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Abstract

In this paper we develop a general framework that allows
for both knowledge acquisition and forgetting in the Situa-
tion Calculus. Based on the Scherl and Levesque (Scherl and
Levesque 1993) possible worlds approach to knowledge in
the Situation Calculus, we allow for both sensing as well as
explicit forgetting actions. This model of forgetting is then
compared to existing frameworks. In particular we show that
forgetting is well-behaved with respect to the contraction op-
erator of the well-known AGM theory of belief revision (Al-
chourrón, Gärdenfors, and Makinson 1985) but that knowl-
edge forgetting is distinct from the more commonly known
notion of logical forgetting (Lin and Reiter 1994).

Introduction
Typical Situation Calculus models do not consider the need
for agents to forget knowledge. This reflects the types of
applications to which formal models of agent action and be-
haviour have typically been applied. However, it is possi-
ble to identify classes of applications for which the need to
model forgetting in an agent becomes crucial. Consequently,
in this paper we develop a general model for forgetting ac-
quired knowledge in the Situation Calculus. We then high-
light useful sub-classes of this model.

The focus of this paper is to develop the theoretical ma-
chinery of agent forgetting. However, in order to motivate
the importance of forgetting, we highlight two broad classes
of potential applications: the modelling of bounded agents
and the formal analysis of security protocols.

The most immediate application of forgetting is to model
agents with limited resources (e.g., robots), or agents that
need to deal with vast knowledge bases (e.g., cloud com-
puting), or more ambitiously, dealing with the problem of
lifelong learning. In all such cases it is no longer reason-
able to assume that all knowledge acquired over the opera-
tion of an agent can be retained indefinitely. Furthermore,
recent research on bounded Situation Calculus theories (Gi-
acomo, Lespérance, and Patrizi 2012; 2013) shows that en-
suring bounds on such theories can guarantee decidability of
progression. The theory of forgetting we introduce here can
be used to guarantee bounded Situation Calculus theories.
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A further motivation for the need to consider the concept
of forgetting can be seen in the formal analysis of security
and cryptographic protocols. Cryptographic protocols have
previously been represented and analysed using the Situa-
tion Calculus equipped with a notion of the knowledge of
agents (Delgrande, Hunter, and Grote 2010). However, such
an encoding cannot always represent the class of nonmono-
tonic cryptographic protocols (Rubin and Honeyman 1994).
In particular, the need to consider forgetting actions can be
important in some nonmonotonic cryptographic protocols
such as the analysis of credit card protocols where a criti-
cal requirement is for vendors to forget (i.e., not retain) cus-
tomer credit card details.

In order to highlight the features of our approach to for-
getting in the Situation Calculus we provide the following
simple scenario as a running example. A robot needs to en-
ter a room that is protected by a closed door with a key-
pad lock. When the robot senses that the door is closed,
it needs to download the key combination from an external
data source (e.g., the cloud or a database). It can then use
this key combination to open the door and enter the room.
Furthermore, since the door will now be open, the robot will
no longer need the key combination so will be free to forget
this information.

The rest of the paper proceeds as follows. First we intro-
duce the Situation Calculus (McCarthy 1963; Reiter 2001)
and its epistemic extension (Lesperance et al. 1995) that al-
lows for knowledge acquisition but not forgetting. We then
present our approach that handles both knowledge acqui-
sition and forgetting and perform an extensive analysis of
its properties and the conditions under which both knowl-
edge acquisition and forgetting can occur. Having estab-
lished the main properties of our approach, we then place our
model of forgetting within the broader context of two of the
main models that have been developed within the literature:
AGM belief revision (Alchourrón, Gärdenfors, and Makin-
son 1985) and logical forgetting (Lin and Reiter 1994). In
particular, we show that our approach is well-behaved with
respect to the AGM belief contraction postulates, but is dis-
tinct from that of logical forgetting since knowledge forget-
ting can provide for more fine-grained control over what is
forgotten. Finally, we provide some concluding remarks and
discuss directions for future research.



Background
Situation Calculus
The Situation Calculus provides a formal language based on
classical first-order logic to describe dynamic domains (Mc-
Carthy 1963; Reiter 2001). It distinguishes three types of
terms: situations representing histories as the world evolves;
fluents denoting domain properties that may change as a re-
sult of actions; and, actions that can be performed by the
reasoner.

The function do(a, s) represents the situation that results
from performing action a at situation s, while S0 denotes the
initial situation where no actions have taken place. For each
action, a precondition axiom Poss(a, s) specifies the condi-
tions under which action a is possible in situation s and suc-
cessor state axioms specify how the value of fluents change
as the result of actions. Assuming perfect knowledge and no
sensing actions, the precondition and successor state axioms
for our example scenario could be encoded as follows:

Poss(enter, s) ≡ Open(s) ∧ ¬InRoom(s)
Poss(usekey, s) ≡ ∃c.Key(c, s) ∧ ¬Open(s)
InRoom(do(a, s)) ≡ InRoom(s) ∨ a = enter
Key(c, do(a, s)) ≡ Key(c, s)
Open(do(a, s)) ≡ Open(s) ∨ a = usekey

The first states that it is possible to enter the room if the robot
is not already there and the door is open. The second states
that it is possible to use the key code to open the door if there
is a key code and the door is not already open. Finally, three
successor state axioms are defined to indicate that: the robot
will be in the room if it just entered it or was already there;
key codes for the door do not change; and, the door will be
open if it was already opened or the key code was entered.

With this formalisation it is possible to follow how the
world evolves as actions are performed and, in particular,
that the robot will be in the room if it inputs the key code,
thus opening the door, and then enters the room.

It is useful to be able to refer to the relationship between
situations resulting from a sequence of actions. In order to
do this a partial order relation < is defined over situations in
order to indicate that one situation is the result of performing
a sequence of actions in another situation:

¬s < S0, s < do(a, s′) ≡ s ≤ s′

where s ≤ s′ is shorthand for s < s′ ∨ s = s′. For a more
comprehensive formulation of what is required of a Situation
Calculus basic action theory, we refer to (Reiter 2001).

