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Abstract

In formal theories for reasoning about ac-
tions, the qualification problem denotes the
problem to account for the many conditions
which, albeit being unlikely to occur, may
prevent the successful execution of an ac-
tion. By a simple counter-example in the
spirit of the well-known Yale Shooting sce-
nario, we show that the common straightfor-
ward approach of globally minimizing such
abnormal disqualifications is inadequate as
it lacks an appropriate notion of causality.
To overcome this difficulty, we propose to in-
corporate causality by treating the proposi-
tion that an action is qualified as a fluent
which is initially assumed away by default
but otherwise potentially indirectly affected
by the execution of actions. Our formal ac-
count of the qualification problem includes
the proliferation of explanations for surpris-
ing disqualifications and also accommodates
so-called miraculous disqualifications. We
moreover sketch a version of the fluent calcu-
lus which involves default rules to address ab-
normal disqualifications of actions, and which
is provably correct wrt. our formal character-
ization of the qualification problem.
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1 INTRODUCTION

A fundamental requirement for autonomous intelligent
agents is the ability to reason about causality, which
enables the agent to understand the world to an extent
sufficient for acting intelligently on the basis of his or
her knowledge as to the effects of actions. The qual-
ification problem [McCarthy, 1977] in formal theories
for reasoning about actions arises from the fact that
generally the successful execution of actions depends
on many more conditions than we are usually aware
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of. The reason for this unawareness is that most condi-
tions are so likely to be satisfied that they are assumed
away in case there is no evidence to the contrary.

A standard example to illustrate this is when we in-
tend to start our car’s engine, then we usually do not
make sure that no potato in the tail pipe prevents
us from doing so, despite the fact that a clogged tail
pipe necessarily renders this action impossible.1 While
this prima facie ignorance is rational as it is generally
impossible to verify all possible preconditions,2 they
cannot be completely disregarded in a sound formal
model. Yet a proposition like “there is no potato in
the tail pipe” should not be treated as a strict precon-
dition in the formal specification of the action “start
the engine” lest the reasoning agent always has to ver-
ify this condition before assuming that the action can
be successfully executed. Moreover, it is often diffi-
cult if not impossible to even think of all conceivable
disqualifications in advance [McCarthy, 1977].

Allowing to assume away all so-called abnormal dis-
qualifications by default naturally implies that if fur-
ther knowledge hints at any such unexpected disqual-
ification, then the previous conclusion that the action
in question be qualified needs to be withdrawn. Thus
the entire process is intrinsically nonmonotonic. As
a consequence, McCarthy’s proposal was to employ
circumscription with the aim of minimizing abnormal
disqualifications [McCarthy, 1977; McCarthy, 1980;
McCarthy, 1986]. Little has been achieved since then
towards formally integrating this concept into a spe-
cific action formalism, or towards an assessment of its
range of applicability. In fact, a surprisingly simple ex-
ample illustrates that the straightforward global min-
imization of abnormal disqualifications is inadequate.
The example shows some similarities to the problem—

1According to [Ginsberg and Smith, 1988b], this exam-
ple is due to McCarthy.

2Aside from the fact that besides a clear tail pipe there
are lots of other disqualifying, albeit unlikely, obstacles,
how can we ensure that after checking the tail pipe it does
not become clogged during us walking to the front door
and taking a seat, prior to trying to start the engine?



first illustrated with the Yale Shooting domain [Hanks
and McDermott, 1987]—which occurs when neglecting
causality in tackling the frame problem.

Imagine the following scenario: We can put a potato
into the tail pipe whenever no abnormal disqualifica-
tion prevents us from doing so (e.g., the potato surpris-
ingly turns out to be too heavy); likewise we can start
the engine except in case of an abnormal disqualifica-
tion (like a potato in the tail pipe). Now, what would
we predict as to the outcome of first trying to place a
potato in the tail pipe and, then, trying to start the
engine? Clearly, since nothing hints at an abnormal
disqualification of the first action, we should expect
this one to be successful. Then its effect (viz. a potato
in the tail pipe) implies that the second action will be
unqualified.

But what happens if abnormal disqualifications are
globally minimized in this scenario? One minimal
model is obviously obtained by considering the put-
potato action qualified and the start-engine action un-
qualified, as expected. However, if instead the first
action is assumed unqualified, then this in turn avoids
the necessity of assuming a disqualification of the sec-
ond. For if put-potato is not qualified, then it fails
to produce what otherwise causes the disqualification
of start-engine. Hence, in so doing we can construct
a second minimal model for our scenario—which is
clearly unintended.

The reason for the existence of the second, counter-
intuitive model is that global minimization does not
allow to distinguish disqualifications which can be ex-
plained from the standpoint of causality. Successfully
introducing a potato into the tail pipe produces an
effect which causes the fact that the second action,
starting the engine, is unqualified. That is to say, while
an abnormal disqualification of put-potato comes out
of the blue in the unintended minimal model, an ab-
normal disqualification of start-engine, as claimed in
the first minimal model, is easily explicable. One even
tends to not call abnormal this situation since being
unable to start the engine after having clogged the tail
pipe is, after all, what one would normally expect. The
reader might notice the similarities to the Yale Shoot-
ing problem: A gun that becomes magically unloaded
while waiting deserves being called abnormal, whereas
causality explains the death of the turkey if being shot
at with a loaded gun [Hanks and McDermott, 1987].

The only existing alternative to global minimization
of abnormalities as an approach to the qualification
problem is based on chronological ignorance [Shoham,
1987; Shoham, 1988]. The basic idea there is to as-
sume away by default abnormal, disqualifying circum-
stances, and simultaneously to prefer minimization of
abnormalities at earlier timepoints. While this method
treats our example scenario correctly, it is inherently
incapable of handling non-deterministic actions, or
non-deterministic information in general, as has al-

ready been argued elsewhere. A detailed account of
this approach is given in the concluding discussion,
Section 5.

Given the inadequacy of global minimization and the
limited expressiveness of chronological ignorance, we
propose a formal account of the qualification prob-
lem which incorporates a suitable concept of causal-
ity. We accomplish this by taking the proposition that
an action is abnormally disqualified as a fluent, i.e.,
a proposition that may change its truth value in the
course of time.3 This proposition is assumed false,
by default, initially , and by virtue of being fluent,
it may be affected by the execution of an action and
otherwise is subject to the general law of persistence.
This helps to distinguish action disqualifications which
are (indirectly) caused by actions that have been ob-
served. As this method requires an appropriate treat-
ment of indirect effects, we will adopt the approach
to the ramification problem proposed in [Thielscher,
1997], where indirect effects are obtained according
to so-called causal relationships among fluents. As a
side gain, this enables us to account for implicit strict
preconditions of actions, which are not part of an ac-
tion specification but derive from certain domain con-
straints. This is sometimes considered part of the qual-
ification problem, e.g. in [Ginsberg and Smith, 1988b;
Lin and Reiter, 1994].

