be applicable as soon as the
background theory does not entail Holds(At(Car,Home)).
Our extended Agent Logic Programs are thus suitable for
agents with incomplete knowledge.

Interestingly, we will also allow negated actions and sub-
goals in bodies of rules. Intuitively, a literal of the form
not Does(Drive(Airport)) reads: the action Drive(Airport) is
impossible, and not goByTaxi reads: goal goByTaxi is
not achievable. We will later see how this feature can be
used to specify preferences among different strategies.

Of course, all this requires a new declarative semantics,
which we will develop in this paper. We will show that these
extended Agent Logic Programs are suitable for agents with
incomplete knowledge. Moreover, we will demonstrate that
our nonmonotonic negation allows to specify preferences
among different behaviors. From the original concept of def-
inite Agent Logic Programs we will inherit the generality of
the entire framework, keeping it independent of a particular
action calculus. In fact, we will show that this allows us to
combine features from different formalisms and use branch-
ing time for planning and linear time for plan verification.

The paper is organized as follows. The next section pro-
vides the necessary background on action theories and def-
inite Agent Logic Programs. We then define syntax and se-
mantics of Agent Logic Programs with nonmonotonic nega-
tion, the main contribution of the paper, and we show that

the new declarative semantics is a proper generalization of
the semantics for definite programs under complete informa-
tion. Thereafter, we illustrate how different time structures
can be used for different reasoning problems, and we also
present an extension of Agent Logic Programs by the con-
cept of static predicates. Finally, we illuminate the expres-
siveness of ALPs in comparison to GOLOG and provide a
complexity result for reasoning with Agent Logic Programs.

Background
Action Theories
Action theories are used to formalize knowledge of actions
in order to enable an agent to reason about their precondi-
tions and effects. Many different representation languages
exist, and we intend to make this paper as general as pos-
sible by retaining the independence of Agent Logic Pro-
grams from the specifics of an underlying action calculus.
We therefore just require a background axiomatization to
provide a signature and to implicitly define an entailment
relation. The signature will be used by the agent logic pro-
gram to access the vocabulary used to describe the domain.
The entailment relation will be used to determine whether a
(possibly complex) world property holds at a particular time
point and whether an action is executable.

Definition 1. An action theory consists of the following.

• A domain signature Σ that includes sorts ACTION, FLUENT,
and TIME along with
– a constant S0 : TIME (the initial time-point);
– a predicate Holds : FLUENT × TIME;
– a predicate Does : ACTION × TIME × TIME.
A fluent formula ϕ in Σ is a first-order formula whose
atoms are terms of sort FLUENT. With a slight abuse of
notation, we denote by Holds(ϕ, s) the formula obtained
from fluent formula ϕ by replacing every occurrence of
a fluent f by Holds(f, s).

• An entailment relation ` for
– Holds(ϕ, s), where ϕ is a fluent formula in Σ;
– Does(α, s1, s2), where α is an ACTION term in Σ.

Fluent formulas serve to specify properties of the world
while abstracting away from specific time points. For ex-
ample, the fluent formula ϕ = At(Home) ∧ At(Car,Office)
says that the agent is at home but the car is at the of-
fice. The entailment relation provided by an action theory
now can be used to check whether the world property ex-
pressed in the fluent formula holds at a specific time point.
For example, the notation Holds(ϕ, S0) expands to the
formula Holds(At(Home), S0) ∧ Holds(At(Car,Office), S0)
stating that initially the agent is at home and the car at the
office. Such an expansion is merely a technically convenient
way of querying the action theory for general properties
while remaining able to treat expressions like Holds(ϕ, S0)
as atomic in the agent logic program.

Prominent examples of action formalisms are the
Situation- and the Fluent Calculus, both of which are based
on branching time. In these instances, Does(α, s1, s2)
means that action α is possible in situation s1 and leads
to situation s2 . Formalisms like the Event Calculus, on the
other hand, use linear time, in which case Does(α, t1, t2)
means that action α is actually executed starting at time t1
and ending at time t2 .
Example 1 (Elevator Domain in Situation/Event Calculus).
An elevator can move to different floors, and open and close
its doors to serve requests. The branching time structure of
situations can be used to reason about different possible fu-
tures of this domain. A future situation is considered reach-
able if there is an executable sequence of actions leading to
it. For example, for the action of moving the elevator to
floor n to be executable, the elevator needs to be currently
at another floor with its doors closed:2

Poss(Move(n), s) ⊃ (∃m)(Holds(At(m), s) ∧
m 6= n ∧ Holds(Closed, s)) (2)

The effects of the action are stated by, “after moving from
m to n, the elevator is at n and no longer at m”:

Holds(At(n),Do(Move(n), s)) (3)
Holds(At(m), s) ⊃ ¬Holds(At(m),Do(Move(n), s)) (4)

Formulas of the above forms enable us to reason about ac-
tion executability at certain time points (axiom (2)) and to
make predictions about action effects (axioms (3,4)). Agent
Logic Programs use these features for plan generation.

