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Abstract. Two general, problematic aspects of deductive planning,
namely, detecting unsolvable planning problems and solving a certain
kind of postdiction problem, are investigated. The work is based on a
resource oriented approach to reasoning about actions and change us-
ing a logic programming paradigm. We show that ordinary resolution
methods are insufficient for solving these problems and propose program
analysis and transformation as a more promising and successful way to
solve them.

1 Introduction

Understanding and modeling the ability of humans to reason about actions,
change, and causality is one of the key issues in Artificial Intelligence and Cog-
nitive Science. Since logic appears to play a fundamental rôle for intelligent
behavior, many deductive methods for reasoning about change were developed
and thoroughly investigated. It became apparent that a straightforward use of
classical logic lacks the essential property that facts describing a world state
may change in the course of time. To overcome this problem, the truth value of
a particular fact (called fluent due to its dynamic nature) has to be associated
with a particular state. This solution brings along the famous technical frame
problem which captures the difficulty of expressing that the truth values of facts
not affected by some action are not changed by the execution of this action.

Many deductive methods for reasoning about change are based on the ideas
underlying the situation calculus [20, 21]. Yet in recent years new deductive
approaches have been developed which enable us to model situations, actions,
and causality without the need to employ extra axioms due to the frame problem
[1, 19, 14]. Instead of representing the atomic facts used to describe situations
as fluents, these approaches take the facts as resources. Resources do not hold
forever—they are consumed and produced by actions. Consequently, resources
which are not affected by an action remain as they are and need not be updated.

In particular, the approach developed in [14] is based on logic programming
with an associated equational theory. Although previous results illustrate the
expressiveness of the equational logic programming approach (ELP, for short)
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in principle, the applicability of concrete proof strategies such as Prolog has
not yet been assessed. A major difficulty is caused by the use of an underlying
equational theory, which requires a non-standard unification procedure in con-
junction with an extended resolution principle called SLDE-resolution [8, 13]. In
this paper, we follow an alternative direction and investigate a particular pro-
gram where a unification algorithm for our special equational theory is integrated
by means of additional program clauses while otherwise standard unification is
used.

On the basis of this logic program, we illustrate two general classes of prob-
lems which deserve a successful treatment yet turn out to be unsolvable using
ordinary resolution methods. First, non-terminating sequences of actions usu-
ally prevent us from deciding unsolvable planning problems. More precisely, a
planning problem consists of an underlying set of action descriptions, a collec-
tion of initially available resources, and a goal specification (consisting of the
resources we strive for). If no action sequence can be found that transforms the
initial situation into a situation containing the goal, such a planning problem
is called unsolvable; detecting this, however, is problematic as soon as infinite
sequences of actions have to be considered. Second, we investigate a particular
kind of so-called postdiction problem where we try to determine which resources
can possibly be used to obtain a certain goal situation. Although our deductive
planning approach can successfully model this problem in principle, it is not
practical in any real implementation as there are possibly an infinite number of
combinations of resources that may lead to one specific resource being produced.
Moreover, since our logic program, and especially the encoding of the special uni-
fication algorithm, was not designed to reason backwards, it loops even in case
of finite action sequences.

In this paper we propose elegant solutions to these two problems, detecting
unsolvable planning problems and postdiction, based on logic program analysis
and transformation. The solutions are based on the approach by de Waal and
Gallagher [3, 2]. In their approach a proof procedure for some logic is specialized
with respect to a specific theorem proving problem. The result of the special-
ization process is an optimized proof procedure that can only prove formulas in
the given theorem proving problem. One of the effects of the specialization may
be that one or more infinitely failed deductions may be detected and are then
deleted. It is this property that makes the developed specialization process so
attractive for optimizing difficult planning problems.

