
The Features-and-Fluents Semantics for the Fluent Calculus

Michael Thielscher and Thomas Witkowski
Department of Computer Science

Dresden University of Technology, Germany

Abstract
Based on an elaborate ontological taxonomy, the Features-
and-Fluents framework provides an independent action se-
mantics for assessing the range of applicability of action cal-
culi. In this paper, we show how the fluent calculus can
be used to capture the full range of phenomena in K-IA,
the broadest ontological class that has been fully formalized
in (Sandewall 1994). To this end, we develop a significant
extension of the fluent calculus for modeling actions with du-
rations and with specific trajectories of changes. We present a
provably correct translation of scenario descriptions from the
Features-and-Fluents semantics into fluent calculus axioma-
tizations.

Introduction
Action formalisms are a core aspect of research in knowl-
edge representation and reasoning. The classical approach,
the situation calculus (McCarthy 1963), traces back to the
beginning of Artificial Intelligence (McCarthy 1958) and
has led to the fundamental frame problem (McCarthy &
Hayes 1969). The concept of successor state axioms (Re-
iter 1991) has provided a first satisfactory solution to this
problem in the situation calculus. By adding the explicit
notion of a state, the situation calculus has been developed
into the fluent calculus (Thielscher 2005b). Both solutions to
the frame problem have been extended to capture a variety
of phenomena, for example, nondeterministic actions (Lin
1996; Thielscher 2000a). The two calculi employ pure clas-
sical logic and thus are amenable to its standard semantics.
However, an analysis of their range of applicability based on
an independent, equally expressive action semantics has not
been carried out.

The Features-and-Fluents framework of (Sandewall 1994)
constitutes such an independent action semantics, which in-
cludes an elaborate ontological taxonomy comprising a vari-
ety of aspects like conditional effects, nondeterministic out-
comes, and actions with durations. This semantics has been
used to assess the range of applicability of nonmonotonic
solutions to the frame problem based on preferential entail-
ment. Yet it has been an open problem to show that a stan-
dard monotonic approach, like the situation calculus or the

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

fluent calculus, is expressive enough to be applicable to the
full test suite of example reasoning problems in (Sandewall
1994), let alone to be provably sound and complete wrt. one
of the more expressive ontological classes in the taxonomy.

In this paper, we present a version of the fluent calculus
that is sufficiently expressive to capture K-IA, which is the
broadest class that has been rigorously formalized and in-
tensively studied in (Sandewall 1994) and in which correct
knowledge and a fully inertial world is assumed. To this
end, we develop a significant extension of the basic fluent
calculus by introducing an explicit model for the duration
of actions and for trajectories of changes. On this basis, we
present a translation function that maps any K-IA scenario
into a fluent calculus axiomatization, and we prove that the
intended models of the former coincide with the classical
models of the latter. In this way the fluent calculus provides
a sound and complete reasoning method for this ontologi-
cal class of the Features-and-Fluents semantics. As a simple
consequence of this result, the fluent calculus is shown to
handle the entire test suite of example problems in (Sande-
wall 1994).

The rest of the paper is organized as follows: We begin by
giving a brief introduction to both the Features-and-Fluents
semantics and the fluent calculus. Thereafter, we develop an
extension of the fluent calculus for representing and reason-
ing about the trajectories of changes for actions with explicit
durations. We then present a mapping from K-IA scenarios
into the extended fluent calculus and prove its soundness and
completeness. A summary and discussion concludes the pa-
per.

The Ego-World-Semantics
In the following, we give a condensed introduction to the
Features-and-Fluents framework; we refer to (Sandewall
1994) for more details.

Inhabited dynamical systems
An inhabited dynamical system (IDS) is a collection of pos-
sibly related objects whose state changes over time influ-
enced by an ego. At each point in time, an IDS is in a state,
which is an assignment of values to a given set of features.
The domain of features will be represented by the symbol
F , the domain of states by R, and the domain of timepoints

362

by T , which throughout the paper will be the set of nonneg-
ative integers. An IDS history is a function R(t, f) which,
for a given timepoint t and a feature f , assigns an appro-
priate value to that feature.

In the IDS reality, an event occurrence happens over an
interval of time and is denoted by 〈s, E, t〉 ∈ T × E ×
T , where s < t and E denotes the domain of occurrence
designators (also called actions). A development of an IDS
can be understood as a tuple which contains all information
about occurrences, feature-values, and timepoints during the
run of the system.
Definition 1. A 5-tuple 〈B,M,R,A, C〉 is a development
of an IDS if
• B ⊆ T is a finite set of timepoints, whose members are

called breakpoints; the largest member of B is called
now and is written nB;

• M is a valuation which maps every object constant to an
element of a given object domain O (see also Definition 2
below) and every timepoint constant to a nonnegative in-
teger;

• R is an IDS history defined up to timepoint nB;
• A, the past action set, is a set of occurrences 〈s, E, t〉,

where s, t ∈ B;
• C , the current action set, is a set of pairs 〈s, E〉, where
s ∈ B.
The interaction between an ego and a world is under-

stood as a game, where both the ego and the world take
turns and where, starting from an initial state r0 of the
world at time zero, they construct a development. For a
given valuation M , the initial development is defined as
〈{0},M, {0 7→ r0}, ∅, ∅〉. The ego, when it makes a move,
either starts an action by adding 〈s, E〉 to C (with nB < s)
and s to B, or the ego terminates an action by removing
〈s, E〉 from C (with s < nB) and a corresponding addi-
tion of 〈s, E, nB〉 to A. Afterwards, the world extrapolates
what happens as a result of the current state of the world
and the actions that the ego has initiated. It can either add
exactly one further member n to B and construct a new de-
velopment as a revision up to n, or it can leave the current
state unchanged and extend the history R so that it becomes
complete.