Unlike the hypothetical nature of situations, linear time is
used to reason about effects of actions that actually occurred.
We will illustrate this by axiomatizing the action TurnOff(n)
for deactivating a request after it has been carried out:

Happens(TurnOff(n), t1, t2) ⊃ ¬Holds(Request(n), t2) (5)

Linear time structures can be used to reason about given se-
quences of actions, e.g. to verify executability of plans.

In this paper, we do not want to commit ourselves to a
particular time structure. Rather, different time structures
can be used for different purposes – e.g., linear time for plan
verification and branching time for plan generation. To ease
presentation, we unify notation from different action calculi:

2We denote variables by lowercase letters. Unbound variables
in formulas are implicitly assumed to be universally quantified.

• Happens(a, s, t) becomes Does(a, s, t);
• Poss(a, s) also becomes Does(a, s, t), and for a branch-

ing time structure we tacitly assume given the axiom

Does(a, s, t) ⊃ t = Do(a, s)

• (¬)Holds(f,Do(a, s)) in situation-based effect axioms
becomes Does(a, s, t) ⊃ (¬)Holds(f, t).

Hence Does(a, s, t) denotes hypothetical or actual occur-
rence of action a from s to t. This allows us to treat action
theories with different notions of time in a uniform way.
Example 1 (Continued). Different action formalisms use
different solutions to the frame problem. Reiter (2001), for
example, applies a form of completion to Situation Calculus-
style precondition and effect axioms, with the latter be-
ing transformed into so-called successor state axioms. For
Event Calculus, Shanahan (1997) embeds domain axioms in
a circumscribed theory.

Since we are not concerned with the frame problem here,
we just assume action theories to include a solution to the
frame problem that is suitable for the underlying time struc-
ture. In the following, we will slightly overload the sym-
bol ∆Elevator to contain axioms (2–5), where Poss and
Happens have been replaced by Does as indicated above,
augmented by any solution to the frame problem that suits
the time structure (branching or linear) that is given in the
context in which we use the theory ∆Elevator .

Hence the technical specifics of the underlying action the-
ory are quite irrelevant for agent logic programs, as long
as the action theory provides the interface predicates Holds
and Does along with the entailment relation `. An under-
lying action formalism could even be nonmonotonic itself
– that is, provide a nonmonotonic entailment relation ` –,
like the modal logic approach of (Lakemeyer and Levesque
2009), the default theories of (Baumann et al. 2010) or the
deductive argumentation frameworks of (Michael and Kakas
2011). This generous abstraction is possible because the un-
derlying action formalism is not fully embedded into Agent
Logic Programs, but only accessed through the predicates
Holds and Does. The details will be provided next.

Definite Agent Logic Programs
(Drescher, Schiffel, and Thielscher 2009) have introduced
Agent Logic Programs as a declarative knowledge represen-
tation formalism to provide agents with strategies. As such,
they allow to supply behavioral knowledge in addition to ac-
tion knowledge. In the following, we briefly recapitulate the
basic definition of definite Agent Logic Programs, hence-
forth abbreviated DALPs.
Definition 2. Consider an action theory signature Σ with
sorts ACTION and FLUENT, and let Π be a logic program sig-
nature.
• Terms are from Σ ∪Π.
• If P is an n-ary relation symbol from Π and t1, . . . , tn

are terms, then P (t1, . . . , tn) is an (ordinary) program
atom.

• Does(α) is a (special) program atom if α is an ACTION

term in Σ.

• Holds(ϕ) is a (special) program atom if ϕ is a fluent
formula in Σ, that is, a formula (represented as a term)
based on the FLUENTs in Σ.

• Clauses and programs are then defined as usual for defi-
nite logic programs, with the restriction that only ordinary
program atoms can occur as head of a clause.

We will utilize a well-known agent programming domain
(Levesque et al. 1997) to familiarize the reader with how we
use Agent Logic Programs to specify behavior.

Example 2 (Elevator Control). We present a declarative
agent program for controlling an elevator. Where GOLOG
uses procedures to encapsulate complex behaviors, in ALPs
behaviors are expressed by predicates that are defined as
usual in logic programming. For instance, to serve a floor
the elevator must first move to the floor, then open its doors,
deactivate the request and lastly close the doors.

serve(n)← moveTo(n), Does(Open),

Does(TurnOff(n)), Does(Close) (6)

The strategy for moving to a floor succeeds if the elevator is
at the desired floor or if it can move there.

moveTo(n)← Holds(At(n)) (7)
moveTo(n)← Does(Move(n)) (8)

The main strategy for the control program now consists of
two clauses: the first clause uses a substrategy to determine
the next floor to serve, another substrategy to then serve the
floor and finally continues to follow the same main strategy.