In the context of this paper, the particular proof procedure and theorem
proving problem is the logic program to model actions and change along with a
set of action descriptions defining the various feasible actions, their conditions
and their effects. The aim is to detect unsolvable planning problems and derive
finite descriptions of a possible infinite number of resources. However, we have
found that the procedure suggested in [2] is not precise enough for the optimiza-
tion of this logic program and needs improvement. The first problem sketched
above may be solved by refining the specialization procedures developed in [3, 2].
Nonetheless it is not feasible to give an exact solution to the second problem as



we pointed out earlier. An approximation of the resources needed is therefore
computed.

The layout of the rest of the paper is as follows. In the next section we in-
troduce deductive planning problems. Furthermore, we introduce two exemplary
classes of problems we aim to solve with our improved analysis and transforma-
tion techniques. In Section 3 we give an improved specialization procedure that
better exploits the approximation results than was proposed in [2]. In Section 4,
this refined technique is applied to the exemplary problems discussed in Sec-
tion 2. This paper concludes with a comparison with related work and a short
discussion of how to further improve the proposed specialization method.

2 Deductive Planning Problems

2.1 The Equational Logic Programming Approach

The completely reified representation of situations is the distinguishing feature
of the ELP-based approach [14]. To this end, the resources being available in a
situation are treated as terms and are connected using a special binary function
symbol, denoted by ◦ and written in infix notation. As an example, consider the
term2

d ◦ q ◦ f ◦ f ◦ dm (1)

which shall represent a situation where we possess a dollar (d), a quarter (q), two
fünfziger (f—fifty pfennige), and one deutschmark (dm). Intuitively, the order
of the various resources occurring in a situation should be irrelevant, which is
why we employ a particular equational theory, viz

(X ◦ Y ) ◦ Z =AC1 X ◦ (Y ◦ Z) (2)

X ◦ Y =AC1 Y ◦X (3)

X ◦ ∅ =AC1 X (4)

where ∅ is a special constant denoting a unit element for ◦. This equational
theory, written AC1, will be used as the underlying theory of our equational
logic program modeling actions and change.

Based on this representation, actions are defined in a Strips-like fashion [4,
16] by stating a collection of resources to be removed from along with a collection
of resources to be added to the situation at hand. Such an action is applicable if
all resources to be removed are contained in the current situation. For instance,
a machine that changes two fünfziger into a deutschmark can be specified by
an action with condition f ◦ f and effect dm. This action is applicable in (1)
since two resources of type f are included; the result of applying this action is

2 Throughout this paper, we use a Prolog-like syntax, i.e., constants and predicates
are in lower cases whereas variables are denoted by upper case letters. Moreover, free
variables are implicitly assumed to be universally quantified and, as usual, the term
[h | t] denotes a list with head h and tail t.



computed by removing two fünfziger from and adding a deutschmark to (1), i.e.,
dm ◦ d ◦ q ◦ dm which is exactly the expected outcome.

In what follows, we describe an equational logic program that formalizes
the above concepts. First of all, actions are described by means of unit clauses
using the ternary predicate action(c, a, e) where c and e are the condition and
effect, respectively, and a is a symbol denoting the name of the action. E.g., our
exemplary change action is encoded as

action(f ◦ f, gdm, dm) ← (5)

where gdm is meant as an abbreviation of get-deutschmark .
Next, we have to find a formalization of testing whether the resources con-

tained in a term c, denoting the condition of some action, are each contained
in a term s, denoting the situation at hand. This can be achieved by stating an
AC1-unification problem of the form c ◦Z =AC1 s, where Z is a new variable. It
is easy to see that if this problem is solvable, i.e., if a substitution θ can be found
such that (c ◦ Z)θ =AC1 sθ, then all subterms occurring in c are also contained
in s. For instance, the unification problem f ◦ f ◦ Z =AC1 d ◦ q ◦ f ◦ f ◦ dm is
solvable by taking θ = {Z 7→ d ◦ q ◦ dm}. Moreover, a side effect of solving such
a unification problem is that the variable Z becomes bound to exactly those
resources which are obtained by removing the elements in c from s. Hence, to
obtain the resulting situation, we finally have to add the effect e of the action
under consideration to Zθ, i.e., the term e◦Zθ represents the intended outcome.
The reader should note that no additional axioms are needed here for solving
the technical frame problem since all resources which are not affected by per-
forming an action are automatically available in the resulting situation (e.g., the
resources d ◦ q ◦ dm in our example above). By means of logic program clauses,
the application of actions is encoded using the ternary predicate causes(i, p, g)
where i and g are situation terms (called initial and goal situation, respectively)
and p (called plan) is a sequence of action names:

causes(I, [ ], I) ←
causes(I, [A|P ], G) ← action(C,A,E),

C ◦ Z =AC1 I,

causes(E ◦ Z,P,G)

(6)

In words, the empty sequence of actions, [ ], changes nothing while an action
a followed by a sequence of actions p applied to i yields g if a is applied as
described above and, afterwards, applying p to the resulting situation, (E ◦Z)θ,
yields g3.

A major difficulty as regards practical implementations of this approach is
caused by the underlying equational theory, which is assumed to be built into the
unification procedure. In [10] we argued that the AC1-unification problems that

3 For the sake of an appropriate treatment of equality subgoals, we implicitly add the
clause X =AC1 X encoding reflexivity . Note that each SLDE-step is intended to be
performed with respect to our equational theory, AC1.



occur when computing with our program are of a special kind, and we proposed
a unification algorithm designed for these particular cases. In the rest of this
paper, we investigate a standard logic program where this algorithm is modeled
by means of additional program clauses rather than by means of an extended
unification procedure. To this end, terms using our special connection function,
◦, are represented as lists containing the available resources. For instance, (1) is
encoded as [d, q, f, f, dm]. Furthermore, we introduce a new predicate ac1 match

to model AC1-matching problems of the form s◦V =AC1 t where t is variable-free
while s might contain variables but not on the level of the binary function ◦:

causes(I, [ ], I) ←
causes(I, [A|P ], G) ← action(C,A,E), ac1 match(C, I, Z),

append(E,Z, S), causes(S, P,G)

ac1 match(S, T, Z)← mult subset(S, T, Z)

mult subset([ ], T, T ) ←
mult subset([E|S], T,R) ← mult minus(T,E, T2),

mult subset(S, T2, R)

mult minus([E|R], E,R) ←
mult minus([E1|R1], E, [E1|R2]) ← mult minus(R1, E,R2)

(7)

In words, ac1 match(s, t, z) shall be true iff s represents a multiset4 of resources
that are all contained in t; furthermore, z contains all resources occurring in t but
not in s. The definition of the corresponding predicate mult subset is based on a
predicate named mult minus(s, e, t) with the intended meaning that removing
an element e of the multiset corresponding to s yields a multiset corresponding
to t. Finally, we need the standard append predicate to model adding the effect
of an action to the remaining resources after having removed the condition.

2.2 Unsolvable Planning Problems

In this and the following subsection, we use a combined change/vending ma-
chine as the exemplary action scenario. We have already considered the action
of changing two fünfziger into a deutschmark; furthermore, the machine shall
change a deutschmark into two fünfziger (action gf) and also a dollar into four
quarters (action gq) and vice versa (action gd); finally, two fünfziger are the price
for a can of lemonade (l; action gl). To summarize, the following clauses specify

4 The reader should observe that the axioms (2),(3) and (4) essentially model the
datastructure multiset.



our exemplary domain:

action([dm], gf, [f, f ]) ←
action([f, f ], gdm, [dm]) ←
action([d], gq, [q, q, q, q]) ←
action([q, q, q, q], gd, [d]) ←
action([f, f ], gl, [l]) ←

(8)

Now, consider the following query, which is used to ask for a plan whose
execution yields a can of lemonade given a dollar plus a quarter:

← causes([q, d], P,G), ac1 match([l], G, Z). (9)

If this query succeeds then the answer substitution for P is a sequence of actions
transforming the initially available collection of resources, [q, d], into a situation
G which includes a can of lemonade (and possibly other resources, bound to Z).
Note that this way of formalizing a planning problem enables us to specify goal
situations only partially.