Ontological taxonomy
The definition of an ontological taxonomy over the set
of worlds and scenario descriptions allows one to classify
worlds and problems which fulfill certain epistemological
assumptions. While the Features-and-Fluents framework is
a very general semantics, the broadest class that has been
fully formalized and intensively studied in (Sandewall 1994)
is denoted by K-IA, where K means that the ego has cor-
rect knowledge of the world, I means that the world is in-
ertial, and A stands for alternative effects of actions (e.g.,
conditional or nondeterministic). With this general class on
top of the hierarchy, a taxonomy is built by restrictions to
sub-specialties, like complete knowledge of the initial state,
single-step actions, equidurational change, deterministic ac-
tions, etc.

scd1 [s1, t1]Load
scd2 [s2, t2]Spin
scd3 [s3, t3]Fire
scd4 t1 < s2 ∧ t2 < s3
obs1 [0]alive=̂T ∧ [t3]alive=̂F

Figure 1: A chronicle for a variant of the Russian Turkey
example.

Chronicles
In the following, we formally define scenario descriptions,
called chronicles, in K-IA. This requires some preparatory
definitions.

A feature expression is of the form F (ω1, . . . , ωn), where
Fn ∈ F is an n-ary feature symbol and each ωi is either
an object constant or an object variable (n ≥ 0). Using
the standard logical connectives, fluent formulas are built
from atomic formulas of the form f=̂X , meaning that fea-
ture expression f has one of the values X = {x1, . . . , xn}
(n ≥ 1). If X = {x} is a singleton, then we simply write
f=̂x. Using the standard logical connectives, logic formulas
are built from elementary formulas, which are
• relational formulas among object constants or timepoints,

which are either timepoint constants or members of T
(i.e., nonnegative integers); or

• expressions of the form [τ]φ, where τ is a timepoint ex-
pression (i.e., an arithmetic term over timepoints) and φ
is a fluent formula.

An example of a logic formula is obs1 in Figure 1, where
alive is a nullary feature symbol with domain {F,T}. An
action statement [ς, τ]ε consists of variable-free timepoint
expressions ς and τ and a variable-free occurrence expres-
sion ε = A(ω1, . . . , ωn), where A is an n-ary action sym-
bol and each ωi is an object constant. An example of an
action statement is scd1 in Figure 1.
Definition 2. A 4-tuple 〈O, 〈Infl,Trajs〉, SCD,OBS〉
is a chronicle if
• O is an object domain;
• the world description 〈Infl,Trajs〉 consists of

– a mapping Infl(E, r) from actions E ∈ E and par-
tial states1 r to finite subsets of F (defining the set of
features that are potentially affected by E if executed
in a state of the world that satisfies r), and

– a finite, non-empty set Trajs(E, r) whose elements
are finite and non-empty sequences of partial states
(the trajectories) assigning values to the features in
Infl(E, r);

• the schedule set SCD consists of action statements along
with timing statements, which are formulas that use only
timepoint expressions;

• the observation set OBS is a set of logic formulas.
1A partial state is an assignment of values to a finite subset of

all features occurring in a chronicle.

363

Partial starting state r Infl(Load, r) Trajs(Load, r)
{shot : 0} {shot} 〈{shot : 2}〉
{shot : 1} {shot} 〈{shot : 2}〉
{shot : 2} ∅ 〈∅〉

Partial starting state r Infl(Spin, r) Trajs(Spin, r)
{shot : 0} ∅ 〈∅〉
{shot : 1} {shot} 〈{shot : 0}〉, 〈{shot : 1}〉
{shot : 2} {shot} 〈{shot : 0}〉, 〈{shot : 2}〉

Partial starting state r Infl(Fire, r) Trajs(Fire, r)
{alive : T, shot : 0} ∅ 〈∅〉
{alive : T, shot : 1} {alive, shot} 〈{alive : T, shot : 0},

{alive : F, shot : 0}〉
{alive : T, shot : 2} {alive, shot} 〈{alive : T, shot : 1},

{alive : F, shot : 1}〉
{alive : F, shot : 0} ∅ 〈∅〉
{alive : F, shot : 1} {shot} 〈{shot : 0}〉
{alive : F, shot : 2} {shot} 〈{shot : 1}〉

Figure 2: Trajectories for our variant of the Russian Turkey domain: Loading the gun always has the effect of providing for
two shots; spinning has the nondeterministic effect that either the gun becomes unloaded, or the number of shots remains
unchanged; and firing a loaded gun has the consecutive effect that, first, the number of shots is decreased and, then, that the
turkey dies provided it was alive.