Aside from providing means to assume away abnor-
mal disqualifications by default while properly taking
into account possible causes for these disqualifications,
the successful treatment of the qualification problem
should include the proliferation of explanations in case
an action has been—unexpectedly—observed unqual-
ified. It may of course happen, though, that we are
still unable to perform an action even if we have ex-
plicitly excluded, to the best of our knowledge, any
imaginable preventing cause. However surprising this
might be, it just shows us that we have only partial
knowledge of the world. We call miraculous a disqual-
ification which cannot be explained even if abnormal
circumstances are granted. Consequently, miraculous
disqualifications are to be minimized with higher prior-
ity than abnormal disqualifications which admit an ex-
planation. Another characteristics of miraculous dis-
qualifications is that they may occur or vanish even if,
from our perspective, the situation has not changed.
Again this is due to our lack of omniscience. The for-
mal account of the qualification problem presented in
this paper addresses both finding explanations for un-
expectedly observed disqualifications and accounting
for miraculous disqualifications.

We moreover sketch, on the basis of the fluent cal-
culus [Hölldobler and Schneeberger, 1990; Thielscher,

3Throughout the paper, by “(dis-)qualified” we mean
“physically (im-)possible.” The refinement that actions
may be unqualified as to producing a certain effect will
be discussed at the end, in Section 5.



1997], an action calculus which includes a proper treat-
ment of abnormal disqualifications. Since the quali-
fication problem requires some sort of nonmonotonic
feature, we employ default rules in the sense of [Reiter,
1980] to formalize the initial normality assumptions
as well as the assumption that miraculous disqualifi-
cations do not occur. The resulting action calculus
is provably correct wrt. our formal characterization of
the qualification problem.

2 ACTIONS AND RAMIFICATIONS

2.1 A BASIC THEORY OF ACTIONS

The basic entities of action scenarios are states, each
of which is a snapshot of the underlying dynamic sys-
tem, i.e., the part of the world being modeled, at a
particular instant. Formally, a state is determined by
an assignment of truth values to a fixed set of propo-
sitional constants.4

Definition 1 Let F be a finite set of symbols called
fluent names. A fluent literal is either a fluent name
f ∈ F or its negation, denoted by f . A set of fluent
literals is inconsistent iff it contains some f ∈ F along
with f . A state is a maximal consistent set of fluent
literals.

Notice that formally any combination of truth val-
ues denotes a state, which, however, might be con-
sidered impossible due to specific dependencies among
the fluents (see below). Throughout the paper we as-
sume the following notational conventions: If ` is a
fluent literal, then |`| denotes its affirmative compo-
nent, that is, |f | = |f | = f where f ∈ F . This
notation extends to sets of fluent literals S as follows:
|S| = {|`| : ` ∈ S}. E.g., for each state S we have
|S| = F . Furthermore, if ` = f is a negative fluent
literal then ` should be interpreted as f .

The elements of an underlying set of fluent names can
be considered atoms for constructing (propositional)
formulas to allow for statements about states. Each
fluent literal and > (tautology) and ⊥ (contradic-
tion) are fluent formulas, and if F and G are fluent
formulas then so are F ∧ G, F ∨ G, F ⊃ G, and
F ≡ G.5 The notion of fluent formulas being true in
a state S is based on defining a literal ` to be true if
and only if ` ∈ S . Fluent formulas provide means to
distinguish states that cannot occur due to specific de-
pendencies among particular fluents. Formulas which
have to be satisfied in all states that are possible in a
domain are also called domain constraints.

4The calculus described in Section 4 employs a more ex-
pressive language, which involves non-propositional fluents.

5As negation can be expressed through negative literals,
we omit the standard connective “ ¬ ”. This is just for the
sake of readability as it avoids too many different forms of
negation.

Example 1 A basic version of the Potato In Tail
Pipe scenario shall be formalized with the fluent names
F = {pot , clog , runs, heavy} to state whether, respec-
tively, there is a potato in the tail pipe, the tail pipe
is clogged, the engine is running, and the potato is too
heavy. The fluent formula

pot ⊃ clog (1)

then expresses the fact that the tail pipe is clogged
whenever it houses a potato. Taken as domain con-
straint, this formula is true, for instance, in the state
{pot , clog , runs, heavy}.

The second basic entity in theories of actions are the
actions themselves, whose execution causes state tran-
sitions. Since stress shall lie on the qualification prob-
lem rather than on sophisticated methods of specifying
the direct effects of actions, we employ a suitably sim-
ple, Strips-style [Fikes and Nilsson, 1971] notion of
action specification. Each action law consists of

• A condition C , which is a set of fluent literals all
of which must be contained in the state at hand
in order to apply the action law.

• A (direct) effect E , which is a set of fluent literals,
too, all of which hold in the resulting state after
having applied the action law.

It is assumed that |C| = |E|, that is, condition and
effect refer to the very same set of fluent names. This
is just for the sake of simplicity, for it enables us to ob-
tain the state resulting from the direct effect by simply
removing set C from the state at hand and adding
set E to it. This assumption does not impose a re-
striction of expressiveness since we allow several laws
for a single action, and since any (unrestricted) action
law can be replaced by an equivalent set of action laws
which obey the assumption.

Definition 2 Let F be a set of fluent names, and
let A be a finite set of symbols, called action names,
such that F ∩ A = {}. An action law is a triple
〈C, a,E〉 where C and E are consistent sets of fluent
literals such that |C| = |E|, and a ∈ A.

If S is a state, then an action law α = 〈C, a,E〉 is
applicable in S iff C ⊆ S . The application of α to S
yields the state (S \ C) ∪ E .

Obviously, S being a state, C and E being consis-
tent, and |C| = |E| guarantee (S \ C) ∪ E to be a
state again—not necessarily, however, one which sat-
isfies the underlying domain constraints.