It seems obvious that (9) cannot succeed with respect to the program de-
picted in (7) given the action descriptions (8) since we need some unaccessible
German money to buy lemonade. Hence, our exemplary planning problem is un-
solvable. Our logic program, however, loops when faced with this query since it
computes alternate changes of a dollar into four quarters and back into a dollar
forever. Thus, simply using SLD-resolution does not suffice to detect this kind of
insolubility. Correspondingly, there is no finite failure SLDE-tree for the query

← causes(q ◦ d, P, l ◦ Z) (10)

with respect to the equational logic program depicted in (6) given a collection
of action descriptions corresponding to (8)5.

One might argue that a loop checking mechanism, detecting identical or
subsumed goals in the same branch of the search tree, solves this problem. This
is not true as we now illustrate. Consider the changing machine being partly out
of order in so far as it changes a dollar into four quarters as before, but now
just three quarters into a dollar. Again, it is impossible to find a refutation for
our query (9). Yet we can use the machine to produce more and more resources
by alternately changing the dollar into four quarters and using three quarters to
reproduce the dollar. No ordinary loop checking is applicable here because no
two subgoals match during the infinite derivation.

In Section 4, we show how our program analysis and transformation tech-
niques provide a more general way of tackling the insolubility problem in plan-
ning.

5 The third argument in (10), l ◦ Z, encodes what is expressed by the second literal
in (9), namely the fact that the goal situation might contain other resources aside
from the required lemonade.



2.3 The Postcondition Problem in Deductive Planning

Apart from solving temporal projection (prediction) and planning problems, the
ELP based approach is also suitable for a certain kind of postdiction problems,
as has been argued in [15]. Postdiction means given a goal situation, what can be
deduced about the initial situation, i.e., which resources are needed to obtain a
specific goal. For example, suppose we want to buy a can of lemonade, what do we
need to achieve this goal? To answer this question, the query ← causes(I, P, l)
can be executed with respect to the equational logic program depicted in (6)
and a set of action descriptions corresponding to (8). The simplest answer to our
question is that already possessing the lemonade clearly is sufficient to obtain it;
but two fünfziger as well as a deutschmark too can be used to achieve the goal.

Although the set of initial situations is limited, there is an infinite num-
ber of ways generating the resulting situation, l. Due to the infiniteness of the
corresponding SLDE-tree, it seems difficult to infer that the resources needed to
obtain a can of lemonade are a can of lemonade itself, fünfziger, or deutschmarks,
whereas dollars and quarters are needless. Even worse, if we run our logic pro-
gram (7) given the following query ← causes(I, P, [l]) then we first obtain the
answer I = [l], P = [ ] as intended but then the program loops without providing
us with additional solutions.

3 Specialization

Logic program transformation and analysis provide a wide variety of techniques
that can be used for program specialization. These techniques include for in-
stance: partial evaluation, type checking, mode analysis and termination analy-
sis. However, it was realized in [3] that a combination of analysis and transfor-
mation techniques provides the best specialization potential. Such a combination
based on partial evaluation and regular approximation was then further devel-
oped in [3, 2]. They developed a problem specific optimization technique: a proof
procedure for some logic is specialized with respect to a specific theorem proving
problem. The theorem proving problem is normally a set of axioms and hypothe-
ses of some theory and includes a specific formula that may or may not be a
theorem of the given theory.

The partial evaluation step creates, amongst other specializations, renamed
versions of definitions according to some criteria (e.g. a specialized version of each
inference rule in the proof procedure is created with respect to each predicate
symbol appearing in the axioms and hypotheses). The approximation step then
computes a safe approximation of the partially evaluated program. As a last step,
a simple decision procedure is used to delete clauses in the partially evaluated
program based of information contained in the regular approximation. The result
of the specialization process is an optimized proof procedure that only proves
theorems (or disproves non-theorems) in the given theory. Alternatively, the
result may be a table of analysis information about the behavior of the proof
procedure on this theorem proving problem.



