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Abstract. Accounts of belief and knowledge in the Situation Calculus
have been developed and discussed for some time yet there is no extant
implementation. We develop a practical implementation of belief and be-
lief change in the Situation Calculus based on default logic for which we
have an implemented solver. After establishing the mapping with default
logic we demonstrate how belief change in the Situation Calculus can be
used to solve an interesting problem in robotics – reasoning with mis-
leading information. Motivated by a challenge in the RoboCup@Home
competition, we give a solution to the problem of planning robustly in
cases where operators provide the robot with misleading or incorrect
information.

1 Introduction

Several accounts of belief and knowledge in the Situation Calculus have been de-
veloped and discussed for some time [1–3] yet there is no extant implementation.
In this paper, we show how belief and belief change in the Situation Calculus
according to the account of [4, 1] can be implemented. We do so by mapping this
formalisation of belief change in the Situation Calculus to an account of default
logic for which we have an implemented solver [5].

As we establish this mapping into default logic, we demonstrate how belief
change in the Situation Calculus can be used to solve an interesting problem in
robotics – reasoning with misleading information. Motivated by a challenge in
the RoboCup@Home competition, we give a solution to the problem of planning
robustly in cases where operators provide the robot with misleading or incorrect
information. What, for example, should a robot given the task of returning
with the red cup from the kitchen table do when it arrives in the kitchen to
find no red cup but instead notices a blue cup and a red plate on the table?
In RoboCup@Home, the best course of action is not to return empty-handed
but to attempt to salvage the situation by applying a form of commonsense
preferences to return with one of the objects available. Our results pave the way
for a practical and efficient solution to such problems.



The rest of the paper proceeds as follows. We first provide the technical
background to understand the paper. Then we describe a formal specification
of belief change in the Situation Calculus. A motivating example based on
RoboCup@Home is introduced in order to demonstrate a challenging problem
that can be solved using this account of belief change in the Situation Calculus.
Next, we present another solution, that is based on an implementable fragment
of prioritised default logic and show how belief change in the Situation Calculus
can be translated into this logic. Finally, we show that the two solutions yield
the same results, discuss our findings in a broader context and conclude.

2 Technical Preliminaries

2.1 Situation Calculus

The Situation Calculus provides a formal language based on that of classical first-
order logic in which to describe dynamic domains [6, 7]. Three types of terms are
distinguished: situations representing a snapshot of the world; fluents denoting
domain properties that may change as a result of actions; and actions that can
be performed by the reasoner. We use the predicate Holds(f, s) to specify that a
fluent f holds at a particular situation. As a matter of convention a short form
is adopted such that for any n -ary fluent f(x1, . . . , xn), writing f(x1, . . . , xn, s)
is a short form for Holds(f(x1, . . . , xn), s). A special function do(a, s) represents
the situation that results from performing action a at situation s. S0 denotes
the initial situation where no actions have taken place. For each action we need to
specify preconditions Poss(a, s) specifying the conditions under which action a
is possible in situation s and effect axioms that specify how the value of a fluent
changes when an action is performed.3 For a more comprehensive formulation of
what is required of a Situation Calculus basic action theory (BAT), the reader
is referred to [7].

2.2 Iterated Belief Revision in the Situation Calculus

A request to an agent to achieve a goal affects its beliefs. For instance, when the
agent is asked to collect the red cup from the kitchen table, it is reasonable for
the agent to believe that there is in fact a red cup located on the kitchen table.
We therefore adopt an extension to the Situation Calculus capable of represent-
ing beliefs. Several accounts exist [1–3] however we use that of Shapiro et al. [1].
It is based on the ideas of Moore and extended by Cohen and Levesque [8] who
introduced knowledge into the Situation Calculus by reifying the accessibility re-
lation in modal semantics for knowledge. Two types of actions are distinguished:
physical actions which alter the world (and hence fluent values) when performed;
and, sensing actions that are associated with a sensor and determine the value
of a fluent (e.g., a vision system used to determine whether a red cup is on a

3 In fact, we compile effect axioms into successor state axioms (SSAs) [7].



table). Sensing actions are also referred to as knowledge producing actions as
they inform the reasoner about fluent values but do not alter the world state.