Example 1. Consider a vocabulary for a variant of the Rus-
sian Turkey scenario—an extension of the well-known Yale
Shooting problem (Hanks & McDermott 1987)—comprising
the (nullary) features alive0 : {T,F} and shot0 : {0,1,2},
where the latter describes the number of possible shots with-
out reloading the gun. Let the occurrence vocabulary con-
sist of the nullary symbols Load, Spin, and Fire. The laws
in Figure 1 along with the empty object domain O = ∅ and
the trajectories in Figure 2 constitute a chronicle.

The specification of multiple trajectories for an action and
a partial state can have two reasons: The corresponding ac-
tion may be nondeterministic, like Spin, or the (order of the)
change of the fluent’s values is indeterminate.

On top of the trajectory description language, (Sandewall
1994) includes an informal definition of a language for effect
laws and their translation into a trajectory table. A variant
of this language, along with a more formal definition of its
semantics, has been presented in (Sandewall 1998). We re-
frain from giving a more thorough treatment of this issue,
because our translation into the fluent calculus will take a
trajectory description directly as input.

Semantics
For a given action E and a partial state r, let r′ be the
restriction of r to the features in Infl(E, r), and let
〈r′1, . . . , r

′
k〉 be a member of Trajs(E, r). This trajectory

represents an execution of the form 〈s, E, s+ k〉, where the
IDS system at times s+ 1, . . . , s+ k is in states r1, . . . , rk
such that each ri is obtained from r′i by choosing, for all
features not in Infl(E, r), the value they have in the full

state in which the execution of E begins. In this way, the
trajectory 〈r′1, . . . , r

′
k〉 specifies the successive change in

the members of Infl(E, r) while all other features remain
unchanged. Different initial states may lead to different ex-
ecution sequences, but also the same initial state may lead
to different execution sequences if there is more than one
trajectory.

Models in the Features-and-Fluents framework are de-
velopments resulting from games between an ego and a
world for a given correct valuation. A valuation (cf. Defi-
nition 1) is correct with respect to a given K-IA chronicle
Υ = 〈O, 〈Infl,Trajs〉, SCD,OBS〉 if it satisfies the fol-
lowing conditions:
• all object constants occurring in Υ are mapped to an ele-

ment from O;
• all timepoint constants occurring in Υ are mapped to a

nonnegative integer;
• for every [s, t]E in SCD, M [s] < M [t] holds;
• for every distinct pair [si, ti]Ei and [sj , tj]Ej in SCD,

either M [ti] ≤M [sj] or M [tj] ≤M [si] holds;
• M satisfies all inequations in SCD.

In the following, if α is an arbitrary formula and M a
valuation, we write M [α] for the modified formula obtained
by replacing each constant symbol in α by its value accord-
ing to M .
Definition 3. Let Υ = 〈O, 〈Infl,Trajs〉, SCD,OBS〉
be a K-IA chronicle. A development 〈B,M,R,A, C〉 is an
intended model for Υ if

364

t R(alive, t) R(shot, t) Action
0 T {0,1,2}
1 T {0,1,2} Load
2 T 2
3 T 2
4 T 2 Spin
5 T 2
6 T 2 Fire
7 T 1
8 F 1

Figure 3: Three IDS histories for the K-IA chronicle from
Example 1: The only difference is the state at timepoints 0
and 1, depending on the initial number of shots.

• the valuation M is correct with respect to Υ;
• A = M [SCD], that is, the actions that occurred during

the game are exactly the actions that are mentioned in the
schedule;

• whenever the ego starts an action by adding 〈n,E〉 to
C′ in an intermediate development 〈B′,M ′, R′,A′, C′〉 ,
the world chooses both a partial state r such that R′(n)
satisfies r and a member of Trajs(E, r) of the form
〈r′1, . . . , r

′
k〉 to update the history R′ up to timepoint

m = n+ k;
• the history R satisfies the observations in OBS.

The set of all intended models of a K-IA chronicle is
denoted by ΣIA(Υ). In the following, we will consider in-
tended models to be characterized just by the pair 〈M,R〉
of the corresponding development.
Example 1. Consider the Russian Turkey chronicle from
above. A possible correct valuation M for this chronicle is
given by M [s1] = 1, M [t1] = 2, M [s2] = 4, M [t2] = 5,
M [s3] = 6, M [t3] = 8.

Under this valuation there are three intended models: To
begin with, all intended models satisfy R(alive, 0) = T due
to obs1. On the other hand, the chronicle does not en-
tail any restriction for the value of the second feature, so
that there are three initial states with shot=̂0, shot=̂1, and
shot=̂2, respectively. Loading the gun at timepoint 1 nec-
essarily results in shot=̂2 at timepoint 2. The given val-
uation says that Spin is executed at timepoint 4. This be-
ing a nondeterministic actions, there are both developments
where the gun becomes unloaded and developments where
this action has no effects. But only the latter can be com-
pleted to intended models, because with an unloaded gun
the subsequent Fire action would not have the effect to kill
the turkey, contrary to what obs1 says. The trajectory for
action Fire then requires that at timepoint 7 the value of
shot is decreased and at timepoint 8 the turkey is no longer
alive. The complete histories of the three intended models
under the given valuation are summarized in Figure 3. In-
dependent of the concrete valuation, all intended models for
the Russian Turkey chronicle entail [t2]shot=̂2, that is, the
gun did not become unloaded after spinning.

The Fluent Calculus with Trajectories
We begin by recalling the basic notions and notations of the
fluent calculus.

