
Representing the Knowledge of a Robot

Michael Thielscher
Department of Computer Science
Dresden University of Technology

01062 Dresden (Germany)
mit@inf.tu-dresden.de

Abstract

Acquiring information about its environment
by sensing is a crucial ability of autonomous
robots. Based on the established solution
to the Frame Problem of the Fluent Calcu-
lus, we present a new, unifying formalism
for representing and reasoning about sens-
ing actions, knowledge preconditions, con-
ditional actions, non-knowledge, and about
what goals a robot can possibly achieve.

1 INTRODUCTION

Intelligent, autonomous robots choose most of their
actions conditioned on the state of their environment.
They are equipped with sensors for the purpose of ac-
quiring information about the external world. Robots
that perform reasoning about their goals and actions
thus need an explicit representation of what they
know of a state and how sensing affects their knowl-
edge [Moore, 1985]. For example, the state of a door,
that is, whether open or closed, should be known to
a robot before it tries to enter the room behind. If
the robot does not know then it should plan ahead
both the appropriate sensing action and the possibil-
ity of having to open the door. This requires the robot
to reason about what it currently knows or does not
know, and what it will know after sensing.

A formal account of robot knowledge is also needed to
prove the ability of a robot to achieve certain goals [Lin
and Levesque, 1997]. For example, suppose that the
door in question is closed but that its state can be al-
tered by pressing a button next to it. Nonetheless, a
robot, call it Blindie, who is unable to sense the state
of the door will not be able, without assistance, to
achieve the goal of entering the room. For it can never
know whether it should press the button or not. Like-

wise unable to achieve the goal will be a robot, call
it Dumbie, who can see but does not know how the
button is causally related to the door. For this robot
cannot conclude that it simply must press the button.
The latter conclusion shows that a general account of
the knowledge of robots must allow for distinguish-
ing between the actual effects of actions and what a
robot knows about these effects—an aspect which is
not covered by existing accounts of knowledge in ac-
tion formalisms, such as [Scherl and Levesque, 1993;
Lobo et al., 1997; Son and Baral, 1998].

The contribution of the present paper to the research
on knowledge in cognitive robotics is manifold:

1. We extend the Fluent Calculus solution to the
Frame Problem of [Thielscher, 1999], that is, the
concept of state update axioms, to representing
and reasoning about the knowledge of a robot.

2. Our theory provides a solution not only to the
representational but also the inferential ([Bibel,
1998]) Frame Problem for knowledge.

3. Our theory enables the definition of conditional
actions which can be inserted into a plan by a
deductive planner.

4. By following a simple axiomatization scheme, our
theory can readily be used to reason about what
a robot does not know; unlike the approach of
[Lakemeyer and Levesque, 1998], there is no need
for a non-standard semantics or complex second-
order axioms to this end.

5. Distinguishing between the actual effects of ac-
tions and what a robot knows about them, our
theory supports an account of goal achievability
within the corresponding Fluent Calculus axioma-
tization, as opposed to the meta-notion of achiev-
ability of [Lin and Levesque, 1997].

The key to these achievements lies in the explicit no-
tion of a state offered by the Fluent Calculus aside
from the standard notion of a situation. Thus the dis-
tinguishing feature of our theory is to formalize the
knowledge of a robot in terms of possible states rather
than possible situations.

The organization of the paper is as follows. In the next
section, we give an informal overview of our approach
to formalizing the knowledge of a robot. In Section 3,
we briefly repeat the formal notions and notations of
the basic Fluent Calculus. In Section 4, we extend this
calculus to the representation of knowledge of states.
We formally introduce the concept of knowledge up-
date axioms and prove some crucial properties of our
approach. In Section 5, we show how our approach
provides a simple and elegant way of reasoning about
what a robot does not know. In Section 6, we show
how our approach can be used to reason about the
ability of robots. We summarize in Section 7.