Example 1 (continued) We define the action
names start (starting the engine) and put-p (putting
a potato into the tail pipe), which are accompanied by
these action laws:

〈 {runs}, start , {runs} 〉

〈 {pot}, put-p, {pot} 〉
(2)



In words, starting the engine is possible if it is not
running and causes it to do so; similarly, a potato may
be added to the tail pipe. The second law, say, is ap-
plicable in the state S = {pot , clog , runs , heavy} since
{pot} ⊆ S . Its application yields (S \ {pot}) ∪ {pot} ,
i.e., {pot , clog , runs , heavy} , which constitutes a state
but does not satisfy our constraint, pot ⊃ clog .

The example illustrates that a state obtained through
the application of an action law may violate the un-
derlying domain constraints since only direct effects
have been specified: Putting a potato into the tail
pipe has the indirect effect that the latter becomes
clogged. The problem of accommodating additional,
indirect effects is commonly referred to as the ramifi-
cation problem [Ginsberg and Smith, 1988a]. Prior to
discussing a suitable solution, observe that according
to Definition 2 it is possible to construct a set of ac-
tion laws which, given a state, contains more than one
applicable law for a single action name. This can be
used to formalize non-deterministic actions.

Example 2 Suppose we park our car in a neigh-
borhood that is known for its suffering from a tail
pipe marauder.6 We therefore must expect that af-
ter waiting for a certain amount of time, a potato may
have randomly been introduced into our car’s tail pipe.
This is formally captured by giving a non-deterministic
specification of an action with the name wait . Let
F = {pot , clog , runs} and A = {wait , start}. Per-
forming a wait action either has no effect at all, or
else it causes pot become true provided there is not
already a potato in the tail pipe. Accordingly, we em-
ploy the following two action laws:

〈 {},wait , {} 〉 and 〈 {pot},wait , {pot} 〉 (3)

Both of them are applicable, for instance, in the state
{pot , clog , runs}, which suggests two possible out-
comes, viz. {pot , clog , runs} and {pot , clog , runs}.

2.2 THE RAMIFICATION PROBLEM

In [Thielscher, 1997] we propose to address the rami-
fication problem by regarding the collection of fluent
literals resulting from the computation of the direct
effects merely as an intermediate state, which requires
additional computation accounting for possible indi-
rect effects. More specifically, a single indirect effect
is obtained according to a directed causal relation be-
tween two particular fluents.

Definition 3 Let F be a set of fluent names.
A causal relationship is an expression of the form
ε causes % if Φ where Φ is a fluent formula and
ε and % are fluent literals.

6This example has been suggested by Erik Sandewall
(personal communication).

The intended reading is the following: Under condi-
tion Φ, the (previously obtained, direct or indirect)
effect ε triggers the indirect effect %. E.g., the causal
relationship pot causes clog if > will be used be-
low to state that the effect pot always gives rise to
the additional effect clog . Causal relationships op-
erate on pairs (S,E), where S denotes the current
state and E contains all direct and indirect effects
computed so far:

Definition 4 Let (S,E) be a pair consisting of a
state S and a set of fluent literals E , then a causal
relationship ε causes % if Φ is applicable to (S,E)
iff Φ ∧ % is true in S and ε ∈ E . Its application
yields the pair (S′, E′) where S′ = (S \ {%}) ∪ {%}
and E′ = (E \ {%}) ∪ {%}.

In words, a causal relationship is applicable if the as-
sociated condition Φ holds, the particular indirect ef-
fect % is currently false, and its cause ε is among the
current effects. If R is a set of causal relationships,
then by (S,E)ÃR (S′, E′) we denote the existence of
an element in R whose application to (S,E) yields
(S′, E′). Notice that if S is a state and E is con-
sistent, then (S,E) ÃR (S′, E′) implies that S′ is
a state and E′ is consistent, too. We adopt a stan-
dard notation in writing (S,E) ∗

ÃR (S′, E′) to indi-
cate that there are causal relationships in R whose
successive application to (S,E) yields (S ′, E′).

Example 1 (continued) The following two causal
relationships state respectively that the effect pot al-
ways gives rise to the indirect effect clog , and that the
effect clog (as a result of clearing the tail pipe, say)
always gives rise to the indirect effect pot :7

pot causes clog if >

clog causes pot if >
(4)

Recall, now, the state {pot , clog , runs, heavy} and ac-
tion put-p . Applying the second action law in (2)
yields the state S = {pot , clog , runs , heavy} along
with the effect E = {pot}. Given the pair (S,E),
the first causal relationship in (4) is applicable on ac-
count of both >∧ clog being true in S and pot ∈ E .
The application of this relationship yields the pair
((S \ {clog}) ∪ {clog}, (E \ {clog}) ∪ {clog}), i.e.,

( {pot , clog , runs , heavy} , {pot , clog} ) (5)

Now, suppose given a set of fluent literals S as the re-
sult of having computed the direct effects of an action
via Definition 2. State S may violate the domain con-
straints. We then compute additional, indirect effects

7See [Thielscher, 1997] on how a suitable set of causal
relationships can be automatically extracted from domain
constraints given additional knowledge as to which fluents
may possibly affect each other.



by (non-deterministically) selecting and (serially) ap-
plying causal relationships. If this eventually results
in a state satisfying the domain constraints, then this
state is considered a successor state.

Definition 5 Let F and A be sets of fluent and
action names, respectively, L a set of action laws, D
a set of domain constraints, and R a set of causal
relationships. Furthermore, let S be a state satisfy-
ing D and a ∈ A. A state S′ is a successor state
of S and a iff there exists an applicable (wrt. S )
action law 〈C, a,E〉 ∈ L such that

1. ((S \ C) ∪ E,E) ∗
ÃR (S′, E′) for some E′ , and

2. S′ satisfies D.

Recall, for instance, the state-effect pair in (5). By
virtue of satisfying our domain constraint, pot ⊃ clog ,
its first component constitutes a successor state of
{pot , clog , runs, heavy} and put-p . The analogue
holds for the Tail Pipe Marauder scenario (Example 2):
There are two successor states of {pot , clog , runs} and
wait , viz. {pot , clog , runs} and {pot , clog , runs}.

Based on Definition 5, a set of causal laws along with a
set of domain constraints and a set of causal relation-
ships determines a causal model Σ which maps any
pair of an action name and a state to a set of states as
follows: Σ(a, S) := {S′ : S′ successor of S and a}.