Scherl and Levesque [9] introduced the relation B(s′, s) denoting that if the
agent were in situation s, it would consider s′ to be possible.4 This is adopted
by Shapiro et al. [1]. The successor state axiom for the B relation is given in
the table below as Axiom (B1) and states that s′′ is possible at the situation
resulting from performing action a at situation s whenever the sensing action
associated with a agrees on its value at s and s′. SF(a, s) is a predicate
that is true whenever the sensing action a returns the sensing value 1 at s
and was introduced by Levesque [10]. The innovation of Shapiro et al. [1] is
to associate a plausibility with situations. Plausibility values are introduced, in
decreasing order with a value of 0 being the most plausible, for initial situations
and these values remain the same for all successor situations as expressed in
Axiom (B2) below. This is critical for preserving the introspection properties for
belief. The plausibility values themselves are not important, only the ordering
over situations that they induce. Axioms (B3) and (B4) define the situations s′

that are most plausible (MP) and most plausible situations that are possible –
i.e., B-related – (MPB) at s , respectively. In Axiom (B5) we define sentence
φ to be believed in situation s (Bel(φ, s)) whenever it is true at all the most
plausible situations that are possible at s. Finally, Axiom (B6) specifies that
any situations B-related to an initial situation are also initial situations. The
distinguished predicate Init(s) indicates that s is an initial situation.

B1. B(s′′, do(a, s)) ≡ ∃s′[B(s′, s) ∧ s′′ = do(a, s′) ∧ SF(a, s′) ≡ SF(a, s))]
B2. pl(do(a, s)) = pl(s)

B3. MP(s′, s)
def
= ∀s′′.B(s′′, s) ⊃ pl(s′) ≤ pl(s′′)

B4. MPB(s′, s)
def
= B(s′, s) ∧MP(s′, s)

B5. Bel(φ, s)
def
= ∀s′.MPB(s′, s) ⊃ φ[s′]

B6. Init(s) ∧B(s′, s) ⊃ Init(s′)

3 Formalisation in the Situation Calculus

The formalisation of our approach is based on the iterated belief revision ex-
tension to the Situation Calculus. Notably, the problem is specified in terms of
primitive fluents, primitive actions, sensing actions, an initial state, precondition
axioms, and successor state axioms. In order to deal with the potential for de-
feasible information we introduce a number of restrictions to this formalism. In
essence these restrictions are designed to exploit the way in which abstract logical
names can be anchored to the perception of actual objects in the environment.

Objects We require a fixed set I of individual objects, to which a unique names
assumption is applied. Intuitively, they identify the items that a robot is trained
to recognise. We introduce the fluent Same(x, y) to express that two names refer

4 Note the order of the arguments as it differs from that commonly used in modal
semantics of knowledge.



to the same real object, and allow a set of additional names N = {O1, . . . , On},
ensuring that these names only refer to existing objects in the domain:∨

A∈I
Same(Oi, A, s), for 1 ≤ i ≤ n

Same is required to be reflexive, symmetric and transitive and is further ax-
iomatised using “substitutivity” axioms to enforce that identical objects agree
on all fluent properties F of the domain

Same(x, y, s) ⊃ (F (z̄, s)[zi/x] ≡ F (z̄, s)[zi/y])

and the SSA Same(x, y, do(a, s)) ≡ Same(x, y, s) . The trivial successor state
axiom of this fluent reflects the intuition that hypotheses about names referring
to objects will only be affected by knowledge-producing actions.

Informing the robot Informing the robot about the operator’s belief in the
state of the world is formalised outside of the underlying action calculus at the
meta-level and is subsequently compiled into the initial state axioms.