elevatorControl← nextFloor(n), serve(n),

elevatorControl (9)

The second clause is applicable when there is definitely no
request on any floor, in which case the elevator is parked.

elevatorControl← Holds((∀n)¬Request(n)),

Does(Park) (10)

In this simple initial version, the strategy to determine the
next floor to serve just checks for a respective request.

nextFloor(n)← Holds(Request(n)) (11)

From an operational semantics point of view, rule (9) for
serving a floor above constitutes an infinite loop. From a
strictly logical point of view, taking ← to be implication,
it is a tautology. The reader might be asking, “What is the
intended meaning of this clause, or ALPs in general?” The
detailed answer will be given later; for now, it suffices to
view rule bodies as sequentially executed substrategies.

It is more important to see that in the example above, the
specified elevator control strategy succeeds only if all non-
requested floors are known. Alas, this is not due to bad mod-
eling or poor programming: it is an inherent restriction of
allowing only definite Horn clauses. In the next section, we
shall generalize ALPs to overcome this restriction.

Agent Logic Programs with Negation
We now move from definite Horn logic programs to normal
logic programs, where the rule body may contain atoms and
default-negated negated atoms.
Definition 3. Consider an action theory signature Σ with
sorts ACTION and FLUENT, and let Π be a logic program sig-
nature. An agent logic program with negation (ALP) is a set
of rules H ← B1, . . . , Bn (n ≥ 0) where the head H is
an ordinary program atom (cf. Definition 2); and each body
literal Bi is a program atom possibly preceded by “not”.

Extending Agent Logic Programs with negation opens up
a whole new range of features for agent programming: we
can deal with incomplete knowledge and we can express
preferences between different behaviors. We demonstrate
these capabilities extending the ALP seen so far.
Example 2 (Continued). Imagine that call buttons fre-
quently get broken, and as a result thereof knowledge about
requests becomes incomplete. Instead of serving only floors
for which there definitely is a request, the following rule also
chooses floors for which the action theory does not entail
that there is no request (i.e., there might be a request):

nextFloor(n)← not Holds(¬Request(n)) (12)

With the two rules (11,12), the strategy nextFloor(n) se-
lects possibly requested floors in no particular order. Alter-
natively, clause (11) together with (13,14) below express a
strategy with a qualitative preference: first, all of the definite
requests are handled; after that, the requests on speculation
(e.g. due to a broken button) are considered.

definiteRequest← Holds(Request(n)) (13)
nextFloor(n)← not definiteRequest,

not Holds(¬Request(n)) (14)

The next definition now takes the first step towards defin-
ing a formal, declarative semantics for Agent Logic Pro-
grams with negation. It determines how the concept of time
that passes with action execution is treated by the program.

We first distinguish between progressing and non-
progressing literals. Intuitively, progressing literals are those
which consume time when being executed. For the time be-
ing we assume all non-negated atoms except Holds atoms
to be progressing (static atoms will be discussed later). In
contrast, negated atoms and all Holds atoms are not pro-
gressing. For Does and (sub)strategy atoms this reflects the
intuition that negation here represents impossibility of an ac-
tion or failure of a strategy, which do not consume time.

Consider the rule r = H ← B1, . . . , Bn (n ≥ 0). The
progression index of B1 , pi(B1) is 1. For 1 < i ≤ n
define pi(Bi) = pi(Bi−1) if Bi is not progressing, and
pi(Bi) = pi(Bi−1) + 1 otherwise. The progression index
of rule r as a whole is 1 if n = 0, pi(Bn) + 1 if n > 0
and Bn is progressing, pi(Bn) otherwise.

To treat quantification of time points correctly, we intro-
duce new (internal) predicates: Doable(a, s) says that ac-
tion a can be executed in s leading to some (at this point
irrelevant) resulting time-point; for a predicate P ∈ Π , the
atom SuccP (~t, s) means that strategy P (~t) succeeds when
executed starting at s.

Definition 4. Let P be an ALP, r = H ← B1, . . . , Bn
(n ≥ 0) a rule in P with progression index j , and let
s1, . . . , sj be pairwise distinct variables of sort TIME. The
expansion of r, denoted Exp(r), is the rule

Exp(H)← Exp(B1), . . . , Exp(Bn)

where

• For H = P (~t), Exp(H) = P (~t, s1, sj).
• For Bi (i = 1, . . . , n) with pi(Bi) = k:

– if Bi = P (~t) for some P ∈ Π then:
Exp(Bi) = P (~t, sk, sk+1);

– if Bi = Does(α) then:
Exp(Bi) = Does(α, sk, sk+1);

– if Bi = (not)Holds(ϕ) then:
Exp(Bi) = (not)Holds(ϕ, sk);

– if Bi = not Does(α) then:
Exp(Bi) = not Doable(α, sk);

– if Bi = not P (~t) for some P ∈ Π then:
Exp(Bi) = not SuccP (~t, sk).