2 KNOWLEDGE IN THE FLUENT

CALCULUS: THE BASIC IDEA

The knowledge a robot has of its environment shall be
represented using a new binary predicate denoted by
KState(s, z). This relation is meant to hold iff in situ-
ation s the robot considers z a possible world state.1

To specify what a robot knows of a particular situ-
ation S , an axiom of the form (∀z) (KState(S, z) ⊃
Φ(z)) is used, where sub-formula Φ constrains z ac-
cording to the knowledge the robot has about z. Let
Holds(f, z) denote that fluent f holds in state z, then
an example is,2

KState(S0, z) ⊃
(∃x) (Door(x,Room411) ∧ ¬Holds(Closed(x), z))

where Door(x, y) is a static (non-fluent) predicate
saying that door x leads to room y, and Closed(x)
denotes the fluent of door x being closed. Thus the
implication says that in all states which are considered
possible in situation S0 , there is a door to Room411
which is not closed. On this basis, we can say that a
robot knows that a fluent holds or does not hold in a

1For the reader who is unfamiliar with the Fluent Cal-
culus we note that states are reified, i.e., first-class citizens;
see Section 3 for the details.

2A word on the notation: Predicate and function
symbols, including constants, start with a capital letter
whereas variables are in lower case, sometimes with sub-
or superscripts. Free variables in formulas are assumed uni-
versally quantified. Throughout the paper, action variables
are denoted by the letter a, situation variables by the let-
ter s, fluent variables by the letter f , and state variables
by the letter z , all possibly with sub- or superscript.

situation iff the fluent either holds or does not hold in
all possible states:3

Knows(f, s)
def
= (∀z) (KState(s, z) ⊃ Holds(f, z))

Knows(¬f, s)
def
= (∀z) (KState(s, z) ⊃ ¬Holds(f, z))

These abbreviations generalize to the knowledge of
compound formulas in a natural way.

The macro Knows can be used to specify knowledge
preconditions for actions. For instance, let Poss(a, s)
denote that a is possible in situation s, then accord-
ing to the following axiom a robot must know of some
open door if it wants to enter a room:

Poss(Enter(y), s) ≡
(∃x) (Door(x, y) ∧Knows(¬Closed(x), s))

The representational Frame Problem for knowledge is
solved by axioms that specify the relation between the
possible states before and after an action: The effect of
an action A(~x), be it sensing or not, on the knowledge
of a robot is specified by a knowledge update axiom,

∆ ⊃ (∀z) (KState(Do(A(~x), s), z) ≡
(∃z′)(KState(s, z′) ∧Ψ(~x, z, z′, s)))

(1)

where Do(a, s) denotes the situation reached by per-
forming a in s and sub-formula Ψ defines how, under
condition ∆, the states considered possible after the
action, z, relate to the states considered possible be-
forehand, z′ . Let, for example, SenseDoor(x) denote
the action of sensing whether a door x is closed, then
this is a suitable knowledge update axiom:4

Poss(SenseDoor(x), s) ⊃
(∀z) (KState(Do(SenseDoor(x), s), z) ≡

KState(s, z)∧
[Holds(Closed(x), z) ≡ Holds(Closed(x), s)])

(2)

where Holds(f, s) means that fluent f actually holds
in situation s. Hence, the axiom says that among
the states possible in s only those are still considered
possible after sensing which agree with the actual state
of the world as far as the status of the sensed door is
concerned. A crucial immediate consequence of (2) in
the light of the above definition of Knows is that a

3Throughout the paper we assume that the knowledge
of a robot—though incomplete—is correct, that is, the ac-
tual world state is always among the states which are con-
sidered possible. (Foundational axiom (11) in Section 4.2
below expresses this assumption formally.)

4The knowledge update axiom below is of the form
∆ ⊃ (∀z) (KState(Do(a, s), z) ≡ KState(s, z) ∧Ψ), whose
equivalent correct form is ∆ ⊃ (∀z) (KState(Do(a, s), z) ≡
(∃z′) (KState(s, z′) ∧Ψ ∧ z = z′)).

robot capable of sensing knows afterwards whether the
door is open:

Poss(SenseDoor(x), s) ⊃
Knows(Closed(x),Do(SenseDoor(x), s))∨
Knows(¬Closed(x),Do(SenseDoor(x), s))

(This follows since only one of Holds(Closed(x), s)
and ¬Holds(Closed(x), s) can be true.)