Let f be a fluent literal. Then Told(f, S0), which we abbreviate as Told(f),
represents the act of the operator informing the robot about the operator’s
understanding of the initial state of the world. Additionally, object references in
f must consist only of the names in N , reflecting the intuition that the operator
may only ever refer to objects on the basis of their properties, but not by using
their names. Finally, a set of operator commands T is consistent provided there
is no fluent f such that Told(f) ∈ T and Told(¬f) ∈ T .

Setting goals Requests from the user for the robot to perform a task are
required to be of the form Goal(∃s.φ(s)) where φ(s) is a sentence expressing
the goal to be achieved. As with the operator commands, all objects referenced
in φ(s) must be referred to only by the names in N .

Motivating Example: Dealing with Misleading Information

The following example will be used to illustrate our approach. It represents a
reasonably practical example of moderate sophistication sufficient for the space
available. Moreover it is of interest as it represents an instance of goal revi-
sion which can be innovatively handled by the account of belief change in the
Situation Calculus that we adopt here.

The Robocup@Home (robocupathome.org) competition is an international
initiative to foster research into domestic robots. Effective domestic robots must
be able to perform tasks in response to user commands and to behave robustly if
the information provided is in some way erroneous. This is demonstrated in the
“General Purpose Service Robot” challenge of the Robocup@Home 2010 Com-
petition,5 and the following scenario is based on an example from this challenge.

5 http://www.robocupathome.org/documents/rulebook2010_FINAL_VERSION.pdf



Scenario 1 The robot is in the living room of the home. The home has a kitchen
with a table in the middle. The robot is told to fetch the red cup from the kitchen
table. However, there is no red cup on the kitchen table and the robot only dis-
covers this fact once it arrives in the kitchen and looks for the cup on the table.

We highlight two separate cases. In the base case there is only a blue cup on
the table. In the extended case there is a blue cup and a red plate on the table.

While a robot cannot know the precise intentions of the human operator,
it can nevertheless apply commonsense knowledge in its responses. In the first
case, faced with no alternatives, it might simply fetch the blue cup. In the second
case, it might assume that the user is more interested in the type of object than
its colour and so would prefer the blue cup over the red plate.

For simplicity of presentation we provide a compact encoding of this scenario.
In particular for binary properties we adopt only one of each binary pair, with
the intuition that the negation of the given property implies that its pair must
hold. For example, if an object is not a cup then it must be a plate.

Objects The Robocup@Home challenge deals with a fixed set of household
objects that are determined at the start of the competition. This allows the
teams time to train their vision systems to be able to detect and distinguish
between these objects. In our example scenario, there are two cups, one red and
one blue, and a red plate: I = {CR, CB , PR}.
Primitive fluents The primitive fluents in our domain and their meanings
are as follows. InKitchen : the robot is in the kitchen, Holding(o): the robot is
holding an object, OnTable(o): the object is on the kitchen table, Cup(o): the
object is a cup, Red(o): the object is red.

Primitive actions SwitchRoom : moving from the living room to the kitchen
and vice-versa; PickUp(o): pick up an object from the kitchen table.

Sensing The robot is trained to recognise the pre-determined set of objects I .
The main sensing task is then to detect whether or not these specific objects
are located on the kitchen table. This is encapsulated by the sensing action
SenseOT (o) that senses if object o ∈ I is on the table. The SF(a, s) predicate,
introduced in the previous section, is used to axiomatise the act of sensing:

SF(PickUp(o), s) ≡ true
SF(SwitchRoom, s) ≡ true

InKitchen(s) ⊃ (SF(SenseOT (o), s) ≡ OnTable(o, s))

Initial state In the initial state the robot is in the living room (i.e., not in the

kitchen) and is not holding anything: ¬InKitchen(S0) ∧ (∀x)(¬Holding(x, S0)).

Informing the robot The robot is told that there is a red cup on the table:
Told(Cup(O1)), Told(Red(O1)), Told(OnTable(O1)).

Precondition axioms The robot can only pick up an item when it is not
already holding an object and the item in question is on the kitchen table:
Poss(PickUp(o), s) ≡ (∀x)(¬Holding(x, s)) ∧ InKitchen(s) ∧ OnTable(o, s); the
robot can always switch locations: Poss(SwitchRoom, s) ≡ true.