The expansion of P , Exp(P), is the program

{Exp(r) | r ∈ P} ∪ {Doable(a, s)← Does(a, s, s′)} ∪
{SuccP (~t, si)← P (~t, si, s

′) | P ∈ Π}
Example 2 (Continued). Applying the above definition to
clause (9) shows how to actually make sense of this program
rule for the main loop of serving requests:

elevatorControl(s1, s4)← nextFloor(n, s1, s2),

serve(n, s2, s3), elevatorControl(s3, s4)

It says: the strategy to serve requests from s1 to s4 is com-
posed of sequentially executed sub-strategies, one for de-
termining the next floor to serve and the next for actually
dealing with the request. The recursive call in the last atom
concludes the declarative equivalent of a procedural loop.

We are now in a position to finalize the definition of the
semantics of ALPs. The basic idea is to take the expansion
of an ALP and to apply answer set semantics to it. However,
contrary to regular answer set semantics, in our case some
of the literals in the bodies of rules have a meaning which is
determined outside the program itself, namely in the under-
lying action theory.

Definition 5. Let P be an ALP, Pexp the ground instanti-
ation of its expansion. Let ∆ be an action theory. A set of
atoms S is an answer set of P under ∆ iff it is the least
model of the program PS,∆exp that is obtained from Pexp by

1. deleting each rule with a body literal L satisfying one of
the following conditions:
• L = not A for some A ∈ S ,
• L = Holds(ϕ, s) or L = Does(a, s, s′) and ∆ 6` L,
• or L = not Holds(ϕ, s) and ∆ ` Holds(ϕ, s).

2. deleting all default negated literals and all literals with
predicate Holds or Does from the remaining rules.

Note that the ground instantiation Pexp actually depends
on the action theory as different ground terms may be used
for representing time points (expressions built using the Do
function in Situation Calculus, numerical time stamps in
the Event Calculus). In any case, the interesting informa-
tion about a strategy p can be read off atoms of the form
p(~o, s1, s2) in the answer set(s). For instance, in Situation
Calculus the term s2 will specify an action sequence corre-
sponding to a successful strategy execution starting in s1 .

Based on the definition of answer sets, we can introduce
a skeptical and a credulous notion of consequence, where
a formula Q is a skeptical (credulous) consequence of a
program P under ∆ iff Q follows from S ∪ ∆ for all
answer sets S (some answer set S) of P under ∆.

Example 3. Let ∆Elevator contain a specification of an ini-
tial state where the elevator is at floor 0, there is a request
for floor 2 and definitely no requests for floors other than the
first or second (that is, there might be a request for the first
floor). This amounts to the formulas

Holds(At(0), S0),Holds(Request(2), S0),

(n 6= 2 ∧ n 6= 1) ⊃ ¬Holds(Request(n), S0)

Now let the Agent Logic Program PElevator consist of the
rules (6)–(12) from Example 2. Under the action theory
∆Elevator , there is an answer set S of PElevator which
contains the plan of first serving floor 1 and then floor
2. Technically, the existence of this plan is witnessed by
the atom elevatorControl(S0,Do(α, S0)) ∈ S , where
α = [Move(1),Open, TurnOff(1),Close,Move(2), . . . ,Park].3
When we replace clause (12) of PElevator by (13,14),
however, this plan will not be contained in any answer set:
the strategy encoded by clauses (11) and (13,14) explic-
itly forbids dealing with default requests before definite
requests. This shows how the nonmonotonic semantics of
ALPs handles preferences among behaviors.

The semantics defined in this paper is indeed a proper
generalization of the existing semantics for definite ALPs
and complete knowledge:

Proposition 1. Let P be an ALP without negation not in
the body of any rule. Then, for each action theory ∆, P
possesses a single answer set S∆ under ∆. Moreover, if
∆ is complete, then the set of ordinary program atoms in
the answer set coincides with the set of ground instances of
ordinary program atoms entailed by P given ∆ according
to the definition of the declarative semantics in (Drescher,
Schiffel, and Thielscher 2009).

Proof. If P is an ALP without negation not , then PS,∆exp
is the same for any S , and by Definition 5 the least model of
this unique clause set is the only answer set of P under ∆.
The expansion defined in (Drescher, Schiffel, and Thielscher
2009) coincides with Exp(P) in case of definite ALPs;
hence, the existing declarative semantics for P under ∆
is given by the theory Exp(P) ∪ ∆. Moreover, complete-
ness of ∆ means that ∆ ` L or ∆ ` ¬L for any ground

3 Do([a1, . . . , an], s) abbreviates Do(an, . . .Do(a1, s) . . .).

instance L of the special atoms Holds and Does. Conse-
quently, a ground instance of an ordinary program atom is
logically entailed by Exp(P)∪∆ if, and only if, it is in the
least model of the program obtained from Pexp by

1. deleting each rule with a body literal L = Holds(ϕ, s) or
L = Does(a, s, s′) such that ∆ ` ¬L;

2. deleting all literals with Holds or Does from the remain-
ing rules.