Situation Calculus with Knowledge
In its basic form the Situation Calculus can be used to show
how the world changes in the face of actions. However,
it lacks the ability to model how an agent with imperfect
knowledge can both gain knowledge and act on that knowl-
edge. To deal with this broader problem the Situation Calcu-
lus has been extended using a possible worlds framework to
capture a notion of knowledge with sensing actions (Scherl
and Levesque 1993). As we shall be drawing repeated com-
parisons between this extension and our own approach we
shall refer to this extension as the SL framework.

Within the SL framework, an agent can be said to know
that some fact φ is true if and only if φ is true in all pos-
sible states of the world that the agent can be in. This can
be formalised using a special epistemic predicate K(s′, s) to
represent the fact that in situation s the agent considers the
world could equally be in situation s′. Situation s′ is said to
be accessible from s. Notions of knowledge are defined in
terms of this epistemic relation:1

Know(φ, s)
def
= ∀s′.K(s′, s) ⊃ φ[s′]

KnowIf(φ, s)def
= Know(φ, s) ∨Know(¬φ, s)

The first definition states that an agent in situation s knows
that fluent φ holds when φ holds in all K accessible situ-
ations. The second states that to know if something holds
means to either know that it holds or to know that it doesn’t
hold. The predicate K is required to be reflexive, transi-
tive and Euclidean, ensuring that the agent has introspection
about its knowledge; it knows whether it knows something.

To allow for introspective statements, that is, to represent
that an agent knows that it knows something, Know can be
treated as a term when used in conjunction with the pseudo-
variable now (Lesperance et al. 1995). This usage is clear
from the following expansion:

Know(Know(φ, now), s) ≡ ∀s′.K(s′, s) ⊃ Know(φ, s′)

Now, reasoning about knowledge is not very interesting un-
less that knowledge can itself change over time and sensing
actions provide a mechanism to achieve this. As with non-
sensing actions, sensing actions require precondition axioms
to determine when they are executable. For our example
scenario we introduce two sensing actions isopen and getkey
that are always executable. The first senses if the door is
open while the second models the process of querying a data
source for the correct key combination:

Poss(getkey, s) ≡ True
Poss(isopen, s) ≡ True

Next, the process of knowledge acquisition is encoded
through the successor state axiom of the K relation. An ex-
ample of such a successor state axiom, containing sensing
actions for our robot scenario would be:

K(s∗, do(a, s))≡∃s′.s∗ = do(a, s′) ∧ Poss(a, s′)∧ K(s′, s)
∧ a = isopen ⊃ [Open(s′) ≡ Open(s)]
∧ a = getkey ⊃ [∀k.Key(k, s′) ≡ Key(k, s)]

For non-sensing actions, the accessible situations are sim-
ply the successors of all the situations that were previously
accessible. However, for sensing actions only those situa-
tions that agree with the actual situation on the sensed fluent
remain accessible. So, in the example scenario, the isopen
sensing action ensures that only situations where the state of
the door is the same are accessible, while the getkey action
ensures that only the situations where all the keys are the
same are accessible. Effectively, after performing the isopen

1φ[s] is the commonly used notation to represent that formula
φ holds in the situation s; we use the name KnowIf rather than
KnowWhether introduced in (Scherl and Levesque 1993).



action, the agent will know if the door is open and after the
getkey action the agent will know about any keys.

The final component of the representation is to specify
the truth of fluents in the initial situation and their possible
alternatives. For example, that the door is closed but the
robot doesn’t know it and the door’s key combination is C1

but the robot only knows that it must be one of C1 or C2.
Figure 1(a) shows a visualisation of this scenario and the ac-
cessibility of the alternative possible situations as the robot
executes the sequence of actions resulting in it entering the
room. Note, for simplicity and presentation we have only
specified two possible keys but, of course, this could be ex-
tended to many key combinations through the specification
of more alternative initial situations.

There is an important observation that can be made from
the inclusion of the K relation and sensing actions. Namely,
that it is possible to construct cases of hybrid sensing ac-
tions that both sense and change the environment by allow-
ing sensing actions to also be contained in the non-K (i.e.,
fluent) successor state axioms. In such cases knowledge ac-
quisition cannot be guaranteed because the sensing action
could itself change the value of the sensed fluent. To avoid
such pathological cases it is typical to consider only pure
sensing actions where the sensing action only occurs in the
successor state axiom for K.

A General Account of Knowledge and
Forgetting

In this section we present our extension to the SL framework
by incorporating the ability to forget the results of past sens-
ing actions. The possible worlds approach is maintained,
however we provide a simpler construction in terms of a
possible situations relation, W(s, s′), which is then used to
derive more complex epistemic properties.

Axiom 1 Let W be a relation that is reflexive, transitive and
Euclidean. The possible worlds successor state axiom for W
is:

W(s∗, do(a, s)) ≡ ∃s′.(s∗ = do(a, s′) ∧
W(s′, s) ∧ Poss(a, s′))

This successor state axiom works in a similar manner to the
original axiom for K in the sense that it tracks the evolution
of possible situations as a result of actions. However, unlike
the original K relation, W makes no reference to how the
agent’s knowledge changes as a result of these actions.

To account for sensing actions we first introduce the no-
tion of a sensing equivalence relation SEQ as a means of
separating the generic aspects of the formalism from those
that are specific to a particular scenario:2

Definition 1 Consider a Situation Calculus basic action
theory Σ, a set of sensing actions a1, . . . , an and corre-
sponding sensed fluents φ1, . . . , φn. Then SEQ(a, s′, s) is
a sensing equivalence relation iff there exists an axiom in Σ
of the form:

2Later versions of the SL framework use similar approaches,
introducing a sensing result function (Scherl and Levesque 2003)
or sensing fluent (Levesque 1996).

SEQ(a, s′, s) ≡
n∧
i=1

a = ai ⊃ [∇i.(φi[s′] ≡ φi[s])],

where each∇i is a composition of first-order quantifiers
over the non-situation free variables in φi.