Successor state axioms If the robot wasn’t already in the kitchen then it
will be as a result of switching rooms: InKitchen(do(a, s)) ≡ (¬InKitchen(s) ∧
a = SwitchRoom) ∨ (InKitchen(s) ∧ a 6= SwitchRoom); an item will be on
the table only if it was previously on the table and has not been picked up:
OnTable(o, do(a, s)) ≡ OnTable(o, s)∧ a 6= PickUp(o); the robot will be holding
an object if it picks it up or was already holding the object: Holding(o, do(a, s)) ≡
a = PickUp(o) ∨ Holding(o, s); object type is persistent: Cup(o, do(a, s)) ≡
Cup(o, s); colour is persistent: Red(o, do(a, s)) ≡ Red(o, s).

Preferences In order to use the framework for belief change in the Situa-
tion Calculus to deal with misleading information we proceed as follows. Every
planning problem (i.e., request to achieve a goal) is considered a new reason-
ing problem.6 The statements, Told(f(x̄)) and Goal(∃s.φ(s)) , are used to as-
cribe initial beliefs and a goal to achieve. They are interpreted at the meta-level
and are not part of the object language. In our example scenario, the request
Told(Cup(O1)), Told(Red(O1)), Told(OnTable(O1)), Goal(∃s.Holding(O1, s))
asks the agent to collect a red cup from the table. This results in the specifi-
cation of a reasoning about action problem in the Situation Calculus extended
with beliefs. In particular, the request specifies what should be believed in the
initial situation S0 and as such partially restricts the plausibility relation pl().
However, our beliefs may be mistaken – there is no red cup on the table – and
as a result we need to formulate an alternative course of action to get the best
out of the situation at hand. Which alternative course of action to take is de-
termined by preferences that are specified using a meta-level preference relation
<C . These preferences further restrict the plausibility of situations pl().

Preferences reflect the robot’s commonsense knowledge. In our scenario, for
example, the robot may prefer to fetch an object that is of the same type as
requested but of a different colour, and most of all prefer to find an object in
the room to which it was sent.

OnTable <C Cup <C Red (1)

It is of course possible to conceive of a scenario in which the above preference
for, say, non-red cups in the kitchen over red non-cups elsewhere is reversed. The
operator may be a child building a colour collage and therefore assign greater
importance to the colour of the object than its type.

In reality, determining the best set of preferences would be a complex task
requiring the robot to combine subtleties of natural language processing with spe-
cific knowledge about the operator. Such considerations are beyond the scope of
this paper, and so we just presuppose a given commonsense preference ordering ,
represented by a partial order among fluent names.

Next, we directly compile the Told() statements plus an ordering like (1) into
a plausibility ordering over all the initial situations. Here, the initial situations
encode all possible hypotheses of what the operator might have meant by their

6 This is not crucial to our approach but considerably simplifies the notation and
formal machinery required and, in any case, is not central to the main contributions.



commands. The commonsense preference is then used to rank these hypotheses
according to their plausibility. In order to relate this preference ordering to the
Told() statements we introduce the notation 〈·〉 to extract the fluent name from
a fluent literal (e.g., 〈¬Cup(O1)〉 = Cup).

Definition 1 Let Σ be a Situation Calculus BAT, B the axioms for iterated
belief revision in the Situation Calculus, I be the set of domain objects, N be
a set of additional names, T be a set of consistent operator commands and
<C be a commonsense preference ordering. Then (Σ ∪B, T,<C) is a Situation
Calculus BAT extended with belief and commonsense preferences such that:

1. The initial situations are created by the axioms

(∃s)

(
B(s, S0) ∧

∧
O∈N

Same(O, σ(O), s)