In case of definite programs this is equivalent to the con-
struction in Definition 5, which proves the claim.

It is noteworthy that the equivalence of the two seman-
tics does not generalize to arbitrary background theories. A
simple counter-example is the expanded definite ALP

p(s1, s1)← Holds(F, s1)

p(s1, s1)← Holds(¬F, s1)

These implications alone logically entail p(S0, S0). If,
however, the agent’s background theory ∆ is incomplete in
that it does not entail Holds(F, S0) nor ¬Holds(F, S0), then
the (unique) answer set of the program under ∆ does not in-
clude p(S0, S0). (Drescher, Schiffel, and Thielscher 2009)
also presented an operational semantics for ALPs which is
incomplete but sound wrt. the declarative first-order seman-
tics. We want to mention that our answer set semantics coin-
cides with this operational semantics for negation-free pro-
grams also in the case of incomplete action theories.

Branching vs. Linear Time
The entire concept of Agent Logic Programs is defined in-
dependently of the specifics of the underlying action formal-
ism. In particular, the framework can be combined with
action calculi that use a branching time structure, like the
Situation Calculus, or linear time, like the Event Calculus.
In this section, we will show that this flexibility allows us
to combine features from different formalisms in that Agent
Logic Programs can be employed for both plan generation
using branching time, as well as plan verification using lin-
ear time.

ALPs and Branching Time
Action theories based on branching time allow to reason
about different possible futures, represented by different ac-
tion sequences that make up the underlying time structure.
This class of action formalisms can be used to underpin
strategy specifications for the purpose of planning: Con-
sider an answer set S for an Agent Logic Program under an
action theory ∆ and some ground program atom Q ∈ S ,
e.g. Q = elevatorControl(S0, T). If ∆ uses branching
time, T encodes a sequence of actions representing a plan
that achieves the goals encoded with the atom Q. In this
regard, ALPs are the declarative counterpart to procedural
GOLOG programs, whose successful executions also deter-
mine plans (Levesque et al. 1997). A specific advantage of
Agent Logic Programs in comparison is to support specifica-
tions of strategies that depend on the failure of other strate-
gies, that is, the non-existence of alternative (sub-)plans.

Example 2 (Continued). In complex domains, it may at any
time happen that things do not work any more as they nor-
mally do. For example if one of the elevator’s engines breaks
down, it must switch to a backup engine. This strategy is
only necessary if moving fails, which is easily expressed:

moveTo(n)← not Does(Move(n)),

Does(SwitchEngine), Does(Move(n)) (15)

Note that success of an action simply hinges on whether
the underlying action theory entails that the action is exe-
cutable. Conversely, an action fails if the action theory does
not entail its executability. This can be generalized to strate-
gies in that a strategy fails if and only if the strategy is not
provably successful given the agent’s knowledge.

ALPs and Linear Time
Action theories based on linear time allow to reason about
a given set of action occurrences, or a narrative (Mueller
2006). If this class of formalisms serves as background the-
ory, then an ALP can be used to verify that a given plan or
set of events follows a desired structure.
Example 2 (Continued). Consider another variation of
∆Elevator where we use linear time and extend it with
the narrative ∆′Elevator which entails there are ini-
tially no requests for floors different from 2 and con-
tains the only action occurrences Does(Move(2), S0, 1),4
Does(Open, 1, 2), Does(TurnOff(2), 2, 3), Does(Close, 3, 4)
and Does(Park, 4, 5). This narrative is easily verified to
conform to the elevator control strategy lined out by clause
(9): atom elevatorControl(S0, 5) is among the skeptical
consequences of PElevator under ∆Elevator ∪∆′Elevator .

Planning problems in action theories with linear time are
standardly solved using abduction (Shanahan 1989). We can
introduce this principle into ALPs as follows.
Definition 6. Let P be an ALP, ∆ an action theory, and Q
a formula (representing a planning goal) over the signature
of P . A set ∆′ of ground Does(α, s1, s2) instances is a
solution to Q under P,∆ iff
• ∆ ∪∆′ is consistent, and
• Q is a skeptical consequence of P under ∆ ∪∆′ .