Basic fluent calculus
The fluent calculus is a many-sorted predicate logic lan-
guage which includes the two standard sorts FLUENT and
STATE. A fluent is an atomic property which can change its
value over time. Every fluent is also a (singleton) STATE.
The empty state is denoted by the constant ∅ : STATE,
and states are built using the binary function ◦ : STATE ×
STATE 7→ STATE. The fundamental macro Holds(f, z)
denotes that a fluent f holds in a state z:

Holds(f, z) def
= (∃z′)z = f ◦ z′

The foundational axioms of the fluent calculus are:2

• Associativity and commutativity,
(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3)

z1 ◦ z2 = z2 ◦ z1

• Empty state axiom and irreducibility,
¬Holds(f, ∅)

Holds(f1, f) → f1 = f

• Decomposition and state equivalence,
Holds(f, z1 ◦ z2) → Holds(f, z1) ∨ Holds(f, z2)
(∀f)(Holds(f, z1) ↔ Holds(f, z2)) → z1 = z2

• Existence of states,
(∀P)(∃z)(∀f)(Holds(f, z) ↔ P (f)) (1)

where P is a second-order predicate variable of sort FLU-
ENT.

These axioms essentially characterize states as (non-nested)
sets of fluents. Second-order axiom (1) guarantees the exis-
tence of a state for any combination of fluents.

Effects of actions are axiomatized in the fluent calculus
on the basis of two macros for, respectively, removing and
adding fluents to states:

z1 − f = z2
def
= (z2 = z1 ∨ z2 ◦ f = z1) ∧ ¬Holds(f, z2)

z1 + f = z2
def
= z2 = z1 ◦ f

These macros are straightforwardly generalized to removal
and addition of finitely many fluents. The following basic
result of the fluent calculus (see, e.g., (Thielscher 2005b))
lays the foundation for a solution to the frame problem in
classical logic:
Proposition 1. Let effects− = f1 ◦ . . .◦fm and effects+ =
fm+1 ◦ . . . ◦ fn be two finite state terms (0 ≤ m ≤ n). Un-
der the foundational axioms of the fluent calculus, equation
z2 = z1 − effects− + effects+ implies

Holds(f, z2) ↔ Holds(f, effects+)∨
[Holds(f, z1) ∧ ¬Holds(f, effects−)]

2Variables of sort FLUENT and STATE will be denoted, respec-
tively, by the letter f and z , possibly with sub- or superscript.

365

Inherited from the situation calculus, situations (i.e.,
terms of sort SIT) in the fluent calculus are sequence of
terms of sort ACTION, where the initial situation is usually
denoted by S0 and the function Do : ACTION×SIT 7→ SIT
is used to compose actions and situations. The predicate
Poss : ACTION× STATE is used to define preconditions of
actions.

Actions with duration
The basic fluent calculus does not contain an explicit model
of a time structure. Since the Features-and-Fluents seman-
tics makes use of a discrete time domain, we extend the flu-
ent calculus by the sort TIMEPOINT, which will be inter-
preted as the nonnegative integers in this paper. We will use
the arithmetic functions +, −, ∗ and the relations <, ≤
and rely on their standard interpretation. Variables of the
sort TIMEPOINT are denoted by the letter t, possibly with
sub- or superscript.

In order to model actions with durations, the standard
function Do is extended to Do : ACTION×TIMEPOINT×
TIMEPOINT × SIT 7→ SIT. The intended meaning is that
Do(a, t1, t2, s) denotes the situation after executing the ac-
tion a in situation s, with starting timepoint t1 and termi-
nation timepoint t2 .

For every situation s, the macro start(s) denotes the
time of termination of the last action in situation s:

start(s) = t
def
= s = S0 ∧ t = 0

∨ (∃a, s′, t′) s = Do(a, t′, t, s′)

For the sake of simplicity, we will slightly abuse notation
and use start(s) directly as term inside of formulas Φ, with
the intended meaning (∃t) (start(s) = t∧Φ′) , where Φ′ is
as Φ but with start(s) replaced by t.

The preconditions for executing an action require that the
action does not occur prior to the beginning of a situation
and that the action can only terminate after it has started. In
order to axiomatize preconditions for actions with explicit
duration, the standard predicate Poss is extended so as to
include both the starting time of the action and that of its
termination.
Definition 4. A precondition axiom for an action A(~x) is
a formula of the form

Poss(A(~x), t1, t2, s) ↔
(start(s) ≤ t1 < t2) ∧ Φ(~x, t1, t2, s)

where t1 and t2 are timepoint expressions and Φ is a for-
mula with free variables ~x, t1, t2, s.

Trajectories
In order to capture the full expressivity of the Features-and-
Fluents semantics, a further extension is required for repre-
senting and reasoning about trajectories. For this purpose,
we introduce the function TState : SIT × TIMEPOINT 7→
STATE. The expression TState(s, t) denotes the state in sit-
uation s at time t. In every situation, the state is assumed
to remain unchanged after the last action, and consecutive

situations are assumed to have the same history:

(∀t) TState(S0, t) = TState(S0, 0) (2)
(∀t > t2) TState(Do(a, t1, t2, s), t) = (3)

TState(Do(a, t1, t2, s), t2)

(∀t ≤ t1) TState(Do(a, t1, t2, s), t) = TState(s, t) (4)

An extended Holds -macro allows us to state that a fluent
holds at a given timepoint in a given situation:

Holds(f, t, s) def
= Holds(f, TState(s, t))

The effects of actions are specified in the extended flu-
ent calculus by a generalized form of state update axioms,
which define how and when the affected fluents change.