It is important to realize that neither uniqueness nor
the existence of a successor state is guaranteed in gen-
eral; that is, Σ(a, S) may contain several elements or
may be empty. The former characterizes actions with
non-deterministic behavior even though these actions
might be deterministic as regards their direct effects.
If no successor exists although an applicable action law
can be found, then this indicates that the action un-
der consideration has implicit preconditions which are
not met. While causal relationships account for these
qualifications, which derive from domain constraints
(see [Thielscher, 1997] for details), notice, however,
that implicit preconditions still are strict and as such
not part of the qualification problem dealing with the
necessity of assuming away abnormal disqualifications.

3 ABNORMAL

DISQUALIFICATIONS

We now take the action theory introduced in the pre-
ceding section as the basis for our formal account of
the qualification problem. The general objective is
to appropriately interpret a given formal scenario de-
scription and to draw reasonable conclusions about it.
Any such description involves general action laws in
conjunction with causal relationships, plus specific ob-
servations as to both the values of certain fluents and,
especially, the non-executability of certain actions in

particular situations. The term “reasonable conclu-
sions” appeals to what common sense suggests as to
how the given observations are to be interpreted. For-
mally, a domain description (or domain, for short)
consists of sets F and A of fluent and action names;
sets L, D, and R of action laws, domain constraints,
and causal relationships, respectively; and a set O of
so-called observations:

Definition 6 Let F and A be sets of fluent and
action names, respectively. An observation is an ex-
pression of one of the following forms:

F after [a1, . . . , an] (6)

a disqualified after [a1, . . . , an] (7)

where F is a fluent formula and a, a1, . . . , an are ac-
tion names ( n ≥ 0 ).

Intuitively, observation (6) indicates that if the se-
quence of actions [a1, . . . , an] were performed in the
initial state, then F would hold in the resulting state.
Likewise, (7) indicates that after performing the se-
quence of actions [a1, . . . , an], action a would be un-
qualified. For instance, these are possible observations
in the context of Example 1:

pot ∧ runs after [ ]

start disqualified after [put-p]

In the remainder of this section, we develop formal
notions of interpretations and models for domain de-
scriptions, and we introduce a suitable preference re-
lation among models to allow for assuming away, by
default, abnormal disqualifications. This model prefer-
ence criterion induces a nonmonotonic entailment rela-
tion. Together these concepts constitute our proposal
how to formalize the qualification problem.

3.1 PERSISTENCE OF ACTION
QUALIFICATIONS

The unintended model which occurs in the Put Potato
In Tail Pipe scenario when globally minimizing abnor-
mal disqualifications illustrates the necessity of distin-
guishing disqualifications that admit a causal expla-
nation. We have already argued that this can be ac-
complished by considering the proposition whether an
action is or is not abnormally disqualified as poten-
tially being affected by the execution of other actions
and otherwise being subject to the general law of per-
sistence. In other words, this proposition is taken as
a fluent. According to the general assumption that
the world is ‘normal’ unless there is information to
the contrary, this fluent is assumed initially false by
default. Restricting the assumption of normality to
the initial state enables us to consider it normal, as
intended, when an action occurs whose effects suggest
an action disqualification which, under general circum-
stances, would be abnormal. Formally, let, for each



action name a, disq(a) be a fluent name. The in-

tended meaning is that if disq(a) holds in some state,
then action a is not disqualified for some abnormal
reason—which shall imply that a be qualified if and
only if all strict preconditions are satisfied.8

Abnormal disqualifications indicate abnormal circum-
stances. These may be described by fluents which, too,
are to be assumed false by default. Example fluents
of this kind might be clog and pot , as one normally
assumes that the tail pipe is not clogged, let alone the
possibility of its housing a potato. Fluents denoting
abnormal circumstances can be combined in domain
constraints to describe the conditions for an action be-
ing abnormally disqualified. In particular, it is often
desirable to equate a fluent disq(a) with a disjunc-
tion consisting of all (to the best of the agent’s knowl-
edge) the causes for an abnormal disqualification of a.
This does not only allow to derive an action disqual-
ification from the occurrence of one of its causes, it
also supports the proliferation of explanations for ab-
normal disqualifications that have been observed (see
Section 3.2.2, below).

To make all this precise, let F and A be the sets
of fluent and action names, respectively, of a domain
description. From now on we always assume deter-
mined a certain subset Fab ⊆ F of fluents that will
be considered initially false by default. It is moreover
assumed that disq(a) ∈ Fab for each action name
a ∈ A. A typical domain constraint, then, is of the
form

disq(a) ≡
∨

i∈Ia

fi (8)

for some index set Ia such that each fi ∈ Fab . That
is, each of the ‘abnormality’ fluents fi is a poten-
tial cause of an abnormal disqualification of action a.9

These domain constraints may give rise to indirect ef-
fects, namely, a change of the truth value of an element
in the disjunction might also affect the truth value of
disq(a).

Example 1 (continued) Let the set Fab consist of
the fluents pot , clog , heavy , along with disq(start)
and disq(put-p). Suppose further that the set of do-
main constraints includes

disq(start) ≡ clog

disq(put-p) ≡ heavy
(9)

8For the moment we neglect the possibility of miracu-
lous disqualifications, which will be discussed later, in Sec-
tion 3.3.

9Instead of explicitly providing the “only-if” part in (8),
i.e., disq(a) ⊃ ∨i∈Ia

fi , this could be implicitly obtained
through circumscribing [McCarthy, 1980] the predicate
disq in a given set of domain constraints; c.f. [Lifschitz,
1987], where this idea is applied to strict preconditions of
actions.

aside from pot ⊃ clog . The additional domain con-
straints are accompanied by these causal relationships:

clog causes disq(start) if >

clog causes disq(start) if >

heavy causes disq(put-p) if >

heavy causes disq(put-p) if >

(10)

in conjunction with the ones shown in (4). Sup-
pose, now, action put-p is performed in the state
S = {pot , clog , runs , heavy , disq(start), disq(put-p)}.
The application of the corresponding action law in (2)
yields the state-effect pair

({pot , clog , runs , heavy , disq(start), disq(put-p)},
{pot} )

The first component does not satisfy pot ⊃ clog , but
we can apply the first causal relationship in (4), viz.
pot causes clog if >, yielding

({pot , clog , runs , heavy , disq(start), disq(put-p)},
{pot , clog} )

While now the aforementioned domain constraint is
satisfied, the first fluent formula in (9) is no longer
so. Yet we can further apply the appropriate causal
relationship in (10), viz. clog causes disq(start) if >,
which results in

( {pot , clog , runs, heavy , disq(start), disq(put-p)},
{pot , clog , disq(start)} )

(11)

This pair’s first component satisfies all domain con-
straints and, thus, constitutes a successor state. Notice
that action start is declared abnormally disqualified
in the resulting state. This disqualification occurs as
an indirect effect of having performed put-p . On the
other hand, executing this action did not affect the
fluent disq(put-p), which thus remains false according
to the law of persistence.