Two criticisms against these techniques are: they are too problem specific
and they do not use all the derived analysis information effectively. The first
point criticizes the use of a specific formula (theorem or non-theorem) as a goal
in the analysis. The method in [2] computes a new approximation for each query
we are interested in. If the analysis could be done generally just with respect
to a set of axioms and hypotheses, the analysis information will hold for any
theorem or non-theorem we wish to analyze with respect to. The second point
criticizes the use of the decision procedure used in [2]:

“Does a definition for some predicate p(. . .) exist in P (the source pro-
gram), but not in A (the approximation of P )? If the answer is yes, all
clauses containing positive occurrences of p(. . .) in the body of a clause
in P are useless and can be deleted.”

This procedure ignores all of the information contained within the approximation
definitions (it just tests for the existence of an approximation).

Our aim is to extend the developed techniques taking the above criticisms into
account. We will therefore try to keep the goal or query as general as possible
so that the analysis does not need to be redone for every query we wish to
investigate. Furthermore, in addition to using the above decision procedure, we
will make use of information in the approximation for predicates that do not
get deleted using the above criterion. In the next section we develop such a
procedure.

We assume the reader is familiar with the basic concepts used in logic pro-
gramming [17]. A logic meta-programming paradigm as defined by Lloyd [12]
is used to state our proof procedure and theorem proving problem in. However,
type definitions are not given as our specialization method does not depend on
them. A partial evaluator and a regular approximation procedure capable of
specializing and approximating pure logic programs are also assumed. Complete
descriptions of one such partial evaluator and regular approximation procedure
can be found in [5, 7].

3.1 An Improved Decision Procedure

In this section we show how approximate information derived through a regular
approximation may be used to achieve useful specializations. The class of Regular
Unary Logic Programs was defined by Yardeni and Shapiro [24]. It is attractive to
represent approximations of programs as Regular Unary Logic (RUL) Programs,
as regular languages have a number of decidable properties and can conveniently
be analyzed and manipulated for the use in program specialization. Due to lack
of space we refer the interested reader to [7] for definitions of canonical regular
unary clause, canonical regular unary logic program and regular definition of
predicates.

A RUL program can now be obtained from a regular definition of predicates
by replacing each clause pi(x1i , . . . , xni)← B by a clause

approx(pi(x1i , . . . , xni))← B



where approx is a unique predicate symbol not used elsewhere in the RUL pro-
gram. In this case the functor pi denotes the predicate pi. The predicate any(X)
denotes any term in the Herbrand Universe of the program. A regular safe ap-
proximation can now be defined in terms of a regular definition of predicates.

Definition 1. regular safe approximation

Let P be a definite program and A a regular definition of predicates in P . Then
A is a regular safe approximation of P if the least Herbrand model of P is
contained in the least Herbrand model of A.

This definition states that all logical consequences of P are contained in A. We
now define a useless clause, that is a clause that never contributes to any solution.

Definition 2. useless clause with respect to a computation

Let P be a definite program, G a definite goal, R a safe computation rule and
C ∈ P be a clause. Let T be an SLD-tree of P ∪ {G} via R. Then C is useless
with respect to T if C is not used in any refutations in T .

The above definition is restricted to definite programs as this simplifies the
presentation (see [2] for a definition regarding normal programs) and as definite
logic programs are sufficient for representing our equational logic programs.

Given a RUL program A that is a regular safe approximation (called a safe
approximation from now on) of a program P , we want to use the information
present in A to further optimize program P , that is to detect and delete more
useless clauses.

The regular approximation system described in [7] contains a decision proce-
dure for regular languages that can be used to detect useless clauses. However, if
this system is not used to compute the approximation, the user has to implement
such a procedure. The following condition from [2, 3] is adequate for detecting
useless clauses.