)
(2)

for all functions σ : N → I .
2. For every pair of initial situations s1, s2, we define

pl(s1) < pl(s2)

iff both
(a) there is some Told(f(x̄ )) ∈ T such that Σ ∪ {(2)} |= f(x̄, s1) and

Σ ∪ {(2)} |= ¬f(x̄, s2); and,
(b) for every Told(f(x̄1)) ∈ T such that

Σ ∪ {(2)} |= ¬f(x̄1, s1) and Σ ∪ {(2)} |= f(x̄1, s2)

there is a Told(g(x̄2)) ∈ T such that 〈g〉 <C 〈f〉 ,

Σ ∪ {(2)} |= g(x̄2, s1) and Σ ∪ {(2)} |= ¬g(x̄2, s2)

Part 1 creates all the initial situations. Intuitively, the function σ says which
names are assigned to which real object; so σ1(O1) = σ1(O3) = CR means that
O1 and O3 are considered the same as the red cup CR . The number of axioms
thus generated is polynomial in the number of domain objects, but exponential in
the number of additional names.7 This is one of the main reasons why a direct
implementation of Situation Calculus with belief change would be practically
infeasible for our problem at hand and why we are interested in developing a
more practical implementation based on default logic.

Part 2 restricts the plausibility relation over initial situations. Initial situation
s1 is preferred to s2 whenever s1 assigns the value true to a fluent preferred
under the preference ordering <C and s2 assigns the value false; additionally,
for all fluents f where this is the other way around (f is true in s2 and false
in s1), there must be a preferred fluent g which holds in s1 but not in s2 .

From this formalisation of the scenario, we can establish the fact that the
robot will initially believe what it is told.

7 Recall that the number of functions σ : N → I is |I||N| .



Proposition 1. Let Σ be a Situation Calculus BAT, B the axioms for iter-
ated belief revision in the Situation Calculus, T be a set of consistent operator
commands, and <C be a commonsense preference ordering. Then (Σ∪B, T,<)
is a Situation Calculus BAT extended with belief and commonsense preferences
such that for all Told(f(x̄)) ∈ T we have (Σ ∪B, T,<C) |= Bel(f(x̄), S0) .

Plan Execution This formalism allows the robot to change its beliefs about
what it is told. In this paper we assume that the robot has determined a plan and
begun its execution. We can therefore consider the robot’s changing beliefs with
regards to satisfying its goal of holding object O1 by considering the situation8

do([SwitchRoom,SenseOT (CR),SenseOT (CB),SenseOT (PR),PickUp(O1)], S0)

Initially the robot believes that the object O1 refers to the red cup CR . However
when the robot arrives in the kitchen it finds that there is only a blue cup on
the table. Consequently the robot changes its belief about O1 to now refer to
the blue cup CB . This scenario is visualised by Figure 1 showing the possible
situations based on the robot’s beliefs and the plausibility relation.

In the extended example the robot arrives in the kitchen to find both a blue
cup and red plate on the table. It therefore has a choice, which it resolves based
on its preference for object type over colour (1), consequently modifying its belief
about O1 to again refer to the blue cup.

4 A Default Logic Approach

The Situation Calculus with beliefs provides an expressive formalism for tackling
the problem of agents receiving erroneous information and expected to use some
basic commonsense reasoning under these circumstances. Next we address the
problem of turning the theory into a practical implementation. To this end we
adapt a recently developed extension of action logics with default reasoning [11],
which can be effectively implemented using Answer Set Programming [12]. The
idea is to treat potentially erroneous information as something that is considered
true by default but can always be retracted should the agent make observations
to the contrary. We extend the existing approach by prioritised defaults that
allow us to provide our robot with preferences among different ways of remedying
a situation in which it has been misled.