3.2 ASSUMING QUALIFICATION BY
DEFAULT

The intention of distinguishing a set of ‘abnormal-
ity’ fluents Fab is to prefer among all suitable in-
terpretations of domain descriptions those in which
they are initially false. This would enable us to as-
sume away abnormal circumstances whenever that is
reasonable. Prior to discussing preference, however,
we need to formalize the general notions of inter-
pretation and model. Clearly, they both ought to
respect the causal model Σ underlying the domain
in question. Each interpretation (and model) con-
tains a partial function Res which maps finite action
sequences to states with the intended meaning that
Res([a1, . . . , an]) would be the result of executing the
action sequence [a1, . . . , an] in the initial state (which
itself is determined by Res([ ]) ).



Definition 7 Let Σ be the causal model determined
by a domain description with domain constraints D.
A pair (Res ,Σ) is an interpretation for this domain
iff Res is a partial mapping from finite sequences of
action names to states such that the following holds:

1. Res([ ]) is defined and satisfies D.

2. For any finite sequence [a1, . . . , an−1, an] of ac-
tion names ( n > 0 ), Res([a1, . . . , an−1, an]) is
defined iff

(a) Res([a1, . . . , an−1]) is defined;

(b) disq(an) ∈ Res([a1, . . . , an−1]); and

(c) Σ(an,Res([a1, . . . , an−1])) 6= {}

If it is defined, then Res([a1, . . . , an−1, an]) is a
successor of Res([a1, . . . , an−1])) and an .

If Res([a1, . . . , an]) is defined, we also say that the
action sequence [a1, . . . , an] is qualified . Then Def-
inition 7 states that [a1, . . . , an−1, an] is qualified if
so is [a1, . . . , an−1], if the state Res([a1, . . . , an−1])
does not imply an abnormal disqualification of an —
which is indicated by fluent disq(an) being false in
this state—, and if all strict preconditions of an are
met—which implies the existence of a successor state
of an and Res([a1, . . . , an−1]) . Notice that all defined
function values of Res necessarily satisfy the under-
lying domain constraints if Res([ ]) does.

Based on the given a set of observations, an interpre-
tation for a domain is considered a model iff all the
observations hold in that interpretation.

Definition 8 Let Σ be the causal model of a do-
main description with observations O. An interpre-
tation (Res ,Σ) is a model of O iff each observation
in O holds in (Res ,Σ), where

1. F after [a1, . . . , an] is said to hold in (Res ,Σ)
iff Res([a1, . . . , an]) is defined and F is true in
Res([a1, . . . , an]);

2. a disqualified after [a1, . . . , an] is said to hold
in (Res ,Σ) iff Res([a1, . . . , an]) is defined but
Res([a1, . . . , an, a]) is not.

Example 1 (continued) Let Σ be the causal model
determined by the action laws (2), the domain con-
straints (1) and (9), and the causal relationships (4)
and (10). Suppose given the observation

runs after [ ] (12)

and consider, say, these two initial states:

Res1([ ]) = {pot , clog , runs , heavy ,

disq(start), disq(put-p)}

Res2([ ]) = {pot , clog , runs , heavy ,

disq(start), disq(put-p)}

(13)

The corresponding interpretations10 (Res1,Σ) and
(Res2,Σ) satisfy (12), hence are models. Notice, how-
ever, that no ‘abnormality’ fluent is true in Res1([ ]),
as opposed to Res2([ ]). Since disq(start) holds in
Σ(put-p,Res1([ ]) (c.f. (11)), the model (Res1,Σ) en-
tails that the engine cannot be ignited after putting
a potato into the tail pipe. In contrast, the model
(Res2,Σ) is the formal counterpart of the counter-
intuitive conclusion where the action put-p is assumed
to be abnormally disqualified in the first place.

While an interpretation must satisfy the given obser-
vations in order to constitute a model, this criterion
alone does not suffice to assume away abnormal dis-
qualifications. Obviously, the addition of observations
can only decrease the set of models, never produce
new ones. Consequently, if one defines an entailment
relation stating that an observation is entailed by a
set of observations if the former holds in all models of
the latter, then this relation is monotone. Under the
name restricted monotonicity , in [Lifschitz, 1993] this
property is claimed generally desirable in theories of
actions. Yet this is no longer appropriate when be-
ing confronted with the qualification problem because
additional observations, such as detecting a potato in
the tail pipe, may force us to withdraw previous (de-
fault) conclusions, like the conclusion that we are able
to start the engine. We achieve this formally by a
preference relation among the set of models, with the
intention to select those which initially minimize truth
of fluents in Fab to the largest possible extent. When
talking about entailment, attention is then restricted
to models which are preferred in this sense. The follow-
ing definition constitutes the core of our formal char-
acterization of the qualification problem:

Definition 9 Let F ⊇ Fab be the underlying set
of fluent names and O the set of observations of a
domain description with causal model Σ. An inter-
pretation M ′ = (Res ′,Σ) is less abnormal than an
interpretation M = (Res ,Σ), written M ′ ≺ M , iff
Res ′([ ]) ∩ Fab $ Res([ ]) ∩ Fab .

A model M of O is preferred iff there is no model M ′

of O such that M ′ ≺ M . An observation o is en-
tailed , written O |∼Σ o, iff o holds in each preferred
model of O.

In words, the less fluents in Fab occur affirmatively in
the initial state in a model the better. Obviously, the
induced entailment relation, |∼Σ , is nonmonotonic as
the addition of observations may change the set of pre-
ferred models entirely. In the sequel, we illustrate how
this formal account of the qualification problem sat-
isfies all the requirements which we demanded in the
introduction.

10Notice that if all actions in a domain are deterministic
(that is, each Σ(a, S) is singleton or empty), then an inter-
pretation (Res,Σ) is uniquely characterized by its initial
state, Res([ ]) .