If A ∪ {G} has a finitely failed SLD-tree then P ∪ {G} has no SLD-
refutation.

A procedure implementing this condition is given in Figure 1. Note that only a
subset of possibly failed SLD-trees are detected. The result of the given transfor-
mation is a specialized version of P with zero or more clauses deleted. Although
the procedure as stated may be inefficient, it can be efficiently implemented as
we can have the approximation output its result in the format required by Step

4. The original decision procedure will then still be valid and we only need to
check Step 4 which can be done efficiently using any of the currently available
logic programming language implementations.

The following theorem states the result of the above specialization precisely.

Theorem3. preservation of all finite computations

Let P be a definite logic program,← G a definite goal and A a regular approxima-

tion of P with respect to← G. Let P ′ be the result of applying the transformation

given in Figure 1 to P .



Given a definite logic program P , a definite goal ← G and a regular ap-
proximation A of P with respect to the goal ← G, a procedure for deciding
if a clause p ∈ P is useless with respect to the goal ← G is:

1. Identify the arguments xi, (1 ≤ i ≤ n) in every approximation definition
approx(pj(x1, . . . , xn)) that is approximated by only a finite number of
facts.

2. Delete the approximation definitions for all other arguments that were
not identified in Step 1 (only a unique variable in each such argument
position will remain).

3. Unfold with respect to the definitions of arguments identified in Step

1 (this gives us a finite number of facts approx(pj(. . . , xi, . . .)), with zero
or more arguments xi instantiated to a ground term).

4. Delete all clauses in P that have a literal that can not possibly unify
with at least one literal pj(x1, . . . , xn) contained in an approximation
definition approx(pj(. . .)).

Fig. 1. Specialization Procedure Exploiting Approximation Information

1. If P ∪ {G} has an SLD-refutation with computed answer θ, then P ′ ∪ {G}
has an SLD-refutation with computed answer θ.

2. If P ∪ {G} has a finitely failed SLD-tree then P ′ ∪ {G} has a finitely failed

SLD-tree.

Proof.
The proof is similar to that given in [3].

Our experiments with equational logic programs (of which some are given
in the following section) showed that the improved decision procedure strikes a
good balance between precision and efficiency (which should be one of the aims
of every specialization/approximation system).

3.2 Interpreting Analysis Results

In the previous section we used part of the derived approximation to further
specialize our program. However, there are many cases in which we are only
interested in getting a finite description of the success set of a program and not
in individual answers. It is also impractical to try to collect an infinite number
of solutions by any means other than by approximation. Furthermore, we might
have procedures designed to be used only with some arguments instantiated and
others uninstantiated. Changing the mode of an argument will most certainly
lead to nonterminating behavior of our program. In such cases an approximation
tool may be very useful as it will in finite time give us a finite description of
the success set of a program. We argue that a regular approximation is a useful
description that may in many cases also be very informative.



One of the most useful properties of the regular approximation derived by
procedures such as [7, 11], is that the concrete and abstract domains (see [18]
for further details) share the same constants and function symbols (except for
the variable X in any(X) in the approximation representing any term in the
Herbrand universe of a program). A direct interpretation of the information
given in the approximation is therefore possible without referring to abstraction
and concretization functions as is usually the case in abstract interpretation.
A constant a occurring in our approximation indicates that this constant may
possibly occur in one or more solutions of the source program. The same also
holds for any function symbol f . However, the number of solutions containing
these constants and functions can not be deduced from the approximation.

In the next section we give a planning example where just such an approxi-
mation allows us to infer very useful results not possible with any other method
known to us.

4 Solving Deductive Planning Problems

Two example problems, all related to the lemonade dispensing machine described
in the previous section are specialized and analyzed in this section. Our aim with
the first problem is to illustrate how an unsolvable planning problem may be
detected. With the second problem, we illustrate how an approximate solution
to a postdiction problem may be computed.