Providing a solution to the representational aspect of
the Frame Problem for knowledge, knowledge update
axioms lay the foundations for overcoming the infer-
ential aspect, too. The inference scheme employed
to this end takes as input an implication of the form
KState(σ, z) ⊃ Φ(z), which specifies the knowledge of
a situation σ, along with the consequence of an apli-
cable knowledge update axiom of the form (1) for an
action A(~τ). Then an immediate logical consequence
of the two input formulas is,

KState(Do(A(~τ), σ), z) ⊃ (∃z′)(Φ(z′) ∧Ψ(~x, z, z′, s))

which provides a full specification of what is known
about the successor situation Do(A(~τ), σ). There is
no need to carry over to the new situation all pieces
of knowledge one-by-one and using separate instances
of axioms, which shows why and how the inferential
Frame Problem can be solved on the basis of knowl-
edge update axioms.

In case of non-sensing actions, knowledge update ax-
ioms describe what a robot knows of their effect. Ex-
amples are given below, in Sections 4 and 6. Since
these specifications are independent of state update
axioms, which describe the actual effect of actions, it
is possible to formally represent and reason about lim-
itations of a robot as regards its knowledge of the dy-
namics of the environment.

3 THE SIMPLE FLUENT

CALCULUS: STATE UPDATE

AXIOMS

In the following we provide a brief description of the
fundamentals of the Fluent Calculus; for a complete in-
troduction see [Thielscher, 1999] or the electronically
available, archived reference article [Thielscher, 1998].5

The Fluent Calculus, which roots in the logic pro-
gramming formalism of [Hölldobler and Schneeberger,
1990], is an order-sorted second order language with
equality, which includes the sorts action , sit , fluent ,
and state , with fluent being a sub-sort of state . Flu-
ents are reified propositions. That is to say, terms like,

5or see the online tutorial at http://pikas.inf.
tu-dresden.de/˜mit/FC/Tutorial/index.htm

for instance, Closed(x) denote fluents, where Closed
is a unary function symbol. Fluents can be joined to-
gether by the binary function symbol “ ◦ ” to make
up states. We write this symbol in infix notation. The
function shall satisfy the laws of associativity and com-
mutativity and admit a unit element, denoted by ∅.
Associativity allows us to omit parentheses in nested
applications of ◦.

A function State : sit 7→ state relates a situation to
the state of the world in that situation. As an example,
consider three doors Door1 , Door2 , and Door3 , the
first of which is initially closed while the second one
is open. Moreover, the robot is currently not in front
of Door1 or Door3 but in front of Door2 . Let the
fluents Closed(x) and InFrontOf (x) denote, resp.,
that door x is closed and that the robot is in front
of door x. Then the given incomplete specification
(nothing is said about Door3 being open or not) of
the initial situation, S0 , can be axiomatized in the
Fluent Calculus as follows:

(∃z) [State(S0) = Closed(Door1)
◦ InFrontOf (Door2) ◦ z

∧ (∀z′) (z 6= Closed(Door2) ◦ z′ ∧
z 6= InFrontOf (Door1) ◦ z′ ∧
z 6= InFrontOf (Door3) ◦ z′)]

(3)

That is, of the initial state State(S0) it is known that
both Closed(Door1) and InFrontOf (Door2) are true
and that possibly some other fluents z hold except
for each of Closed(Door2), InFrontOf (Door1), and
InFrontOf (Door3), of which we know they are not
true in S0 .