3.2.1 How To Assume Away Disqualifications

The fundamental issue with the qualification problem
is to assume away abnormal disqualifications by de-
fault. This, however, should concern only those dis-
qualifications which do not admit a causal explanation.
Our key example, in particular, is now treated in the
expected way. Namely, any potential abnormal dis-
qualification preventing us from putting a potato into
the tail pipe is assumed away, for there is no evidence
to the contrary. Likewise, any abnormal disqualifica-
tion preventing us from starting the engine is assumed
away as regards the initial state, whereas an abnormal
disqualification of this very action after the insertion
of a potato follows from the causal model without the
necessity of granting abnormal circumstances.

Example 1 (continued) Recall from (13) the two
models M1 = (Res1,Σ) and M2 = (Res2,Σ) of (12).
Clearly, we have M1 ≺M2 due to Res1([ ])∩Fab = {}
and Res2([ ]) ∩ Fab = {heavy , disq(put-p)}. Since
each ‘abnormality’ fluent is false in the initial state
in M1 , the latter obviously constitutes the unique pre-
ferred model. Whatever holds in M1 is thus entailed
by the domain. In particular, we have seen in (11)
that disq(start) ∈ Res1([put-p]). This implies that
[put-p, start ] is not qualified in M1 , which in turn
sanctions the entailment of

start disqualified after [put-p]

This constitutes the intended solution: The first ac-
tion, put-p , is qualified by default and, as a conse-
quence, action start is unqualified afterwards.

3.2.2 How To Explain Disqualifications

Aside from assuming away abnormal disqualifications
of actions by default, one naturally seeks conceivable
explanations in case a disqualifications has been—
unexpectedly—observed without an apparent cause.
Each preferred model that contains an abnormal dis-
qualification also includes, provided the underlying do-
main constraints support this, a particular explana-
tion. For otherwise the domain constraints would be
violated in the state in which the disqualification oc-
curs, as the following example illustrates.

Example 3 We extend the set of fluent names of
Example 1 by no-gas , low-batt , and engine-problem ,
each of which shall belong to the subset Fab . These
fluent names are combined in this domain constraint:

disq(start) ≡ clog ∨no-gas ∨ low-batt ∨engine-problem

which shall replace the first formula in (9). Now sup-
pose we are in a state where the engine is not run-
ning and where we also know that the tail pipe is not
clogged nor is the tank empty, but nonetheless we en-
counter difficulties with starting the engine. The cor-

responding observations, i.e.,

runs after [ ]

clog ∧ no-gas after [ ]

start disqualified after [ ]

admit two preferred models: Each model (Res,Σ)
must satisfy disq(start) ∈ Res([ ]) since [start ] is
unqualified, according to the third observation, al-
though the only strict precondition of start , viz.
runs , is initially true according to the first observa-
tion. Given disq(start) ∈ Res([ ]), the above domain
constraint requires an additional ‘abnormality’ fluent
be initially true in any model. The second observa-
tion excludes both clog and no-gas . Hence, a pre-
ferred model satisfies either low-batt ∈ Res([ ]) or else
engine-problem ∈ Res([ ]). This in turn sanctions the
entailment of the observation

low-batt ∨ engine-problem after [ ] (14)

That is, problems with the battery or problems with
the engine explain the observed abnormal disqualifica-
tion of start .

3.2.3 How To Deal With Non-Determinism

The failure of the chronological ignorance approach
to the qualification problem [Shoham, 1987; Shoham,
1988] in case of non-deterministic actions demon-
strates a crucial difficulty with combining both abnor-
mal disqualifications and non-determinism. The prob-
lem occurs whenever non-deterministic information
provides sufficient evidence for an abnormal disquali-
fication without, by virtue of being non-deterministic,
necessitating it. Any formalism by which abnormal
circumstances are negated whenever they do not prov-
ably hold, ignores uncertain evidence and, in so doing,
supports unsound conclusions. As the Tail Pipe Ma-
rauder example will illustrate, our formal characteri-
zation of the qualification problem does not interfere
with non-deterministic information and treats the lat-
ter in the appropriate, namely, the cautious way.

Example 2 (continued) Suppose given the obser-
vation

runs after [ ]

Since it is consistent with the observation to consider
initially false all members of Fab , any preferred model
(Res ,Σ) must satisfy

Res([ ]) = {pot , clog , runs, disq(wait), disq(start)}

The action wait being non-deterministic (c.f. (3)),
we know that either Res([wait ]) = Res([ ]) or else

Res([wait ]) = {pot , clog , runs, disq(wait), disq(start)}
holds in preferred models. Therefore, nothing definite
follows about the status of the tail pipe, hence of the
qualification of start , after performing [wait ]. Conse-
quently, the observation runs after [wait , start ], say,
is not entailed, as intended.



3.3 MIRACULOUS DISQUALIFICATIONS

Thus far our theory supports generating explanations
for surprising disqualifications by selecting among the
conceivable reasons for this abnormality. Yet whenever
the domain description renders invalid each of these
explanations, then that goes beyond the capacity of
the theory. Suppose given, as an example, the two
observations

start disqualified after [ ]

runs after [wait , start ]
(15)

where wait is assumed to have no effects at all on the
underlying fluents. No however (a priori) ‘unlikely’
model exists which simultaneously satisfies both of the
observations. The reason is that any abnormality ex-
plaining the first disqualification necessarily transfers
to the state after waiting, which contradicts the fol-
lowing success of performing start . Nonetheless, such
situations, where the available explanations are insuf-
ficient to account for surprising disqualifications, are
well conceivable and just prove our lack of omniscience.

We therefore need to extend our formalism to allow
for observed yet inexplicable, in the above sense, action
disqualifications. To this end, the formal notions of in-
terpretation and model are enhanced by a component
accommodating these so-called miraculous disqualifi-
cations. As we have seen, a miraculous disqualifica-
tion may appear or disappear even though the truth
values of the fluents suggest identical states. This
is why any such disqualification is to be associated
with the sequence of actions after whose execution it
occurs, rather than with the respective state. For-
mally, the new component, denoted by Υ, consists
of non-empty action sequences indicating the follow-
ing: Whenever [a1, . . . , an−1, an] ∈ Υ ( n > 0 ), then
action an is disqualified in the state resulting from
performing [a1, . . . , an] even if all strict preconditions

of an and also disq(an) hold in that state. The fol-
lowing extends Definition 7 accordingly.