Definition 5. A state update axiom for an action A(~x) is a
formula of the form

Poss(A(~x), t1, t2, s) →
∆1(s) ∧ Γ1[TState(Do(A(~x), t1, t2, s), t)]
∨ . . . ∨
∆n(s) ∧ Γn[TState(Do(A(~x), t1, t2, s), t)]

where each sub-formula Γi describes a possible trajectory
under condition ∆i (1 ≤ i ≤ n).

Example 2. Consider the fluents Alive and Shot : N along
with the two domain constraints

(∃ 0 ≤ n ≤ 2) Holds(Shot(n), t, s)
Holds(Shot(n1), t, s) ∧ Holds(Shot(n2), t, s) →

n1 = n2

Our variant of the Russian Turkey domain of Example 1 may
then be axiomatized in the extended fluent calculus by the
following precondition axioms:

Poss(Load, t1, t2, s) ↔
(start(s) ≤ t1 < t2) ∧ t2 = t1 + 1

Poss(Spin, t1, t2, s) ↔
(start(s) ≤ t1 < t2) ∧ t2 = t1 + 1

Poss(Fire, t1, t2, s) ↔
(start(s) ≤ t1 < t2)
∧ (Holds(Alive, t1, s) ∧ ¬Holds(Shot(0), t1, s)

→ t2 = t1 + 2)
∧ (¬Holds(Alive, t1, s) ∨ Holds(Shot(0), t1, s)

→ t2 = t1 + 1)

Put in words, loading and spinning the gun always takes one
time unit while firing takes either two or one time units, de-
pending on whether the turkey is alive and the gun is loaded.

366

The state update axioms are as follows:
Poss(Load, t1, t2, s) →

(∃n) (Holds(Shot(n), t1, s)∧
TState(Do(Load, t1, t2, s), t1 + 1) =

TState(s, t1) − Shot(n) + Shot(2))

Poss(Spin, t1, t2, s) →
(∃n) (Holds(Shot(n), t1, s) ∧ n > 0∧

TState(Do(Spin, t1, t2, s), t1 + 1) =
TState(s, t1) − Shot(n) + Shot(0))

∨
TState(Do(Spin, t1, t2, s), t1 + 1) = TState(s, t1)

Poss(Fire, t1, t2, s) →
(∃n)(Holds(Alive, t1, s)∧

Holds(Shot(n), t1, s) ∧ n > 0∧
TState(Do(Fire, t1, t2, s), t1 + 1) =

TState(s, t1) − Shot(n) + Shot(n− 1)
∧
TState(Do(Fire, t1, t2, s), t1 + 2) =

TState(Do(Fire, t1, t2, s), t1 + 1) − Alive)
∨
(∃n)(¬Holds(Alive, t1, s)∧

Holds(Shot(n), t1, s) ∧ n > 0∧
TState(Do(Fire, t1, t2, s), t1 + 1) =

TState(s, t1) − Shot(n) + Shot(n− 1))
∨
Holds(Shot(0), t1, s)∧
TState(Do(Fire, t1, t2, s), t1 + 1) = TState(s, t1)

Put in words, loading has the effect that the gun can be
shot twice, spinning has the possible effect that a loaded
gun becomes unloaded, and firing has the effect that, first,
the number of possible shots is reduced by one and, then,
that the turkey dies provided it was alive. Consider, for ex-
ample, Sfinal = Do(Fire, t3, t4,Do(Spin, t1, t2, S0)), then
the axiomatization entails that Holds(Shot(2), t3, Sfinal) →
Holds(Shot(1), t4, Sfinal) ∧ ¬Holds(Alive, t4, Sfinal), given
that t4 > t3 > t2 > t1 .

Translating K-IA Chronicles into
the Fluent Calculus

The basic concept of features in the Features-and-Fluents
framework corresponds to fluents in the fluent calculus, and
an occurrence symbol corresponds to a function symbol of
sort ACTION. In what follows, we present a translation from
arbitrary chronicles in the K-IA class into a set of axioms
of the extended fluent calculus.

Fluents
Every (multi-valued) n -ary feature F (~x) is translated into
an n+1 -ary fluent F (~x, y) in the fluent calculus, where the
last argument y denotes the value of the feature in a state.
We then use the following notation:

Holds(F (~x)=̂y, t, s)
def
= Holds(F (~x, y), t, s)

This is accompanied by two domain constraints which stip-
ulate that in every situation at every time the fluent has a

unique value. Formally,

(∃y) Holds(F (~x, y), t, s) ∧
[Holds(F (~x, y1), t, s) ∧ Holds(F (~x, y2), t, s)

→ y1 = y2]
(5)

The special case of binary features can be directly translated
into fluents without the additional argument, which are then
either true or false in a state. An additional axiom expresses
the unique-name-assumption for all fluent and action sym-
bols occurring in a chronicle.

Precondition and state update axioms
Our translation into precondition and state update axioms
makes use of the world description 〈Infl,Trajs〉. To
begin with, the Features-and-Fluents semantics does not use
explicit precondition axioms but rather conditional effects of
actions. Hence, the action preconditions in the fluent calcu-
lus only encode the information concerning the duration of
an action. First, we will give some auxiliary definitions.