Static Predicates
Agent Logic Programs as introduced until now allow the
user to write normal logic programs to specify strategies for
knowledge-based agents. The atoms of these logic programs
are then extended with time arguments to give the intended
time-dependent meaning of the specification. Sometimes,
however, we wish to express properties that do not vary over
time; properties that express time-independent features of
actions, action sequences or behaviors. For example, mov-
ing to a floor on speculation of a request bears the risk of
wasting time, irrespective of the current state of the world.
To express this in an ALP, it is convenient to have access
to predicates whose extensions do not vary over time. With
these static predicates (which are treated as non-progressing

4Recall that this is read as Happens(Move(2), 0, 1).

in computing the progression index, cf. Definition 4), we
can assign time-independent properties in a declarative way.
The answer sets of an Agent Logic Program can then be in-
spected for behaviors satisfying particular properties.
Definition 7. Let Π be a logic program signature and
Π[] ⊆ Π. For an n-ary relation symbol P from Π[] and a
vector ~t of n terms, we call [P (~t)] a static program atom.
Its expansion in a program rule is

Exp((not)[P (~t)]) = (not)P (~t).

The following further extension to our example ALP will
demonstrate the intended usage of static predicates.
Example 2 (Continued). We enrich the signature of our
agent logic program for elevator control by the static predi-
cates quick and slow with their natural-language mean-
ings. Now we can say that it is quick behavior if the next
floor to serve, n, is servable and all definitely requested
floors n′ are at least as far away as n:

nextFloor(n)← [quick], servable(n), Holds(At(nc)),

Holds((∀n ′)(Request(n ′) ⊃ |nc − n| ≤ |nc − n ′|))

As before, a floor is servable if it cannot be excluded that
there possibly is a request for it. However, it is slow behavior
to serve a floor purely on speculation:

servable(n)← Holds(Request(n))

servable(n)← [slow], not Holds(Request(n)),

not Holds(¬Request(n))

Finally, we say that quick and slow are antonyms and thus
their respective meta-behaviors are mutually exclusive:

[quick]← not [slow] [slow]← not [quick]

The ALP containing clauses (6–10) together with the ones
above will have at least two different answer sets, each of
which describes a meta-behavior: e.g., an answer set con-
taining the atom quick means that all strategies therein are
in accordance with the meta-behavior of being quick.

From GOLOG to Agent Logic Programs
This section clarifies the relative expressiveness of GOLOG
and Agent Logic Programs by providing a translation of one
into the other. We first define the relevant GOLOG con-
structs; for technical ease, we treat procedure names as func-
tion symbols into a new sort PROC of the underlying Situation
Calculus signature.
Definition 8. Let Σ be a Situation Calculus signature with
R a function into sort PROC, A a function into sort ACTION,
ϕ a fluent formula, x a variable and ~v a sequence of terms.
A complex action δ is inductively defined by having one of
the following forms:

1. primitive action A(~v)

2. test action ϕ?

3. procedure call R(~v)

4. sequence δ1; δ2
5. nondeterministic choice of two actions δ1|δ2

6. nondeterministic choice of action arguments (πx)δ(x)

7. nondeterministic iteration δ∗

Let ~x be a sequence of variables of sort OBJECT. For a func-
tion symbol R into sort PROC and a complex action δ(~x)
with free variables in ~x, a procedure declaration ρ is of the
form procR(~x)δ(~x) endProc. A program γ is of the form
ρ1; . . . ; ρn; δ0 where ρ1, . . . , ρn are procedure declarations
and δ0 is a complex action, the main program body of γ .

We now translate the procedural GOLOG programs into
declarative Agent Logic Programs. The function P(·) cre-
ates the ALP rules for a given GOLOG construct and will
naturally be defined by structural induction. The transla-
tion follows the straightforward form that one would expect
given the logic programming implementation of the GOLOG
interpreter (Levesque et al. 1997).

Definition 9. Consider a fixed Situation Calculus signature
Σ and let δ be a complex action with parameters ~v. De-
note by Qδ the program atom built from a fresh predicate
symbol and the arguments ~v. The complex action δ gives
rise to the Agent Logic Program P(δ) as follows.

P(A(~v)) def=
{
QA(~v) ← Does(A(~v))

}
P(ϕ?) def= {Qϕ? ← Holds(ϕ)}

P(R(~v)) def=
{
QR(~v) ← R(~v)

}
P(δ1; δ2) def= {Qδ1;δ2 ← Qδ1 , Qδ2} ∪P(δ1) ∪P(δ2)

P(δ1|δ2) def=
{
Qδ1|δ2 ← Qδ1

}
∪

def=
{
Qδ1|δ2 ← Qδ2

}
∪P(δ1) ∪P(δ2)

P((πx)δ(x)) def=
{
Q(πx)δ(x) ← Qδ(x)

}
∪P(δ(x))

P(δ∗) def= {Qδ∗} ∪ {Qδ∗ ← Qδ, Qδ∗} ∪P(δ)

The Agent Logic Program corresponding to a procedure
declaration ρ = proc R(~x)δ(~x) endProc is given by

P(ρ) def=
{
R(~x)← Qδ(~x)

}
∪P(δ(~x))

Finally, for a GOLOG program γ = ρ1; . . . ; ρn; δ0 we set

P(γ) def= P(δ0) ∪
n⋃
i=1

P(ρi)

The logic program signature of P(γ) thus contains predi-
cates for all functions of sort PROC in Σ , and the predicates
Qδ for all complex actions δ occurring in γ .