Definition 10 Let Σ be the causal model de-
termined by a domain description with domain con-
straints D. A triple (Res ,Σ,Υ) is an interpretation
for this domain iff Υ is a set of non-empty, finite se-
quences of action names and Res is a partial mapping
from finite sequences of action names to states such
that the following holds:

1. Res([ ]) is defined and satisfies D.

2. For any finite sequence [a1, . . . , an−1, an] of ac-
tion names ( n > 0 ), Res([a1, . . . , an−1, an]) is
defined iff

(a) Res([a1, . . . , an−1]) is defined;

(b) disq(an) ∈ Res([a1, . . . , an−1]);

(c) Σ(an,Res([a1, . . . , an−1])) 6= {}; and

(d) [a1, . . . , an−1, an] 6∈ Υ.

If it is defined, then Res([a1, . . . , an−1, an]) is a
successor of Res([a1, . . . , an−1])) and an .

The additional clause, 2(d), states that a sequence of
actions can only be qualified if it is not miraculously
disqualified. As before, a model of a set of observations
is an interpretation in which all the observations hold
(c.f. Definition 8).

Example 4 The domain discussed in Example 1 is
extended by the action name wait in conjunction with
the action law 〈{},wait , {}〉. Furthermore, suppose
given the aforementioned observations (15). While no
model (Res ,Σ,Υ) with Υ = {} exists for this do-
main, as argued above, both these observations hold
in the interpretation (Res ,Σ,Υ) where Res([ ]) is

{pot , clog , runs , heavy , disq(start), disq(put-p)} (16)

and Υ = {[start ]} . This interpretation thus consti-
tutes a model.

Clearly, miraculous disqualifications, too, are to be
minimized to the largest possible extent. Moreover,
miraculous disqualifications are meant as means to ac-
count for abnormal disqualifications which do not ad-
mit an explanation even by granting abnormal circum-
stances. As such, miraculous disqualifications need to
be minimized with higher priority. As opposed to ex-
plicable disqualifications, miraculous ones can well be
minimized globally, that is, without worrying about
causality—would they admit a causal explanation they
would not be miraculous. We thus arrive at the fol-
lowing extension of our preference criterion:

Definition 11 Let F ⊇ Fab be the underlying set
of fluent names and O the set of observations of a
domain description with causal model Σ. An inter-
pretation M ′ = (Res ′,Σ,Υ′) is less abnormal than
an interpretation M = (Res ,Σ,Υ), written M ′ ≺M ,
iff

1. either Υ′ $ Υ,

2. or Υ′ = Υ and Res ′([ ]) ∩ Fab $ Res([ ]) ∩ Fab .

The notions of preferred model and entailment in De-
finition 9 modify accordingly.

Example 4 (continued) We have seen that the do-
main considered above does not admit a model with-
out miraculous disqualifications. It follows that the
above model M = (Res ,Σ,Υ)—where Res([ ]) is as
in (16) and Υ = {[start ]}—is preferred, for it de-
clares a single action sequence miraculously disquali-
fied and negates each ‘abnormality’ fluent in the ini-
tial state. As a matter of fact, M is the only pre-
ferred model since any model (Res ′,Σ,Υ′) must sat-
isfy [start ] ∈ Υ′ and also runs ∈ Res ′([ ]) (the lat-
ter is due to [wait , start ] being qualified according
to (15)).



4 FLUENT CALCULUS AND THE

QUALIFICATION PROBLEM

Finally, we briefly sketch a suitable action calculus
which is capable of handling abnormal action disqual-
ifications. Our encoding employs the representation
technique underlying the fluent calculus [Hölldobler
and Schneeberger, 1990; Thielscher, 1997]. As opposed
to the situation calculus [McCarthy and Hayes, 1969;
Reiter, 1991], the fluent calculus employs structured
state terms, each of which consists in a collection of
all fluent literals that are true in the state being rep-
resented. To this end, fluent literals are reified, i.e.,
formally represented as terms. An example state term
is in-pipe(potato) ◦ heavy(potato) ◦ clog 11 where the
bar denoting negative fluent expressions is formally
a unary function and where ◦ denotes a special bi-
nary function symbol which obeys the laws of asso-
ciativity and commutativity. It has first been argued
in [Hölldobler and Schneeberger, 1990] that this rep-
resentation technique avoids extra axioms (e.g., frame
axioms [McCarthy and Hayes, 1969]) to encode the
general law of persistence: The effects of actions are
modeled by manipulating state terms through removal
and addition of sub-terms. Then all sub-terms which
are not affected by these operations remain in the state
term, hence continue to be true.

Our solution to the qualification problem in the fluent
calculus builds on the integration of causal relation-
ships into this calculus [Thielscher, 1997]. While the
fluent calculus provides monotonic solutions to both
the frame problem as well as the ramification problem,
the qualification problem, as we have seen, necessitates
some kind of nonmonotonicity. In particular, we em-
ploy for each ‘abnormality’ fluent name fab ∈ Fab the
default rule [Reiter, 1980]

: ∀s [ Initial(s) ⊃ ¬Holds(fab(x1, . . . , xn), s) ]

∀s [ Initial(s) ⊃ ¬Holds(fab(x1, . . . , xn), s) ]

This rule should be read as: Provided it is consis-
tent, conclude that if s represents the initial state
then an instance fab(t1, . . . , tn) is false in s. In ad-
dition, miraculous disqualifications are assumed away,
whenever possible, by applying defaults of the form

: ¬Miracle(a∗)

¬Miracle(a∗)
( a∗ action sequence)

Since miraculous disqualifications are to be minimized
with higher priority, we employ the concepts of Pri-
oritized Default Logic [Brewka, 1994]. The report
[Thielscher, 1996] contains full details as well as a for-
mal proof of the adequacy of this extension with regard
to the theory developed in Section 3.

11As opposed to the formal language used in the preced-
ing sections, our action calculus supports non-propositional
fluents, such as in-pipe , whose arguments are chosen from
a set of entities, such as potato .

5 DISCUSSION

We have proposed a formal characterization of the
qualification problem from the perspective that requir-
ing global minimization of abnormal disqualifications
is obviously inadequate. Our theory may be summa-
rized as follows. Any domain description is supposed
to contain a distinguished set of fluents Fab , each of
which describes abnormal circumstances and thus is to
be assumed false by default. This assumption, how-
ever, needs to be restricted to the initial state, so that
these fluents are subject to the general law of persis-
tence but are also potentially (directly or indirectly)
affected by the execution of actions. Among these ‘ab-
normality’ fluents are propositions, denoted disq(a),
which state that an action a is abnormally disqual-
ified. Domain constraints relating these fluents with
possible causes of an abnormal disqualification sup-
port the proliferation of explanations in case an ab-
normal disqualification—surprisingly—occurs. In ad-
dition, miraculous disqualifications accommodate sit-
uations in which a suitable explanation cannot be pro-
vided. The default assumption of ‘normality’ is for-
mally represented by a model preference criterion (De-
finition 11), which induces a nonmonotonic entailment
relation among observations.