In the definition of sensing equivalence each of the sensing
actions ai senses whether a formula φi is true or whether it
is false in a given situation. For brevity we simply say that ai
senses φi. The equivalence specified by an SEQ relation is
problem specific and encodes the knowledge that is acquired
by the sensing actions. For the example scenario we can
provide the following sensing equivalence relation:

SEQ(a, s′, s) ≡ (a= isopen ⊃ [Open(s′)≡Open(s)]) ∧
(a=getkey ⊃ [∀k.Key(k, s′)≡Key(k, s)])

The W relation and successor state axiom in combination
with the sensing equivalence relation can now be used to
both capture the original Scherl and Levesque notion of
knowledge as well as define a more general notion of knowl-
edge that allows for forgetting actions.

Definition 2 Consider a Situation Calculus basic action
theory, extended with the successor state axiom for W and a
sensing equivalence relation SEQ. Then KM is a knowledge
acquisition relation defined as:

KM(s′, s)
def
= W(s′, s)∧

[¬∃ŝ′, ŝ, a.W(ŝ′, ŝ) ∧ ¬SEQ(a, ŝ′, ŝ)∧
do(a, ŝ′) ≤ s′ ∧ do(a, ŝ) ≤ s]

Essentially, this definition states that every W relation is also
a KM relation unless it has been blocked by a sensing ac-
tion for which the two situations disagree with respect to
the sensed fluents. The definition of Know would then be
defined in terms of KM in the standard manner outlined ear-
lier. For space reasons we do not prove this here but it is
straightforward to observe that the original notion of agent
knowledge is exactly captured by this new formulation.

However, we are interested in defining a more general no-
tion of knowledge. This is possible with the help of an ex-
plicit forgetting action forget that enables an agent to forget
previously acquired knowledge.

Definition 3 Consider a Situation Calculus basic action
theory extended with the successor state axiom for W and
a sensing equivalence relation SEQ. Then K is a general
knowledge relation defined as:

K(s′, s)
def
= W(s′, s)∧

[¬∃ŝ′, ŝ, a.W(ŝ′, ŝ) ∧ ¬SEQ(a, ŝ′, ŝ) ∧
do(a, ŝ′) ≤ s′ ∧ do(a, ŝ) ≤ s ∧
{¬∃s∗′, s∗, b.b = forget(a) ∧

do(a, ŝ′) < do(b, s∗′) ≤ s′ ∧
do(a, ŝ) < do(b, s∗) ≤ s}]

Again, here Know is defined in the usual manner. K works
in a similar manner to KM in that it allows sensing actions
to act as a block on the accessible situations. However, it
further allows this block to itself be blocked by a forgetting
action, thus re-instating a K accessible situation that might
otherwise be inaccessible. In effect the agent will have for-
gotten what it had previously learned by sensing.



(a) Knowledge in the SL Framework
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(b) Knowledge with Forgetting
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Figure 1: The progression of actions leading to the robot being in the room, and in (b) forgetting the key combination. Vertical
lines indicate actions that are performed from the accessible situations. Solid curved horizontal lines represent K accessibility
from the actual situation S0 to the alternative possible situations, while in (b) dotted lines represent W only accessibility.

It is important to note that the single parameter of the for-
getting action is itself an action, with the only useful case
being that of a sensing action. Consequently, this construc-
tion formalises the notion of an agent that forgets the epis-
temic commitments of a previous sensing action rather than
directly forgetting the value of a specified fluent.

Furthermore, the agent retains the knowledge that the
sensing action itself did in fact take place by virtue of the
action history encoded in the situation. However, it sim-
ply cannot remember the result of that action. We can un-
derstand this behaviour as the distinction between semantic
and episodic memory (see, for example, (Schacter, Gilbert,
and Wegner 2011)). Specifically, we are concerned with
forgetting semantic memory. Forgetting of episodic mem-
ory corresponds to the robot forgetting some of its past ac-
tions which can be achieved in a Situation Calculus context
through the use of progression (Reiter 2001).

In order to simplify the encoding of knowledge acquisi-
tion and forgetting as part of a Situation Calculus basic ac-
tion theory we introduce some restrictions as follows:

Definition 4 A Situation Calculus Epistemic Basic Action
Theory (EBAT) is a Situation Calculus Basic Action Theory
Σ extended with the successor state axiom for W such that:

1. A precondition axiom for forgetting actions:
Poss(forget(a), s) ≡ True;

2. The successor state axioms of Σ do not contain a refer-
ence to the function symbol forget;

3. The sensing equivalence relation (SEQ) does not contain
a reference to the function symbol forget;

4. All sensing actions are pure; and,

5. Along with the other standard basic action theory ax-
ioms for the Situation Calculus extended with knowledge
(see (Scherl and Levesque 2003)).

These restrictions result in three distinct and non-
overlapping sets of actions: sensing actions, forgetting ac-
tions and actions that change the world. As they are con-
cerned with the agent’s knowledge, where convenient we re-
fer to the sensing and forgetting actions as epistemic actions.

The requirement for forgetting actions to always be ex-
ecutable and not mentioned in the successor state axioms
is not strictly necessary but simplifies the formalisation. In
particular, not allowing forgetting actions to be contained
in either successor state axioms or the sensing equivalence
relation ensures that forgetting actions serve only one pur-
pose, namely to forget, and cannot be misappropriated for
multiple purposes. Of course, one can always simulate such
multi-purpose actions if necessary by introducing individ-
ual actions that must be executed in a block. Clearly these
restrictions are not onerous.

Framework Analysis and Properties

We now turn to analysing the properties of our framework.
In particular, we establish intuitive knowledge theorems for
the framework. This does however require certain restric-
tions on the formalisation of a given scenario, the reasons
for which require some explanation.