Let r be a partial state and t a timepoint expression,
then assign(r, t, s) is a fluent calculus formula saying that
the state in situation s at time t satisfies r:

assign(r, t, s)
def
=

∧
[Holds(fi=̂xi, t, s) | (fi : xi) ∈ r]

For a trajectory ν and timepoint expressions ς and τ , the
duration is formalized by the following macro, where ς is
the starting point and τ is the termination point of an action
occurrence:

texpr(ν, ς, τ) def
= (τ − ς = |ν|)

Here, |ν| denotes the number of elements within the tra-
jectory. Finally, for an action α, timepoint expressions ς
and τ , and a partial state r, the following macro defines the
range of possible durations of the action in situation s:

duration(α, ς, τ, r, s) def
=

assign(r, τ, s) →
∨

ν∈Trajs(α,r) texpr(ν, ς, τ)

Definition 6. Let an action a occurring in a K-IA chroni-
cle be given. The action precondition axiom for a is

Poss(a, t1, t2, s) ≡ (start(s) ≤ t1 < t2) ∧∧
r∈Ra

duration(a, t1, t2, r, s)

where Ra is the set of partial states for which the trajecto-
ries for action a have been defined.

The precondition axioms for the Russian Turkey scenario
in Example 2, for instance, are obtained when translating the
world description shown in Figure 2.

The definition of the state update axioms for a chronicle
requires some further auxiliary notation:

state({f1=̂x1, . . . , fn=̂xn})
def
= f1(x1) ◦ . . . ◦ fn(xn)

Let r and r′ be two partial states which satisfy dom(r′) ⊆
dom(r),3 then the sets of positively and negatively changed

3For a partial state r , dom(r) denotes the set of features for
which r contains an assignment.

367

fluents between r and r′ are defined as

effects−(r, r′)
def
= state({fi=̂xi | (fi : xi) ∈ r ∧

(fi : yi) ∈ r′ ∧ xi 6= yi})

effects+(r, r′)
def
= state({fi=̂yi | (fi : xi) ∈ r ∧

(fi : yi) ∈ r′ ∧ xi 6= yi})

Using the changes between consecutive partial states in a
trajectory, the latter is mapped onto a conjunction of flu-
ent calculus formulas that represent precisely these change.
Formally, let ν = 〈r1, r2 . . . , rn−1, rn〉 be a trajectory in
〈Infl,Trajs〉 for partial state r and action a, then

strans(a, r, ν, s) def
=

TState(Do(a, t1, t2, s), t1 + 1) =
TState(s, t1) − effects−(r, r1) + effects+(r, r1)

∧
TState(Do(a, t1, t2, s), t1 + 2) =

TState(Do(a, t1, t2, s), t1 + 1)
− effects−(r1, r2) + effects+(r1, r2)

∧ . . . ∧
TState(Do(a, t1, t2, s), t1 + n) =

TState(Do(a, t1, t2, s), t1 + n− 1)
− effects−(rn−1, rn) + effects+(rn−1, rn)

The full state update axiom for an action is then obtained
by the possible trajectories and the possible partial starting
states.
Definition 7. Let an action a occurring in a K-IA chroni-
cle be given. The state update axiom for a is

Poss(a, t1, t2, s) →∨
r∈Ra,ν∈Trajs(a,r)

[
assign(r, t1, s) ∧ texpr(ν, t1, t2)
∧ strans(a, r, ν, s)

]

The state update axioms in Example 2, for instance, are
the result of translating the trajectories in Figure 2 (and re-
moving the texpr-part, which for all three actions follows
from the precondition axioms).

Schedule
The set of action statements of a schedule is mapped into flu-
ent calculus axioms that define the overall final situation as
containing exactly all the action occurrences of the schedule.
More specifically, let {[ς1, τ1]ε1, . . . , [ςn, τn]εn} be the set
of the action statements in the schedule, then

Sfinal = Do(An, sn, tn, . . . ,Do(A1, s1, t1, S0) . . .)
∧ {[s1, t1]A1, . . . , [sn, tn]An} =

{[ς1, τ1]ε1, . . . , [ςn, τn]εn}

where the second conjunct denotes the logical formula that
expresses the equality of the two finite sets. The following
axiom ensures that this action sequence is indeed executable:

Poss(A1, s1, t1, S0) ∧ . . . ∧
Poss(An, sn, tn,Do(An−1, sn−1, tn−1, . . . ,

Do(A1, s1, t1, S0) . . .))

The timing statements in a schedule set are directly taken as
axioms in the fluent calculus.

Observations
The translation of the observations in a K-IA-chronicle is
based on mapping an atomic formula φ of the form f=̂X ,
where X = {x1, . . . , xn}, into the fluent calculus axiom

transAssign(φ, t, s)
def
=

Holds(f=̂x1, t, s) ∨ . . . ∨ Holds(f=̂xn, t, s)

The macro transAssign is straightforwardly generalized to
compound fluent formulas. Every elementary formula of the
form [τ]φ is then translated into the fluent calculus axiom
transAssign(φ, τ, Sfinal).
Example 2. The schedule and observations in Figure 1 for
our variant of the Russian Turkey scenario are translated
into fluent calculus axioms which—due to the given total or-
der of the action occurrences—can be logically simplified
to

Sfinal = Do(Fire, s3, t3,
Do(Spin, s2, t2,

Do(Load, s1, t1, S0)))
∧ Holds(Alive, 0, Sfinal) ∧ ¬Holds(Alive, t3, Sfinal)

Taken together, the fluent calculus axioms resulting from
the translation of the Russian Turkey chronicle of Fig-
ures 1 and 2 entail, e.g., that Holds(Shot(2), t2, Sfinal) and
Holds(Shot(1), t3, Sfinal).