Using a suitably simple action language, the focus in
this paper has been on the qualification problem. The
underlying principles of our theory, however, are suffi-
ciently fundamental and general to not depend on this
specific language. Thus these principles could equally
well be employed in other, more elaborated formal the-
ories of actions like, e.g., [Gelfond and Lifschitz, 1993;
Sandewall, 1994; Thielscher, 1995], in view of the qual-
ification problem. Likewise, existing action calculi
may be enhanced on this basis in order that they
become capable of dealing with abnormal action dis-
qualifications. As an example, we have sketched a
way to embed the fluent calculus in an appropriate
nonmonotonic theory. The adequacy of the result-
ing framework has been established by relating it to
our formal characterization of the qualification prob-
lem. This adds another item to the list of ontological
aspects which the fluent calculus is capable of deal-
ing with, such as non-deterministic and concurrent
actions [Bornscheuer and Thielscher, 1997], indirect
effects of actions [Thielscher, 1997], and continuous
change [Herrmann and Thielscher, 1996].

Besides the proposal pursued in this paper, the only
existing alternative to global minimization of abnor-
malities as a solution to the qualification problem is
the concept of chronological ignorance [Shoham, 1987;
Shoham, 1988]. Roughly speaking, the crucial idea
there is to assume away, by default, abnormal circum-
stances which do not provably hold, and simultane-
ously to prefer minimization of abnormalities at earlier
timepoints. This approach treats our introductory key
example correctly. The interesting, albeit informal,



reason for coming to the desired conclusion in this and
similar cases is a certain respect of causality hidden
in this method: By minimizing chronologically, one
tends to minimize causes rather than effects—which is
the right thing to do—simply because in general causes
precede effects. On the other hand, it has already been
shown elsewhere (e.g., [Kautz, 1986; Sandewall, 1993;
Stein and Morgenstern, 1994]) that the applicability of
chronological minimization is intrinsically restricted to
domains which do not include non-deterministic infor-
mation. The Tail Pipe Marauder scenario of Exam-
ple 2 constitutes a simple domain which does not fall
into that category. Given that non-deterministically
there might or might not be a potato in the tail pipe,
chronological ignorance sanctions the prediction that
nonetheless starting the engine will be successful. For
it cannot be proved that this action has an abnormal
disqualification—which thus is assumed away. While
the qualification problem means to assume away ab-
normal circumstances whenever they do not provably
hold, the Tail Pipe Marauder domain illustrates that
this approach is in general too optimistic if the execu-
tion of a non-deterministic action renders quite pos-
sible such circumstances. In contrast, our character-
ization of the qualification problem accounts for this
as the minimization procedure applied to abnormal or
miraculous disqualifications does not interfere with the
results of non-deterministic actions.

Our approach to the qualification problem shares
with Motivated Action Theory [Stein and Morgen-
stern, 1994] the insight that an appropriate notion of
causality is necessary when assuming away abnormal-
ities. In the latter framework, occurrences of actions
and events are assumed away by default while consid-
ering the possibility that they are caused (or, in other
words, motivated , hence the name). This minimizing
unmotivated events and our minimizing non-caused
abnormal disqualifications are somehow complemen-
tary while based on similar principles. Of course, the
formal realizations are quite different. An unsatisfac-
tory property of Motivated Action Theory is that the
preference criterion, that is, motivation, depends on
the syntactical structure of the formulas representing
causal knowledge. As a consequence, logical equiv-
alent formalizations may induce different preference
criteria, of which only one is the desired. Moreover,
the formal concept of motivation becomes rather com-
plicated in case of disjunctive (i.e., non-deterministic)
information, which entails difficulties with assessing its
range of applicability.

Throughout the paper, we have taken action disquali-
fications as rendering physically impossible the execu-
tion of the respective action. A desirable refinement
is to consider actions be disqualified as to producing
a certain effect (c.f. [Gelfond et al., 1991], e.g.). This
is accomplished with a simple, straightforward exten-
sion of our theory. In addition to the fluents disq(a),
we introduce fluents of the form disq(a, `), whose in-

tended reading is “action a fails to produce effect `.”
These fluents, too, belong to the set Fab and may
be related to other ‘abnormality’ fluents by means of
domain constraints, like in

disq(shoot , alive) ≡ bad-sight ∨ bad-shooter ∨ bad-gun

Suppose, then, 〈C, a,E〉 is the action law to be ap-
plied to some state S . The effect which a actu-
ally manages to produce if performed in S is for-
mally given by E′ := E \ {` : disq(a, `) ∈ S}. Let
C ′ := C \ {`, ` : ` ∈ E \ E′}, which guarantees that
|C ′| = |E′|, then (S \C ′)∪E′ is taken as the interme-
diate state which is subject to the following ramifica-
tion process. The notion of a successor state modifies
accordingly while all further concepts, viz. interpre-
tations, models, and the preference criterion, remain
unaltered.

Finally, it needs to be mentioned that we gave empha-
sis only to the representational aspect of the qualifi-
cation problem, as opposed to the computational as-
pect. That the latter is of equal importance has been
pointed out, e.g., in [Elkan, 1995]. Our analysis has
revealed some hitherto unnoticed problems with the
representational aspect and, to state the obvious, the
computational aspect cannot be pursued without an
appropriate representation of the problem. Named the
computational part of the qualification problem, the
challenge is to find a computational model that en-
ables the reasoning agent to assume that an action be
qualified without even thinking of all possible disqual-
ifying causes—unless some piece of knowledge hints at
their presence. In principle, the special fluents disq(a)
employed in our theory serve this purpose: By as-
suming disq(a), one jumps to the conclusion that a
be qualified provided all strict preconditions are met.
Still, on the other hand, in order that this assumption
be justified, its consistency as regards the underlying
domain constraints must be guaranteed. In a stan-
dard reasoning system, this in turn involves consider-
ation (and exclusion) of all the potential disqualifying,
abnormal circumstances. A solution to the computa-
tional part of the qualification problem thus requires
a different computational model, presumably based on
some parallel architecture, by which all related domain
constraints are ignored unless they are explicitly ‘ac-
tivated’ by some piece of information. Although this
aspect was not among the topics of this paper, the
foundations have been laid.
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