Limits of the Possible Worlds Approach
Contingent facts Firstly, it is important to observe that our
framework inherits the limitations of the SL framework in
that the set of initial situations establishes the boundaries
over what knowledge about the world is subject to change
and what must remain either known or unknown throughout.
We refer to such changeable knowledge as contingent and
define this notion in relation to individual situations:

Contingent(φ, s) def
= (∃s′.W(s′, s) ∧ φ[s′]) ∧

(∃s′.W(s′, s) ∧ ¬φ[s′])

This establishes that a proposition is contingent in a situation
if there is at least one related possible situation in which
the proposition is true and another in which it is false. For
completeness we say that a proposition is necessarily the
case in a situation if it is not contingent in that situation.

The contingent facts are precisely those facts that are po-
tentially discoverable about the world and therefore the tar-
get for sensing actions. However, it is important to observe
that the set of contingent facts can vary as situations evolve.
For example, if a door being open is contingent in some ini-
tial situation but an agent subsequently senses that the door
is open and walks through it, then in the resulting situation
the state of the door will no longer be contingent because
there cannot be a possible world in which the agent walked
through the closed door. Less obviously, a fact that was
previously necessarily the case can become contingent after
performing some action. For example, the action of replicat-
ing the truth value of a contingent fluent.

Knowledge acquisition without sensing While sensing is
the primary means by which an agent can acquire knowl-
edge, the theoretical construction of the framework masks a
second method by which knowledge can be acquired without
explicit sensing actions. This is a property that is implicit in
the original SL framework as well as its various extensions,
such as that of Shapiro et al. (Shapiro et al. 2011).

In essence the problem stems from how the precondition
axioms are encoded and whether the representation of these
axioms is intended to model the actions that an agent knows
that it can execute, or the executability of actions irrespec-
tive of the agent’s knowledge of whether those actions are
executable. To clarify this problem, consider the scenario
where the robot does not initially know if the door is open.
Now, if the door happens to be open in the actual situation,
then a precondition axiom defined without reference to the
robot’s knowledge allows it to walk through the door without
knowing that it is open. However, in the alternative possible
situation where the door was closed, this action was not pos-
sible, hence there will be no successor situation correspond-
ing to the situation where the door is closed. Consequently,
by definition the robot will “know” that the door is closed,
despite never having sensed this about its environment.

At first blush this may not appear to be problematic. One
might, for example, argue that if a person has their eyes
closed and successfully walks through a door then they will
know that the door must have been open in order for the ac-
tion to have succeeded. However, such reasoning ignores
the many sensing actions that would be taking place in such

a scenario. Namely, that the person is able to know that the
action was successful because they didn’t feel the pain of
hitting the door and finding themselves on the floor.

This problem can in practice be avoided with some
added theoretical machinery. In particular, in order to for-
malise reasoning about agent abilities, the SL framework
has been extended with the notion of an action selection
function (Lesperance et al. 1995). This is a second-order
construct that allows conditions to be defined such that an
agent can know whether or not it can get to a situation where
some property holds. Provided that one only considers se-
quences of actions where the agent knows that it can get to
some state, then the problem of knowledge acquisition with-
out sensing can be avoided.

Nevertheless the issue remains a troubling property of the
framework. It is particularly problematic for our extension
as it can affect the contingency of facts and consequently the
conditions under which forgetting can take place.

Fortunately, the solution to this problem is relatively sim-
ple. Namely, to ensure that all action preconditions are spec-
ified so as to model the actions that the agent knows that it
can execute. We shall refer to these as actions with known
preconditions. With this in mind, the precondition axioms
for the sample scenario can now be re-stated as follows:

Poss(enter, s)≡ Know(Open, s) ∧Know(¬InRoom, s)
Poss(usekey, s)≡ ∃k.Know(Key(k), s) ∧Know(¬Open, s)

Now it is possible for the robot to execute the enter action
only when it knows that it is not currently in the room and
knows that the door is open. Similarly, in order for the robot
to use the key combination to open the door, it must know
the combination and know that the door is closed. Note, ac-
tions that are always executable, such as the example sensing
actions, implicitly have known preconditions (i.e., a tautol-
ogy is true in every possible world and hence is known).

Epistemic Properties
We can now turn to establishing that the knowledge with for-
getting framework genuinely satisfies the intuitive properties
of an epistemic action theory. Namely, we establish that it
satisfies the basic introspective properties of knowledge, that
knowledge can indeed be acquired through sensing actions
and, finally, that knowledge can also be forgotten through
forgetting actions.

Introspection As is the case of the SL framework, our
extension can be shown to also satisfy a strong notion of
knowledge introspection. As a first step, it is useful to estab-
lish some key properties of the defined K relation.

Lemma 1 Consider a Situation Calculus EBAT. The defined
relation K is reflexive, transitive and Euclidean.

Proof: Reflexivity is immediate since for every W(s, s) rela-
tion K(s, s) exists by definition. We now consider only the
transitive case as the Euclidean case follows an identical ar-
gument. Consider if K(s, s′) and K(s′, s′′) but ¬K(s, s′′). W
is transitive so as W(s, s′) and W(s′, s′′) therefore W(s, s′′).
Hence K(s, s′′) is being blocked from holding by some sens-
ing action a such that the fluent it senses, φ, is different



between s and s′′. But then the value of φ in s′ must be
different to one of either s or s′′. Hence either K(s, s′′) or
K(s′, s′′) must be false and a contradiction follows. 2

These properties of the K relation can now be used to estab-
lish that knowledge is indeed introspective.

Theorem 1 (Introspection) Let Σ be a Situation Calculus
EBAT, then for any φ and situation s:

Σ |= Know(φ, s) iff Σ |= Know(Know(φ, now), s)

Proof: Assume that LHS holds but the RHS doesn’t hold.
Hence ∀s′.K(s′, s) ⊃ φ[s′] holds but ∀s′.K(s′, s) ⊃
(∀s′′.K(s′′, s′) ⊃ φ[s′′]) does not. However, the only way
for the second formula not to hold is if there is some s′ and
s′′ such that K(s′, s) and K(s′′, s′) and ¬φ[s′′]. But, from
Lemma 1, K is transitive so K(s′′, s) must hold and contra-
dicts with the LHS.