The five action descriptions in Program 1 together with the meta-program
described in Section 2.1 describe a lemonade dispensing machine. The resources
that can be consumed and produced are given by the actions stated by the five
clauses.

action([d], gc, [q, q, q, q])← % change dollar into 4 quarters

action([q, q, q], gd, [d])← % change 3 quarters into dollar

action([dm], gf, [f,f ])← % change deutschmark into 2 fünfziger

action([f,f ], gdm, [dm])← % change 2 fünfziger into deutschmark

action([f,f ], gl, [l])← % change 2 fünfziger into a lemonade

Program 1: Action Descriptions of a Lemonade Dispensing Machine

As a first problem, we want to get ONLY a can of lemonade from the
machine using a dollar and a quarter. This can be expressed by the follow-
ing query ← causes([d, q], P lan, [l]). Specialization of the above program with
the technique described in [3, 2] gives the specialized program in Program
2. Note that we now only approximate Program 2 with respect to the query
← causes(Resources, P lan, [l]) as we will have another instance of this query in
our second example and want to keep the specialization as general as possible
(we therefore will not need to approximate again for our second example). This
is in keeping with our aim stated at the beginning of the previous section to
keep the query we specialize with respect to as general as possible.



causes(X1, [ ], X1)←
causes(X1, [gc|X2], X3)← mult minus 1(X1, d,X4),

causes([q, q, q, q|X4], X2, X3)
causes(X1, [gd|X2], X3)← mult minus 1(X1, q,X4),

mult minus 1(X4, q,X5),mult minus 1(X5, q,X6),
causes([d|X6], X2, X3)

causes(X1, [gf |X2], X3)← mult minus 1(X1, dm,X4),
causes([f, f |X4], X2, X3)

causes(X1, [gdm|X2], X3)← mult minus 1(X1, f,X4),
mult minus 1(X4, f,X5), causes([dm|X5], X2, X3)

causes(X1, [gl|X2], X3)← mult minus 1(X1, f,X4),
mult minus 1(X4, f,X5), causes 1(X5, X2, X3)

mult minus 1([X1|X2], X1, X2)←
mult minus 1([X1|X2], X3, [X1|X4])← mult minus 1(X2, X3, X4)

causes 1(X1, [ ], [l|X1])←
causes 1(X1, [gc|X2], X3)← mult minus 1(X1, d,X4),

causes([q, q, q, q, l|X4], X2, X3)
causes 1(X1, [gd|X2], X3)← mult minus 1(X1, q,X4),

mult minus 1(X4, q,X5),mult minus 1(X5, q,X6),
causes([d, l|X6], X2, X3)

causes 1(X1, [gf |X2], X3)← mult minus 1(X1, dm,X4),
causes([f, f, l|X4], X2, X3)

causes 1(X1, [gdm|X2], X3)← mult minus 1(X1, f,X4),
mult minus 1(X4, f,X5), causes([dm, l|X5], X2, X3)

causes 1(X1, [gl|X2], X3)← mult minus 1(X1, f,X4),
mult minus 1(X4, f,X5), causes 1([l|X5], X2, X3)

Program 2: Program Specialized with respect to ← causes(Res, P lan, [l])

A non-empty approximation is computed (no clauses may be deleted) and
the query ← causes([d, q], P lan, [l]) still fails to terminate and we are unable to
detect that we will never be able to obtain a can of lemonade from the machine.
However, by incorporating the refinement of the improved decision procedure
into Program 2, we get a finitely failed computation. The transformed approxi-
mation as described in the previous section taking part in the specialization is
given in Program 3.

approx(causes(X1, X2, X3))←
approx(mult minus 1(X1, dm,X2))←
approx(mult minus 1(X1, f,X2))←
approx(causes 1 ans([ ], [ ], X1))←

Program 3: Approximation Information Derived from Program 2

The program after further specialization is given in Program 4. Six clauses could
be deleted.