Note that the translation yields a definite program, which
obviates the fact that definite Agent Logic Programs are al-
ready as expressive as GOLOG. It is straightforward from
Example 2 how to syntactically manipulate any Situation
Calculus axiomatisation ∆ such that it complies with our
definition of an action theory. In this special case, the ac-
tion theory’s entailment relation ` will be instantiated to
standard first-order logical entailment |=.

Given this immediate correspondence between the action
theories underlying a given GOLOG program γ and its as-
sociated ALP P(γ), we will identify these theories in the
sequel and can now assess the correctness of our translation.

Intuitively, we would have something like a one-to-one cor-
respondence of the plans accepted by the programs γ and
P(γ). More formally, for a GOLOG program γ with main
program body δ0 and the unique answer set S for P(γ)
under ∆, we need that for all ground situations σ, we have

∆ |= Do(γ, S0, σ) iff Qδ0(S0, σ) ∈ S

where the ternary macro Do(γ, s, s′) defines in second-
order logic the semantics of GOLOG program γ executed
from s to s′ (Levesque et al. 1997). For a full-fledged
formal proof however, we would face the same hurdles as
the authors of the original GOLOG paper, who already rec-
ognized the difficulty of formally pinning down the exact
sense in which their Prolog-based GOLOG interpreter is cor-
rect. But given that our translation in effect defines for
each GOLOG program an ALP-based interpreter, it should
be straightforward to adapt the proof of correctness they re-
fer to (Levesque, Lin, and Reiter 1997) for our purpose.

Computational Complexity
In this section we briefly focus on the complexity of deciding
whether a given set of atoms is an answer set for an ALP un-
der an action theory and if such a set exists. Since ALPs are
parametric in action theories ∆ and their associated entail-
ment relation `, the complexity of these problems depends
on the complexity of deciding whether ∆ ` A for an atom
A over ∆’s signature.

Theorem 2. Let ∆ be an action theory with entailment re-
lation ` and let C be the complexity class of the problem
to decide whether ∆ ` A for an atom A. Let Q be a fi-
nite instantiation of an expanded agent logic program with
negation.

1. Deciding if a given set S of atoms is an answer set of Q
under ∆ is in PC .

2. Deciding if Q has an answer set under ∆ is in NPC .

Proof sketch. Intuitively, we use the candidate set S and a
C -oracle to compute the reduct according to Definition 5
in polynomial time. It then remains to verify that the can-
didate set is the least model of this reduct (a definite logic
program). To decide existence of an answer set, we guess an
answer set candidate S and proceed as before.

As a lower bound, NP-hardness of answer set existence
immediately follows from the respective complexity for
propositional normal logic programs. Whenever deciding
∆ ` A is in P, then answer set existence for agent logic
programs with negation is thus NP-complete. Likewise, if
deciding ∆ ` A is PSPACE-complete, then answer set ex-
istence for NALPs is also PSPACE-complete.

Conclusion
In this paper we introduced nonmonotonic agent logic pro-
grams, an expressive agent specification language possess-
ing two significant advantages: (a) the language is fully
declarative, and (b) apart from some mild assumptions re-
garding the predicates used to assess relevant knowledge, it

is independent of the underlying action theory. Both aspects
make the ALP approach easy to use and widely applicable.

Existing approaches to strategy specification, on the other
hand, are bound to their respective particular action for-
malisms. The procedural language GOLOG is restricted to
Situation Calculus action theories (Levesque et al. 1997).
(Son et al. 2006) provide an approach for adding domain-
dependent knowledge to planning problems which is limited
to domain knowledge expressed in the Action Language B
(Gelfond and Lifschitz 1998). (Hindriks et al. 1998) pre-
sented an operational semantics for a fairly complex agent
programming language, which later gave rise to a language
offering declarative goals (Hindriks et al. 2001). They
however use their own tailor-made propositional modal ac-
tion theory to represent domain knowledge, whereas we can
draw upon decades of research into action theories. Further-
more, Agent Logic Programs have a declarative semantics
and are conceptually much simpler.

Our approach relies on basic ideas and concepts from an-
swer set programming (ASP). Although we cannot cover
this in detail in the present paper, we would like to point
out another obvious benefit: many of the extensions of the
basic ASP paradigm developed over the last decade can be
adapted for ALPs without much effort. This includes pro-
grams with strong negation and disjunctive programs (Gel-
fond and Lifschitz 1991), cardinality and weight constraints
(Simons, Niemelä, and Soininen 2002), aggregates (Faber,
Pfeifer, and Leone 2011) and the like. We believe that in
particular the latter will play an important role whenever the
behavior of an agent depends on available resources.