Now assume that the RHS holds but the LHS doesn’t. So
there exists some s∗ such that K(s∗, s) and ¬φ[s∗]. Sub-
stituting s∗ for an instance of s′ in the RHS we have that
∀s′′.K(s∗, s) ⊃ K(s′′, s∗) ⊃ φ[s′′] and since K(s∗, s) holds
so ∀s′′.K(s′′, s∗) ⊃ φ[s′′]. Now K is reflexive so K(s∗, s∗)
holds and therefore φ[s∗] must hold, which contradicts the
assumption that the LHS doesn’t hold. 2

Knowledge Acquisition Naturally, it is important that an
agent can actually gain knowledge through sensing actions,
namely after sensing a contingent fluent the agent will know
the truth value of that fluent.

Theorem 2 Let Σ be a Situation Calculus EBAT, aφ be a
pure sensing action that senses fluent φ and is executable in
situation s, then:

1. Σ |= Know(φ, do(aφ, s)), where φ is true in s, or
2. Σ |= Know(¬φ, do(aφ, s)), otherwise.

Proof: Case 1. Consider any s′ such that W(s′, s)
and ¬φ[s′]. If Poss(a, s′), then there will be a
W(do(aφ, s

′), do(aφ, s)) but aφ detects the value of φ there-
fore ¬SEQ(aφ, s

′, s) holds. Alternatively, ¬Poss(a, s′) so
there will be no W(do(aφ, s

′), do(aφ, s)). In either case
K(do(aφ, s

′), do(aφ, s)) will not hold. Hence the only situ-
ations in which K(do(aφ, s

′), do(aφ, s)) holds will be those
where the fluent φ will also hold, so Know(φ, do(aφ, s)).
Case 2. follows in an identical manner. 2

Together Theorems 1 and 2 establish that the new framework
does indeed capture the properties of the SL framework.

Forgetting In a similar manner to the establishment that
not all facts are contingent, forgetting allows only some facts
to be forgotten. We now establish precise conditions under
which this can take place.

The simplest case of forgetting is where a forgetting ac-
tion is performed immediately after its corresponding sens-
ing action. Interestingly, even in this case there are some
conditions that are required. The critical property is to pre-
serve the contingency of a fluent after the sensing action.
Unfortunately, even for a pure sensing action, contingency
is not necessarily preserved, and it is possible to provide a
simple example to highlight this fact.

Consider a sensing action aφ that senses φ and has the
precondition that it can sense φ only when φ is itself known
(i.e., Poss(aφ, s) ≡ Know(φ, s)). A set of possible situa-
tions can then be defined such that φ is both known and con-
tingent. In such a case, after performing the sensing action,
φ will still be known but will no longer be contingent.

The contrived nature of this example provides some hint
that such sensing actions are not the typical types of sens-
ing actions that we would want to consider and therefore we
restrict our actions to remove such pathological cases.

Definition 5 An action a is contingency preserving w.r.t. φ
in s if φ is contingent in s iff φ is contingent in do(aφ, s).

In general it is reasonable to expect that an action that
senses a fluent should be contingency preserving for that flu-
ent, although not necessarily other fluents. Furthermore, it
is straightforward to observe that, because forgetting actions
are always possible, therefore they are contingency preserv-
ing for all fluents in all situations. We now establish the sim-
plest condition under which forgetting can take place; cases
where a fluent is forgotten immediately after sensing.

Lemma 2 Let Σ be a Situation Calculus EBAT such that
fluent φ is contingent in s and aφ is a pure sensing action
that preserves the contingency of φ in s, then:

Σ |= ¬KnowIf(φ, do([aφ, forget(aφ)], s))

Proof: Both, Σ |= ¬Know(φ, do([aφ, forget(aφ)], s)) and
Σ |= ¬Know(¬φ, do([aφ, forget(aφ)], s)) must be shown,
but the proofs are identical so consider only the first. Sim-
ilarly, whether φ is true or false in s are mirrored so only
consider the first case. φ is contingent in s and aφ pre-
serves contingency, therefore after executing aφ, φ will be
contingent in do(aφ, s) although φ will also be known (The-
orem 2). Hence there is some ¬SEQ(a, s′, do(aφ, s)) that is
blocking K(s′, do(aφ, s)) from holding. Forgetting actions
preserve contingency so, after performing the forgetting ac-
tion forget(aφ), then any such block will itself be blocked by
the forgetting action and therefore there will exist a world s′′
such that K(s′′, do([aφ, forget(aφ)], s)) and ¬φ[s′′] hence φ
will not be known. 2

Of course, sensing followed immediately by forgetting is
not a particularly useful scenario. Therefore we now con-
sider the case where some arbitrary number of actions are
executed in between performing the sensing and forgetting
actions. However, in order for this to be possible, it is neces-
sary to establish that the actions that occur between a sensing
action and its corresponding forgetting action are in some
sense independent of the fact being forgotten.

The key point in establishing a notion of the independence
of fluents and actions is to observe that the preconditions and
successor state axioms of a basic action theory establish de-
pendencies between actions in terms of how they relate to
fluents. If the value of some fluent is related to an action,
then it may not be possible to forget the value of that fluent
without first forgetting the action itself. However, as already
outlined, our framework only provides a mechanism to for-
get the value of fluents and does not provide a mechanism to
forget the history of past actions.



To properly capture these notions requires the definition
of a number of properties. Firstly, it is important to capture
how non-epistemic actions interact with particular fluents.

Definition 6 (Consequential Independence) For a Situa-
tion Calculus EBAT Σ, an action a is said to be consequen-
tially independent from φ iff:

Σ |= ∀s.φ[s] ≡ φ[do(a, s)]

This definition captures whether or not an action can change
the value of a fluent under some condition. Importantly, it
makes no reference to the executability of an action in a sit-
uation. Instead, it only examines the effects of actions ir-
respective of whether some precondition has been satisfied.
Hence it is a strong requirement that genuinely establishes
that an action can have no direct effect on some property of
the environment. For example, that picking up a cup has no
direct effect on the state of a light.