causes(X1, [ ], X1)←
causes(X1, [gf |X2], X3)← mult minus 1(X1, dm,X4),

causes([f, f |X4], X2, X3)
causes(X1, [gl|X2], X3)← mult minus 1(X1, f,X4),

mult minus 1(X4, f,X5), causes 1(X5, X2, X3)

mult minus 1([X1|X2], X1, X2)←
mult minus 1([X1|X2], X3, [X1|X4])← mult minus 1(X2, X3, X4)

causes 1(X1, [ ], [l|X1])←

Program 4: Program After Further Specialization

The query← causes([d, q], P lan, [l]) now fails finitely. We have therefore proved
that it is impossible to get only a can of lemonade with a dollar and a quarter.

As a second problem we want to deduce what resources are needed to get
lemonade. This can be expressed by the query ← causes(Resources, P lan, [l]).
Running this query using our original program ((7) with Program 1) only tells
us that if we start with a can of lemonade, we have achieved our goal and then
the program goes into an infinitely failed deduction. One of the reasons for this
unsatisfactory result is that the procedure in (7) was designed to run “forward”
and not “backward” as we are trying to do in this example. If the query was
stated slightly more generally in that we only require a can of lemonade to be
included in the result of the deduction (not to be the only result), there may also
be an infinite number of combinations of resources that may lead to this goal
situation. Obviously, it is impossible to run the procedure and an approximation
of the resources is the best answer we can give.

Applying our improved specialization method to this query yields the result
that a combination of deutschmarks and fünfziger (we do not know how many
of each) are needed to get a can of lemonade. Part of the approximation result
is given in Program 5.

approx(causes(X1, X2, X3)← t1(X1), t5(X2), t7(X3)
t1([X1|X2])← t2(X1), t3(X2)
t5([ ])←
t5([X1|X2])← t6(X1), t5(X2)
t7([X1|X2])← t8(X1), t9(X2)
t3([ ])←
t3([X1|X2])← t4(X1), t3(X2)
t8(l)←
t9([ ])←
t6(gl)← t6(gf)← t6(gdm)←
t2(l)← t2(f)← t2(dm)←
t4(dm)← t4(f)←

Program 5: Approximation of Resources



We detected that dollars and quarters play no role in getting a can of lemon-
ade. This is a satisfactory result with enough precision to be useful. This indicates
that there are some redundant states in our machine that can never lead to a
successful purchase of only a can of lemonade.

5 Discussion

The specialization procedure proposed in Section 3.1 bears some resemblance
to the v-reduction rule for the connection graph proof procedure proposed by
Munch in [22]. This rule considers sets of constants which certain clause variables
may be instantiated to due to resolution. Links in the connection graph may be
deleted if it is found that the value sets of two corresponding arguments in two
connected literals have no elements in common. These value sets can be regarded
as an approximation of the possible values that an argument position may take.
Information inside recursive structures (such as arguments to functions) are also
ignored similarly to our approach where we use information represented by a
finite number of facts.

The work on approximation in automated theorem proving by for instance
Giunchiglia and Walsh [9] and Plaisted [23] may also be applicable to the opti-
mization of planning problems. However, their viewpoint is that it is the object
theory that needs changing and not the logic (they would therefore not ap-
proximate the proof procedure for solving planning problems, but concentrate
on approximating the action descriptions). Our approximation does not make
this distinction. Furthermore, our general approximation procedure, namely a
regular approximation, is fixed. This makes our method easier to adapt to new
domains as we do not have to develop a new approximation for each new domain
we want to investigate.

The proposed method may obviously be further improved by also using in-
formation represented by parts of the approximation other than only that repre-
sented by facts. However, the decision procedure will then be more complicated
and we may then not rely any more on only SLD-resolution to test failure in
the approximation. When more complicated action descriptions containing vari-
ables in resources are analyzed, we may need to take advantage of all the useful
specializations. However, the partial evaluation step may assist in overcoming
some of the problems posed by more complicated resource descriptions as it can
factor out common structure at argument level (see [6, 5] for further details).
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