Supernormal Defaults To begin with, we instantiate the general framework
of [11] to the Situation Calculus and to a restricted form of default rules. Each
operator command Told([¬]f(x̄), s) is translated into a supernormal default of
the form

: f(x̄, s)

f(x̄, s)
or

: ¬f(x̄, s)

¬f(x̄, s)

8 do([a1, . . . , an], s) abbreviates do(an, . . . , do(a2, do(a1, s)) . . .).



pl = 0 pl = 0 pl = 1 pl = 1 pl = 2 pl = 2 pl = 2 pl = 2

Same(O1, CR)
OnTable(CR)
OnTable(CB)

¬InKitchen

Same(O1, CR)
OnTable(CR)
¬OnTable(CB)

¬InKitchen

Same(O1, CB)
OnTable(CR)
OnTable(CB)

¬InKitchen

Same(O1, CB)
¬OnTable(CR)
OnTable(CB)

¬InKitchen

Same(O1, CB)
OnTable(CR)
¬OnTable(CB)

¬InKitchen

Same(O1, CR)
¬OnTable(CR)
OnTable(CB)

¬InKitchen

Same(O1, CR)
¬OnTable(CR)
¬OnTable(CB)

¬InKitchen

Same(O1, CB)
¬OnTable(CR)
¬OnTable(CB)

¬InKitchen

SwitchRoom

InKitchen InKitchen InKitchen InKitchen InKitchen InKitchen InKitchen InKitchen

SenseOT(CR)

SenseOT(CB)

PickUp(O1)

Same(O1, CB)
Holding(O1)
¬OnTable(CB)

InKitchen

Fig. 1. The robot is told to pick up the red cup from the table, but finds only a blue cup.
For succinctness, details of the red plate and the status of the persistent fluents Cup
and Red are omitted. Furthermore, only the accessibility relations (dotted lines) for
the actual situation (fourth from the left) are shown. The transition of situations based
on actions are indicated by the solid vertical lines. Values for the plausibility relation
are assigned to the initial situations based on the preferences. The initial situations in
which the robot believes that it is going to pick up the red cup on the table are the
most preferred (pl = 0). Next are those in which the robot believes that it is going to
pick up the blue cup on the table (pl = 1). Finally, the least preferred are situations
where the robot believes that the item to pick up is not on the table (pl = 2).

With these rules the robot will believe, by default, everything it is told. For our
running example we thus obtain these three defaults about the initial situation:

δCup =
: Cup(O1, S0)

Cup(O1, S0)
δRed =

: Red(O1, S0)

Red(O1, S0)
δOnTable =

: OnTable(O1, S0)

OnTable(O1, S0)

A Situation Calculus default theory is a pair (Σ,∆) where Σ is aSituation
Calculus BAT as above and ∆ is a set of default rules.

Priorities In a prioritised default theory [13], the default rules are partially or-
dered by ≺, where δ1 ≺ δ2 means that the application of default δ1 is preferred
over the application of δ2. For our purpose, we can map a given commonsense
preference ordering among fluent names directly into a partial ordering among
the defaults from above. For example, with the ordering given by (1) we obtain
δOnTable ≺δCup≺δRed . A prioritised Situation Calculus default theory is a triple
(Σ,∆,≺) where (Σ,∆) is as above and ≺ is a partial ordering on ∆.

Extensions Reasoning with default theories is based on the concept of so-called
extensions, which can be seen as a way of assuming as many defaults as possible
without creating inconsistencies [14, 13].



Definition 2 Consider a prioritised Situation Calculus default theory (Σ,∆,≺).
Let E be a set of formulas and define E0 := Th(Σ) and, for i ≥ 0,

Ei+1 := Th(Ei ∪ {γ | : γ
γ ∈ ∆, ¬γ 6∈ E})

Then E is an extension of (Σ,∆,≺) iff E =
⋃
i≥0Ei.

Let a partial ordering be defined as E1 ≺≺ E2 iff both

(a) there is : γ
γ in ∆ such that γ ∈ E1 but γ 6∈ E2; and,

(b) for every : γ1
γ1

such that γ1 6∈ E1 but γ1 ∈ E2 there is : γ2
γ2
≺ : γ1

γ1
in ∆

such that γ2 ∈ E1 but γ2 6∈ E2.

Extension E is a preferred extension of (Σ,∆,≺) iff there is no E′ such that
E′ ≺≺ E. Entailment (Σ,∆,≺) |≈ φ is defined as φ being true in all preferred
extensions.