Most relevant, and directly applicable to ALPs, is also
the body of work on extending ASP with preferences, see
(Delgrande et al. 2004) for a survey. Adding preferences
to ALPs will allow for more fine-grained distinctions and
more flexible specifications of potential agent behaviors. Fi-
nally, existing work in ASP on accessing external knowledge
sources (e.g. the work on HEX-programs (Eiter et al. 2005))
provides a promising basis for implementing ALPs.

An interesting line of future work is to investigate the
use of more expressive action theories in combination with
ALPs. Of particular interest are formalisms like (Scherl and
Levesque 2003), which include the axiomatization of sens-
ing actions and how these affect what an agent knows about
its environment. Background theories of this expressiveness
could be used as the basis for conditional strategy execution
in analogy to conditional planning (Rintanen 1999).

References
Baumann, R.; Brewka, G.; Strass, H.; Thielscher, M.; and
Zaslawski, V. 2010. State Defaults and Ramifications in
the Unifying Action Calculus. In Proc. KR, 435–444.
Delgrande, J. P.; Schaub, T.; Tompits, H.; and Wang, K.
2004. A classification and survey of preference handling
approaches in nonmonotonic reasoning. Computational In-
telligence 20(2):308–334.
Drescher, C.; Schiffel, S.; and Thielscher, M. 2009. A
declarative agent programming language based on action

theories. In Ghilardi, S., and Sebastiani, R., eds., FroCoS,
volume 5749 of LNCS, 230–245. Trento, Italy: Springer.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005.
A uniform integration of higher-order reasoning and exter-
nal evaluations in answer-set programming. In Proceedings
of IJCAI-05, 90–96.
Faber, W.; Pfeifer, G.; and Leone, N. 2011. Semantics and
complexity of recursive aggregates in answer set program-
ming. Artificial Intelligence 175(1):278–298.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3/4):365–386.
Gelfond, M., and Lifschitz, V. 1998. Action Languages.
Electronic Transactions on Artificial Intelligence 3.
Gelfond, M. 2008. Answer sets. In van Harmelen, F.;
Lifschitz, V.; and Porter, B., eds., Handbook of Knowledge
Representation, 285–316. Elsevier.
Hindriks, K. V.; de Boer, F. S.; van der Hoek, W.; and
Meyer, J.-J. C. 1998. Formal Semantics for an Abstract
Agent Programming Language. In Proceedings of the
Fourth International Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL’97), volume 1365 of Lec-
ture Notes in Computer Science, 215–229. Springer.
Hindriks, K. V.; de Boer, F. S.; van der Hoek, W.; and
Meyer, J.-J. C. 2001. Agent Programming with Declarative
Goals. In Castelfranchi, C., and Lespérance, Y., eds., Pro-
ceedings of the Seventh International Workshop on Agent
Theories, Architectures and Languages (ATAL’00), vol-
ume 1986 of Lecture Notes in Computer Science, 228–243.
Springer.
Lakemeyer, G., and Levesque, H. 2009. A Semantical Ac-
count of Progression in the Presence of Defaults. In Pro-
ceedings of the Twenty-first International Joint Conference
on Artificial Intelligence (IJCAI-09), 842–847.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(1–3):59–83.
Levesque, H. J.; Lin, F.; and Reiter, R. 1997. Defin-
ing Complex Actions in the Situation Calculus. Techni-
cal report, Department of Computer Science, University of
Toronto.
McCarthy, J. 1968. Programs with common sense. In
Minsky, M., ed., Semantic Information Processing, 403–
418. MIT Press.
Michael, L., and Kakas, A. 2011. A Unified
Argumentation-Based Framework for Knowledge Qualifi-
cation. In Davis, E.; Doherty, P.; and Erdem, E., eds., Pro-
ceedings of the Tenth International Symposium on Logical
Formalizations of Commonsense Reasoning.
Mueller, E. 2006. Commonsense Reasoning. Morgan
Kaufmann.
Reiter, R. 2001. Knowledge in Action. MIT Press.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover. JAIR 10:323–352.

Scherl, R., and Levesque, H. 2003. Knowledge, action,
and the frame problem. Artificial Intelligence 144(1):1–39.
Shanahan, M. 1989. Prediction is deduction but explana-
tion is abduction. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 1055–1060.
Shanahan, M. 1997. Solving the Frame Problem: A Mathe-
matical Investigation of the Common Sense Law of Inertia.
MIT Press.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. Artificial
Intelligence 138(1–2):181–234.
Son, T. C.; Baral, C.; Tran, N.; and Mcilraith, S.
2006. Domain-dependent knowledge in answer set plan-
ning. ACM Transactions on Computational Logic (TOCL)
7(4):613–657.