As well as consequential independence, it is also neces-
sary to consider the epistemic independence of fluents from
an agent’s actions.

Definition 7 (Epistemic Independence (non-forgetting))
For a Situation Calculus EBAT Σ, a non-forgetting action
a is said to be epistemically independent of φ in s iff:

(Know(φ, s) ≡ Know(φ, do(a, s))) ∧
(Contingent(φ, s) ≡ Contingent(φ, do(a, s)))

This establishes two specific criteria for an action to be con-
sidered epistemically independent of a fluent. Most obvi-
ously it cannot change the agent’s knowledge of that fluent.
This applies to directly sensing the fluent but also any in-
direct epistemic ramifications of the action. For example,
sensing that a light is on means knowing that the switch is
also turned on. However, equally important is that the action
must preserve the contingency of a fluent.

Definition 7 only captures the notion of epistemic inde-
pendence for non-forgetting actions. However, forgetting
actions also affect what an agent knows and it is therefore
necessary to extend this notion to forgetting actions.

Definition 8 (Epistemic Independence (forgetting))
For a Situation Calculus EBAT Σ, a forgetting action
forget(aφ) is said to be epistemically independent from φ in
s iff aφ is epistemically independent of φ in s.

Simply, a forgetting action is epistemically independent of a
fluent in exactly the cases where its corresponding sensing
action is epistemically independent of that fluent.

We can now define a general notion of the independence
of actions from fluents by grouping together the various spe-
cific types of independence.

Definition 9 (Independence) For a Situation Calculus
EBAT Σ, an action a is independent from fluent φ in sit-
uation s iff a is consequentially independent of φ in s and a
is epistemically independent (forgetting and non-forgetting)
of φ in s.

Now that we are armed with a formal notion of the indepen-
dence of actions from fluents, we can establish the condi-
tions under which a fluent will be forgettable in a situation.

Definition 10 (Forgettable) We say that a fluent φ is for-
gettable in situation s iff there is a situation s′ such that
s = do([aφ, a1, . . . , an], s′), where φ is contingent in s′,
aφ is a pure sensing action that senses φ and preserves the
contingency of φ in s′, and:

1. action a1 is independent of φ in do(aφ, s
′); and,

2. for each 1 ≤ i < n, action ai+1 is independent of φ in
do([aφ, a1, . . . , ai]), s

′).

It can now be established that our defined notion of forget-
tability does indeed capture the right conditions to allow the
results of a sensing action to be known in one situation but
forgotten in a some later situation.

Theorem 3 Let Σ be a Situation Calculus EBAT such that
fluent φ is forgettable in situation s and action aφ senses φ,
then:

Σ |= ¬KnowIf(φ, do(forget(aφ), s))

Proof: Expanding, both Σ |= ¬Know(φ, do(forget(aφ), s))
and Σ |= ¬Know(¬φ, do(forget(aφ), s)) must be shown,
but the proofs are identical so consider only the first
case. Similarly, whether φ is true or false in s are mir-
rored so only consider the first case. Applying the defi-
nition of φ being forgettable in s we have situation s =
do([aφ, a1, . . . , an], s′), where φ is contingent in s′. Now
provable by induction on the size of a1, . . . , an. Base case
consider n = 1: Similar to Lemma 2. φ is known but
contingent after action aφ. Now, a1 is independent of φ in
do(aφ, s

′) so φ is known and contingent in do([aφ, a1], s′).
Because φ is contingent in do([aφ, a1], s′) so there is some
W(s′′, do([aφ, a1], s′)) where ¬φ[s′′] holds but is being
blocked by some ¬SEQ(aφ, s

′, s∗). Hence after executing
forget(aφ) this block will itself be blocked so there will
be some K(s′′′, do([aφ, a1, forget(aφ)], s′) where ¬φ[s′′′] so
will not be known in do([aφ, a1, forget(aφ)], s′). Now as-
sume that this holds for n = i and prove for n = i+ 1. The
proof for this is similar to the base case and stems from φ
being contingent and known in do([aφ, . . . , ai], s

′). Since φ
is independent of ai+1 in do([aφ, . . . , ai], s

′) so φ will also
be known and contingent in do([aφ, . . . , ai+1], s′). φ being
unknown in do([aφ, . . . , ai+1, forget(aφ)], s′) then follows
in a straightforward manner. 2

Theorem 3 establishes that knowledge can indeed be for-
gotten; after having been previously acquired through a
sensing action.

It is worth observing that a sensing action immediately
followed by its corresponding forgetting action results in an
agent forgetting both the sensed value and any derived con-
sequences. However, the presence of intermediate actions
in between sensing and forgetting can prevent these conse-
quences being lost. For example, if our example scenario
(Figure 1(b)) had also included an initially accessible situ-
ation where there was no actually key, then after perform-
ing all the actions and forgetting the value of the key, the
robot would nevertheless have retained the acquired knowl-
edge that a key did in fact exist.

Introspection about Action Consequences A final prop-
erty that is worth noting concerns the introspective nature of



knowledge and what the agent currently knows about what
it will know in the future. It is possible to show that in the
current situation the agent knows that after sensing a fluent it
will know if that fluent is true or false, however it also knows
that it will no longer know this fact after subsequently for-
getting the sensing action. Due to space restrictions we only
state the theorem without proofs.
Theorem 4 Let Σ be a Situation Calculus EBAT such that
φ is forgettable in situation s and action aφ senses φ, then:

Σ |= Know(KnowIf(φ, do(aφ, now), s) ∧
Know(¬KnowIf(φ, do([aφ, forget(aφ)], now), s)

Relationship to Existing Frameworks
In this section we explore the relationship of our framework
to well-known formalisms in the literature that provide for
similar behaviours.

AGM Belief Contraction
While we are concerned with notions of knowledge, there
is nevertheless a close link to the research on belief change.
Belief change is concerned with establishing how (rational)
agents should change their beliefs in light of new informa-
tion. The most well-known formal account of belief change
is that of AGM belief revision (Alchourrón, Gärdenfors, and
Makinson 1985) which defines rationality postulates that
should be preserved by belief change operators.