In our running example, when initially the robot has no information to the
contrary it can consistently apply all defaults, resulting in a unique preferred
extension that entails Cup(O1, S0) ∧ Red(O1, S0) ∧OnTable(O1, S0) . Based on
these default conclusions the Situation Calculus axioms entail the same plans
for a given goal as those for the Situation Calculus extended with belief and
commonsense preferences. But suppose that the robot enters the kitchen and
observes what is indicated in Figure 1, that is,

Same(O1, CR, S) ∨ Same(O1, CB , S)
Cup(CR, S) ∧ Red(CR, S)
Cup(CB , S) ∧ ¬Red(CB , S)
¬OnTable(CR, S) ∧OnTable(CB , S)

where S is the situation after SwitchRoom followed by SenseOT (CR) and
SenseOT (CB). Disregarding priorities for now, there are two extensions, char-
acterised by

{Same(O1, CR, S),¬OnTable(O1, S)} ⊆ E1

{Same(O1, CB , S),¬Red(O1, S)} ⊆ E2

However, given the priorities from above, only E2 is a preferred extension,
triggering the robot to pick up the blue cup.

In the second case of the scenario, the robot further senses that there is also
a red plate on the table. In this case there will be a third extension E3 such that
{Same(O1, PB , S),¬Cup(O1, S)} ⊆ E3 . However, as with the first case, E2 is
still the only preferred extension and therefore the robot selects the blue cup.

Implementation Answer Set Programming (ASP) [12] is well-suited for effi-
ciently implementing nonmonotonic reasoning formalisms. Extended logic pro-
grams can be seen as special kinds of default theories [15] and this correspondence
can be used to transform a default theory into an answer set program. Entail-
ment of a formula by the default theory can then be determined by querying
the answer set program. This transformation technique has been developed in
[5]. In the following, we outline this technique (steps 2 to 4) and extend it to



cover preferences (step 1). This allows the transformation of a sufficiently re-
stricted prioritised Situation Calculus default theory (Σ,∆,≺) into an answer
set program PΣ,∆,≺.

Step 1. We transform the prioritised Situation Calculus default theory (Σ,∆,≺)
into a Situation Calculus default theory (Σ≺, ∆≺) where the preferences have
been encoded at the object-level [16]. This is done by explicitly keeping track of
default δ’s meta-level applicability ok(δ) and whether it was applied (ap(δ)) or
blocked (bl(δ)). For example, δCup and δRed are transformed into

ok(δCup) : Holds(Cup(O1), S0)

Holds(Cup(O1), S0) ∧ ap(δCup)

ok(δCup) ∧ ¬Holds(Cup(O1), S0) :

bl(δCup)

ok(δRed ) : Holds(Red(O1), S0)

Holds(Red(O1), S0) ∧ ap(δRed )

ok(δRed ) ∧ ¬Holds(Red(O1), S0) :

bl(δRed )

The preference between the defaults is enforced by statements like (ap(δCup) ∨
bl(δCup)) ⊃ ok(δRed), effectively saying that δRed can only be applied once it is
clear whether the more preferred default δCup has been “processed”.

Step 2. We instantiate the defaults from ∆≺ and the axioms from Σ≺ for the
given Situation Calculus signature. This yields a propositional default theory.

Step 3. We rewrite the ground instantiation of Σ≺ into a set PΣ≺ of extended
logic program rules.

Step 4. We map ∆≺ into a set of logic program rules. A default of the form
p:q
r1∧r2 becomes ri ← p, not −q for i = 1, 2; a rule p∧q:

r is turned into r← p, q.
Here not is the usual nonmonotonic negation of normal logic programs; −q is a
new predicate symbol standing for the (classical) negation of q [15]. The result-
ing rules together with PΣ≺ now form the corresponding answer set program
PΣ,∆,≺ of the initial prioritised Situation Calculus default theory (Σ,∆,≺).