Soundness and Completeness
We have presented a translation that maps a given scenario
description from the Features-and-Fluents semantics into
fluent calculus axiomatizations. In this section, we prove
that this translation is sound and complete. The main idea of
the proof is to show a one-to-one correspondence between
the intended models of a K-IA chronicle Υ and the models
for the fluent calculus axiomatization Ω(Υ). More specif-
ically, we will compare the possible histories for Υ and
the interpretation of TState(Sfinal, t) in the models for the
fluent calculus translation according to the following defi-
nition. Without loss of generality, we consider only those
first-order interpretations of Ω(Υ) which use the same ob-
ject domain O as Υ.
Definition 8. Let Υ be a K-IA chronicle and Ω(Υ) its
translation into the fluent calculus. A valuation-history pair
〈M,R〉 for Υ is equivalent to an interpretation I for
Ω(Υ) iff

M [t] = tI for all timepoint constants t (6)
M [c] = cI for all object constants t (7)
R(f, t) = v iff Holds(f=̂v, t, Sfinal)

I for all f, t (8)

In order to prove soundness and completeness of the flu-
ent calculus translation, we first show that the set of intended
model for a chronicle Υ without observations is equivalent
to the set of models for Ω(Υ).
Theorem 1. Let Υ be a K-IA chronicle with OBS = {}.
For every intended model 〈M,R〉 for Υ there exists an
equivalent model I for Ω(Υ) and vice versa.

368

Proof.
“ ⇐ ”: Let I be a model for Ω(Υ) with

Sfinal = Do(An, sn, tn, . . . ,Do(A1, s1, t1, S0) . . .)

Let M be a valuation that satisfies (6) and (7), then M is
defined for every constant occurring in Υ and it satisfies all
equations and inequations of the schedule set because I is a
model for the translation of the schedule set. Therefore, M
is a correct valuation wrt. the chronicle Υ. We inductively
construct a history Rn that satisfies (8).

For the base case n = 0, we know that for all f there
is a unique v such that Holds(f=̂v, t, S0)

I for all t, be-
cause I is a model for (5) and (2). We can thus define
R0(f, t) = v iff Holds(f=̂v, t, S0). Since there are no ob-
servations in Υ and no actions which can influence the state
at timepoint 0, M and R0 satisfy all conditions of Defini-
tion 3.

For the induction step, let

Sn−1 = Do(An−1, sn−1, tn−1, . . . ,
Do(A1, s1, t1, S0) . . .)

and suppose given a history Rn−1 such that for all t,
Rn−1(f, t) = v iff Holds(f=̂v, t, Sn−1)

I . We then con-
struct Rn as follows:

Rn(f, t) = Rn−1(f, t) , for all t ≤ sn

Rn(f, t) = v iff Holds(f=̂v, t, Sfinal)
I ,

for all sn < t ≤ tn
Rn(f, t) = Rn(f, tn) , for all t > tn

From Poss(An, sn, tn, Sn−1)
I and the precondition axiom

in Ω(Υ) according to Definition 6 it follows that there are a
partial state r and a trajectory ν ∈ Trajs(An, r) such
that both Rn satisfies the assignments in r at time sn

and tn − sn = |ν|. Moreover, from the state update ax-
iom in Ω(Υ) according to Definition 7 and Proposition 1 it
follows that for some such partial state r and trajectory ν ,
history Rn evolves between sn+1 and tn according to ν .
From Definition 3, it follows that valuation M along with
history Rn is an intended model for Υ, which is equivalent
to I by construction.

“ ⇒ ”: Given an intended model for Υ, an equivalent
model for Ω(Υ) can be constructed in a similar way.

This result can be lifted to chronicles with observations
according to the following theorem, which shows that an
observation ψ is true wrt. a valuation and history iff the
translation of ψ is true in an equivalent model for the fluent
calculus axiomatization.
Theorem 2. Consider a valuation M and history R for
a K-IA chronicle Υ and an equivalent interpretation I
for Ω(Υ). Let ψ be a logical formula and Ω(ψ) its trans-
lation into the fluent calculus, then ψ holds in the intended
model 〈M,R〉 iff Ω(ψ)I .

Proof. There are two forms of logical formulas.

• If ψ is an elementary formula [τ]φ, then M [τ] = τI

by (6). Furthermore, if φ is a fluent formula f=̂X , then
[τ]φ is true wrt. M and R

iff R(M [f],M [τ]) ∈ X

iff
∨

v∈X
Holds(f=̂v, τ, Sfinal)I

iff transAssign(φ, τ, Sfinal)
I

For compound fluent formulas φ, the claim follows by
structural induction.

• If ψ is a relational formula among object constants or
timepoints, the claim follows by (6) and (7).