Of particular interest to our account of forgetting is that
the effects of a forgetting action are comparable to the AGM
belief contraction operator. For reference, the traditional
AGM belief contraction postulates are as follows.
(K–1) For any sentence φ and any belief set K,

K − φ is a belief set. (closure)
(K–2) If φ 6∈ Cn(∅), then φ 6∈ K − φ. (success)
(K–3) K − φ ⊆ K. (inclusion)
(K–4) If φ 6∈ K, then K − φ = K. (vacuity)
(K–5) If φ ∈ K, then K ⊆ Cn((K − φ) ∪ {φ}).

(recovery)
(K–6) if φ↔ ψ ∈ Cn(∅) then K − φ = K − ψ.

(extensionality)

In showing the link to belief contraction, it is first neces-
sary to provide a bridge from the AGM framework to ours.
Fortunately, we can adopt the approach already outlined in
Shapiro et al. (Shapiro et al. 2011). In particular Shapiro
et al. observe that, in the Situation Calculus framework, an
agent is said to believe (in our case, know) a formula if the
theory entails that the formula is believed (known). How-
ever, unless the theory is complete with respect to the beliefs
(knowledge) of the agent, then we may not be able to deter-
mine whether some formulas are actually believed (known)
or not. In contrast, within belief change frameworks, the be-
liefs of an agent are explicitly associated with a belief set,
with the implicit closed-world assumption that those formu-
las not in the belief set are not believed. To align the two
frameworks Shapiro et al. therefore assume a model M of
the theory Σ which is used to fix the belief state of the agent.
We adopt this approach here and assume a model of the the-
ory in order to fix on the knowledge state of the agent.

Definition 11 We denote the knowledge state of a situation
s (in M ) by K(s) as:

K(s) = {φ : M |= Know(φ, s)}

We can now provide a definition of what it means to expand
a knowledge state by a formula.

Definition 12 We denote the expansion of a knowledge state
at situation s by φ (in M ) by:

s+ φ
def
= {ψ : M |= Know(φ ⊃ ψ, s)}

It is worth observing that this notion of knowledge state ex-
pansion should not be confused with sensing. Sensing ac-
tions sense particular fluents and have preconditions axioms
that determine when that action is possible. On the other
hand, knowledge state expansion simply defines the result-
ing state when given an initial state and an arbitrary formula
that is taken to be known.

The AGM allows for the contraction of any (non-
tautological) formula. However, our framework is more se-
lective about what can be forgotten and therefore requires
some qualifications.

Definition 13 We denote the forgettable formulas at a situ-
ation s by F(s) as:

F(s) = {φ,¬φ : φ is forgettable in s}

An AGM belief contraction-like operator can now be de-
fined within our extended Situation Calculus framework that
specifies the conditions under which contraction is possible.

Definition 14 (s− φ) We denote the contraction of s by φ
as s− φ and define it as follows:

s− φ def
=

{ do(forget(aφ), s), if aφ senses φ and
φ is forgettable in s;

s, otherwise.

As a notational convenience we can indicate when two for-
mulas are equivalent with respect to a Situation Calculus ba-
sic action theory Σ:

φ ≡Σ ψ
def
= Σ |= ∀s.φ[s] ≡ ψ[s]

Finally, we can provide and prove rationality postulates for
our contraction operator that mirror the original AGM belief
contraction postulates.

Theorem 5 (Contraction) For any situation s and fluents
φ and ψ that are forgettable in s:

(K–1) K(s− φ) is deductively closed. (closure)
(K–2) φ 6∈ K(s− φ). (success)
(K–3) K(s− φ) ⊆ K(s). (inclusion)
(K–4) If φ 6∈ K(s) and ¬φ 6∈ K(s)

then K(s− φ) = s. (vacuity)
(K–5) If φ ∈ K(s), then K(s) ⊆ K(s− φ) + φ or

K(s) ⊆ K(s− φ) + ¬φ (recovery)
(K–6) if φ, ψ ∈ F(s) and φ ≡Σ ψ

then K(s− φ) = K(s− ψ). (extensionality)



Proof: For (K–1) it is straightforward to see that K as de-
fined is always deductively closed. (K–2) is a direct conse-
quence of Theorem 3. (K–3) can be shown by examining
the definition of K and confirming that what is known after a
forgetting action will be a subset of what is known before the
forgetting action. (K–4) is a direct result of the definition of
contraction that only forgettable fluents (or their negations)
can be contracted and that only fluents in the knowledge
state can be forgotten. (K–5) is a consequence of deductive
closure, expansion operator s + [¬]φ, and the defined con-
traction operator. (K–6) is a consequence of the deductive
closure of K(s), K(s− φ) and that the resulting knowledge
states K(s− φ) and K(s−ψ), φ is true in every situation in
which ψ in true. 2

Theorem 5 shows that forgetting in the Situation Calculus
is well-behaved with respect to the AGM contraction pos-
tulates. It is worth clarifying the definition of the recovery
postulate (K–5). While contraction is defined here with re-
spect to a forgetting action, expansion is not defined in terms
of sensing actions but rather in terms of a knowledge set.
One reason for this is that an expansion operator defined in
terms of sensing actions could easily be shown to fail re-
covery in cases where a sensing action’s precondition is not
satisfied after the forgetting action. For example, consider a
robot that senses whether a light is on in the bedroom, then
moves to the kitchen. If it then forgets that the light was
on in the bedroom it cannot simply re-sense the fluent as it
would first need to move back to the bedroom. However,
an important aspect of the AGM recovery postulate is that
it provides a notion of minimality; namely, that contraction
does not throw away more than it needs to. Consequently,
the chosen definition of expansion fits closely the intention
of the AGM in defining a notion of recovery.

Literal Forgetting
In this paper we are interested in the notion of knowledge
forgetting. However, the more commonly studied form of
forgetting is that of logical forgetting (Lin and Reiter 1994).
In a formal sense, logical forgetting involves the replace-
ment of a formula with one that is logically weaker and
comes in two forms: forgetting a grounded literal or fact
(also known as literal forgetting) and forgetting a relation.