5 Equivalence of the Two Approaches

We are now in a position to state the central result of this paper, which says
that our prioritised Situation Calculus default theories are suitable approxima-
tions of the Situation Calculus extended with belief and commonsense prefer-
ences. Unfortunately, lack of space prevents us from giving a rigorously for-
mal account. Generally speaking, the latter is more expressive for two rea-
sons. First, it allows to infer meta-statements about beliefs, as in the formula
Bel(Bel(Red(O1), S0), do(SwitchRoom, S0)). Second, all possible situations are
ranked according to pl(), thus allowing to draw conclusions about their relative
ordering, whereas in prioritised default logics the non-preferred extensions are
not considered for entailment. However, neither of these two features is relevant
for the problem at hand, and we can prove the following.

Theorem 1. Let Σ be a Situation Calculus BAT, B the axioms for iter-
ated belief revision in the Situation Calculus, T a set of consistent operator
commands, <C a commonsense preference ordering, ∆,≺ a set of default
rules and an ordering as explained above, a1, . . . , an a sequence of actions,



and SFn := {[¬]SF (a1, S0), . . . , [¬]SF(an, do([a1, . . . , an−1], S0))} a set of lit-
erals describing a particular sequence of sensing results. Then for any objective
formula φ (that is, any formula φ without Bel) we find

(Σ ∪B ∪ SFn, T,<C) |= Bel(φ, do([a1, . . . , an], S0))
iff (Σ ∪ SFn, ∆,≺) |≈ Holds(φ, do([a1, . . . , an], S0))

Proof (sketch): By induction on the number of actions n . If n = 0, by Propo-
sition 1 the robot believes all operator commands; in a similar way it can
be shown that there is a unique preferred extension which entails the exact
same statements about S0 that are true in all most plausible initial situa-
tions. For the induction step, if an+1 is a physical action the claim follows
from the fact that both axiomatisations share the same basic action theory.
If an+1 is a sensing action, then any possible situation in do([a1, . . . , an], S0)
that contradicts [¬]SF (an+1, do([a1, . . . , an, an+1], S0) is no longer possible in
do([a1, . . . , an, an+1], S0); likewise, any extension of (Σ ∪ SFn, ∆,≺) that con-
tradicts this sensing literal is no longer an extension of (Σ ∪ SFn+1, ∆,≺). The
claim follows from the structural equivalence of the construction of the plausi-
bility ordering in Def. 1 (Item 2) and of preferred extensions in Def. 2. ut

6 Conclusions

We developed an effective implementation of a well established approach to be-
lief change in the Situation Calculus [4, 1]. This was achieved by mapping a
problem instance expressed using this particular approach to belief change in
the situation calculus into a default logic theory for which an ASP based imple-
mentation exists [11]. We illustrated our approach using an example inspired by
the RoboCup@Home rulebook. This example innovatively solves the problem of
how a reasoner faced with an unachievable goal should nevertheless do its best
to salvage the situation by relying on its preferences.

It is important to observe that while our example scenario encodes a user
request to fetch a single item, the formalism allows for more complex cases,
such as conjunctive and disjunctive goals. However care must be taken when
formulating requests. For example, a disjunctive request to fetch a fork or a
spoon should be encoded as a request to fetch one of two distinct objects, a spoon
object or a fork object. The alternative, and less intuitive, encoding would be to
fetch a single object for which the operator is unsure if it is a fork or a spoon.
This latter encoding is not possible due to restrictions on the Told statements.

We formalised our solution using an extension of the Situation Calculus to
handle beliefs and mapped this solution into a solvable default logic theory. An
alternative approach to tackling the example we presented would have been to
consider goal revision [17]. However note that proposals like this one modify goals
at the explicit request of an agent and do not consider that the goals themselves
may be unachievable. In our approach, the goal cannot be achieved and we argue
that this is more accurately dealt with by reasoning about the robot’s beliefs
(i.e., expectations about the world).

In related work, Lee and Palla [18] implement the situation calculus in ASP.
However, adding the belief axioms of our paper to their approach would entail



explicitly representing all possible alternative situations (since their plausibilities
matter). Our approach avoids this technical problem by using default logic where
only preferred extensions are considered for entailment.
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