If ψ is a compound logical formula, the claim follows by
structural induction.

Consequently, every element of the observation set OBS
restricts the set of intended models in the same way it re-
stricts the corresponding interpretations for Ω(Υ). This
shows that the translation is sound and complete for general
K-IA chronicles.

Discussion
We have presented a significant extension of the fluent cal-
culus for modeling actions with durations and trajectories
of changes. We have shown that the extended calculus can
handle the full range of ontological phenomena in K-IA,
the broadest ontological class of the Features-and-Fluents
framework that has been fully formalized in (Sandewall
1994). To this end, we have developed a provably correct
translation function that maps arbitrary K-IA-chronicles
into fluent calculus axiomatizations. As a simple conse-
quence of this result, the fluent calculus is now expressive
enough to handle the entire test suite of example problems
in (Sandewall 1994).

While the focus in this paper has been on the fluent calcu-
lus, our mapping from chronicles into classical logic should
be adaptable to related solutions to the frame problem. In
the situation calculus (McCarthy 1963; Reiter 1991), for ex-
ample, this could be achieved by using a combination of
nondeterministic successor state axioms (Lin 1996) and an
explicit model of time (Reiter 1998). Likewise, the event
calculus (Shanahan 1997), to mention another popular ap-
proach, could be extended to allow for modeling specific
trajectories of changes for actions with durations. So do-
ing should allow one to generalize existing assessments of
these calculi, like the one given in (Kartha 1993), which are
restricted to much narrower ontological classes.

Rooted in the fluent calculus, the programming language
FLUX has been developed, which provides an efficient sys-
tem for reasoning about actions based on state progres-
sion (Thielscher 2005a). We intend to integrate the exten-
sion of the fluent calculus presented in this paper so as to
provide an automatic reasoning tool for the entire K-IA
class based on FLUX. Another direction of future work
would be be to enrich the existing ontological taxonomy of
the Features-and-Fluents semantics to capture additional as-
pects which are readily available in the fluent calculus, like
sensing actions (Thielscher 2000b) or surprises (Thielscher
2001).

369

References
Hanks, S., and McDermott, D. 1987. Nonmonotonic logic
and temporal projection. Artificial Intelligence 33(3):379–
412.
Kartha, G. N. 1993. Soundness and completeness theo-
rems for three formalizations of actions. In Bajcsy, R., ed.,
Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 724–729. Chambéry, France:
Morgan Kaufmann.
Lin, F. 1996. Embracing causality in specifying the in-
determinate effects of actions. In Clancey, B., and Weld,
D., eds., Proceedings of the AAAI National Conference on
Artificial Intelligence, 670–676. Portland, OR: MIT Press.
McCarthy, J., and Hayes, P. J. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence.
Machine Intelligence 4:463–502.
McCarthy, J. 1958. Programs with Common Sense. In
Proceedings of the Symposium on the Mechanization of
Thought Processes, volume 1, 77–84. Reprinted in: (Mc-
Carthy 1990).
McCarthy, J. 1963. Situations and Actions and Causal
Laws. Stanford University, CA: Stanford Artificial Intelli-
gence Project, Memo 2.
McCarthy, J. 1990. Formalizing Common Sense. Norwood,
New Jersey: Ablex. (Edited by V. Lifschitz).
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed., Artificial In-
telligence and Mathematical Theory of Computation. Aca-
demic Press. 359–380.
Reiter, R. 1998. Sequential, temporal GOLOG. In Cohn,
A. G.; Schubert, L. K.; and Shapiro, S. C., eds., Pro-
ceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR), 547–556.
Trento, Italy: Morgan Kaufmann.
Sandewall, E. 1994. Features and Fluents. The Repre-
sentation of Knowledge about Dynamical Systems. Oxford
University Press.
Sandewall, E. 1998. Cognitive robotics logic and its
metatheory: Features and fluents revisited. Linköping
Electronic Articles in Computer and Information Science.
URL: www.ep.liu.se/ea/cis/1998/017.
Shanahan, M. 1997. Solving the Frame Problem: A Mathe-
matical Investigation of the Common Sense Law of Inertia.
MIT Press.
Thielscher, M. 1994. An analysis of systematic approaches
to reasoning about actions and change. In Jorrand, P., and
Sgurev, V., eds., International Conference on Artificial In-
telligence: Methodology, Systems, Applications (AIMSA),
195–204. Sofia, Bulgaria: World Scientific.
Thielscher, M. 2000a. Nondeterministic actions in the
fluent calculus: Disjunctive state update axioms. In
Hölldobler, S., ed., Intellectics and Computational Logic.
Kluwer Academic. 327–345.
Thielscher, M. 2000b. Representing the knowledge of a
robot. In Cohn, A.; Giunchiglia, F.; and Selman, B., eds.,

Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR), 109–
120. Breckenridge, CO: Morgan Kaufmann.
Thielscher, M. 2001. The qualification problem: A solu-
tion to the problem of anomalous models. Artificial Intelli-
gence 131(1–2):1–37.
Thielscher, M. 2005a. FLUX: A logic programming
method for reasoning agents. Theory and Practice of Logic
Programming 5(4–5):533–565.
Thielscher, M. 2005b. Reasoning Robots: The Art and
Science of Programming Robotic Agents, volume 33 of Ap-
plied Logic Series. Kluwer.

370