While logical and knowledge forgetting are superficially
unrelated, nevertheless recent work has established a con-
nection between literal forgetting and belief erasure (Nayak,
Chen, and Lin 2007). Therefore, it is worth exploring
whether there is any connection between logical and knowl-
edge forgetting. However, we shall show that in general
there is no link between these two and that logical forgetting
is more drastic in what is forgotten than is strictly necessary
for knowledge forgetting.

In the following discussion we only provide a brief out-
line of the formalism behind literal forgetting, however the
interested reader is referred to (Lin and Reiter 1994). Lit-
eral forgetting is defined in terms of models of theories
where conditions are provided such that a theory T ′ is the
result of forgetting about ground atom p in theory T (writ-
ten forget(T ; p)). A key result is that, for finite theories, lit-

eral forgetting can be achieved through a number of purely
syntactic manipulations:

1. For formula ϕ and ground atom P (~t ), let ϕ[P (~t )] denote
the replacement of occurrences of P (~t′) in φ by the dis-
junctive tautology: [~t = ~t′ ∧ P (~t )] ∨ [~t 6= ~t′ ∧ P (~t′)].

2. Denote ϕ+

P (~t )
as the result of replacing P (~t ) by true in

ϕ[P (~t)], and ϕ−
P (~t )

as the result of replacing P (~t ) by

false in ϕ[P (~t )].
Hence for T = {ϕ} and ground atom p:

forget(T, p) = {ϕ+
p ∨ ϕ−p }

Example 1 (from (Lin and Reiter 1994)) Let T = {ϕ},
where ϕ = ∀x.student(x) and we want to forget that
student(John). Now, ϕ[student(John)] is:
∀x.[x=John∧student(John)]∨[x 6=John∧student(x)].

Hence ϕ+
student(John) is equivalent to:

∀x.x 6= John ⊃ student(x)

and ϕ−student(John) is equivalent to:

∀x.x 6= John ∧ student(x)

So forget(T ; student(John)) is equivalent to:
{∀x.x 6= John ∧ student(x)}

As is clear from Example 1, literal forgetting provides for
a strong form of forgetting that removes the given literal en-
tirely from the theory. Unfortunately, for our purposes, this
is too strict a requirement for the form of knowledge forget-
ting that we require. This can be seen with reference to the
robot scenario.

Firstly, in order to align the two frameworks, we can re-
use the notion of a knowledge state defined in terms of a
model (Definition 11). Now, consider the knowledge state
of the robot in the example scenario from the point after
it has entered the room but before it performs the forget-
ting action (Figure 1(b)). At this point the robot will cer-
tainly know that C1 is the key combination. However it
will also have the base knowledge that exactly one of C1

and C2 is the key combination. Hence the robot’s knowl-
edge state will contain the following key related clauses:
Key(C1),Key(C1)∨Key(C2),¬Key(C1)∨¬Key(C2). Then,
after forgetting, the robot will no longer know that C1 is the
key but critically it will still know that the key is exactly
one of C1 or C2. Hence it will retain the key related facts:
Key(C1) ∨ Key(C2),¬Key(C1) ∨ ¬Key(C2). The robot has
forgotten the result of the sensing action and no more.

On the other hand, if we were to perform logical for-
getting of Key(C1) on the robot’s state, then applying the
syntactic method outlined earlier, all references to the literal
Key(C1) will be removed from the knowledge state and each
of the three key related clauses will be replaced by True .
Hence the robot will not only have forgotten that C1 is the
key but also that the key is one of C1 or C2.

This example highlights that knowledge forgetting is in-
deed distinct from logical forgetting. In particular, the
knowledge forgetting approach can provide for a more fine-
grained form of forgetting where appropriate.



Conclusion and Future Work
In this paper we have motivated the need for agents to be
able to forget knowledge. Based on an existing approach to
modelling agent knowledge acquisition in the Situation Cal-
culus (Scherl and Levesque 1993), we developed a formal
framework that allows for an agent to both acquire and for-
get knowledge. An extensive analysis of the framework was
provided, highlighting important cases under which knowl-
edge acquisition and forgetting can take place. We further
evaluated our new framework against existing models that
provide for similar behaviour. In particular, we showed that
our model is well-behaved with respect to the well-known
AGM contraction postulates (Alchourrón, Gärdenfors, and
Makinson 1985), but is distinct from the notion of logical
forgetting (Lin and Reiter 1994). In this latter case it was
shown that knowledge forgetting can provide for more fine-
grained control over what information can be forgotten.

This work presents a number of interesting avenues for
future research. Importantly, the relationship to notions
of forgetting in epistemic logics (Zhang and Zhou 2009;
van Ditmarsch et al. 2009) should be explored. While not
concerned with environmental change as a result of actions,
nevertheless there are commonalities with Situation Calcu-
lus formalisms that deserve further exploration. For exam-
ple, the formalisation of knowledge forgetting from Zhang
and Zhou (Zhang and Zhou 2009) defines four postulates for
a forgetting operator, which it should be possible to show are
satisfied by our notion of forgetting.

It would also be useful to see if the techniques used to
achieve forgetting in epistemic logics, for example the in-
trospective forgetting approach (van Ditmarsch et al. 2009),
can be applied to our framework. Depending on the require-
ments of the problem domain, this could potentially pro-
vide for alternative forgetting actions, perhaps with different
properties and fewer restrictions over what knowledge can
and cannot be forgotten.

Finally, it would be interesting to explore the applications
that were motivated in the introduction. In particular, the
application to the analysis of nonmonotonic cryptographic
protocols would most probably necessitate an extension of
this model to the multi-agent context. Using previous re-
search that extends the original Scherl and Levesque knowl-
edge framework to the multi-agent setting in the context of
game playing (Schiffel and Thielscher 2011), it would then
be necessary to see if similar techniques could be applied to
our extended framework.
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