Fundamental for any Fluent Calculus axiomatization
is the axiom set EUNA, which extends given unique
name-assumptions by the axioms AC1 (i.e., associa-
tivity, commutativity, and unit element):

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3)
z1 ◦ z2 = z2 ◦ z1
z ◦ ∅ = z

along with the following axioms, which entail inequal-
ity of state terms (as used, e.g., in (3)) if some fluent
occurs in one but not in the other state:6

z = f ⊃ z 6= ∅ ∧ [z = z′ ◦ z′′ ⊃ z′ = ∅ ∨ z′′ = ∅]

z1 ◦ z2 = z3 ◦ z4 ⊃
(∃za, zb, zc, zd) [z1 = za ◦ zb ∧ z2 = zc ◦ zd ∧

z3 = za ◦ zc ∧ z4 = zb ◦ zd]

6Unlike the definition of EUNA in terms of unifica-
tion completeness wrt. AC1, as used in earlier versions
of the Fluent Calculus [Hölldobler and Thielscher, 1995;
Thielscher, 1999], the new axioms allow to incorporate do-
main dependent assumptions of unique names [Störr and
Thielscher, 2000].

For computing with state terms, two immediate con-
sequences of these axioms are of importance, the fol-
lowing rules of cancellation and distribution.

Proposition 1 [Störr and Thielscher, 2000]

Axioms EUNA entail :

1. If z1 ◦ f = z2 ◦ f , then z1 = z2.

2. If f1 6= f2 and z1 ◦ f1 = z2 ◦ f2, then
(∃z′) z2 = f1 ◦ z

′ and (∃z′) z1 = f2 ◦ z
′.

In addition, we have the foundational axiom

State(s) 6= f ◦ f ◦ z (4)

by which double occurrences of fluents are prohibited
in any state which is associated with a situation. (It
will be explained shortly why “ ◦ ” is not required to
be idempotent to this end.) Finally, the Fluent Cal-
culus uses the expressions Holds(f, z)—denoting that
f holds in state z—and the common Holds(f, s)—
stating that fluent f holds in situation s—, though
not as part of the signature but as mere abbreviations
of equality sentences:

Holds(f, z)
def
= (∃z′) z = f ◦ z′

Holds(f, s)
def
= Holds(f,State(s))

(5)

So-called state update axioms specify the entire re-
lation between the states at two consecutive situa-
tions. Deterministic actions with only direct and
closed effects7 give rise to the simplest form of state up-
date axioms, where a mere equation relates a successor
state State(Do(A, s)) to the preceding state State(s):

Poss(A(~x), s) ∧∆(~x, s) ⊃
(∃~y)State(Do(A(~x), s)) ◦ ϑ− = State(s) ◦ ϑ+ (6)

where ϑ− are the negative effects and ϑ+ the positive
effects, resp., of action A(~x) under condition ∆(~x, s)
(and where ~y are the variables in ϑ−, ϑ+ which are
not among ~x).8 While actions may have conditional
effects, and hence multiple state update axioms, there
is an assumptions generally made, namely, that a set of
state update axioms be consistent and complete, in the
following sense. Let Ax be a domain axiomatization,
then for any action A(~x) the following holds: First,

7By closed effects we mean that an action does not have
an unbounded number of direct effects.

8This scheme is the reason for not stipulating that “ ◦ ”
be idempotent, contrary to what one might intuitively ex-
pect. For if the function were idempotent, then the equa-
tion would not imply that State(Do(A, s)) does not in-
clude ϑ− .

for any two different axioms (6) in Ax for action A(~x)
and with conditions ∆1(~x, s) and ∆2(~x, s), we have

EUNA |= ¬[Poss(A(~x), s) ∧∆1(~x, s) ∧∆2(~x, s)] (7)

(That is, no two different state update axioms for
one action apply in the same situation.) Second, if
∆1(~x, s), . . . ,∆n(~x, s) are the conditions of all state
update axioms (6) in Ax for action A(~x), then

Ax |= Poss(A(~x), s) ⊃ ∆1(~x, s) ∨ . . . ∨∆n(~x, s) (8)

(That is, there is always an applicable state update
axiom for an action that is possible.)

Moreover, we assume that each action A(~x) is accom-
panied by a precondition axiom of the form,

Poss(A(~x), s) ≡ π(~x, s) (9)

where π is a first-order formula without predicate
Poss and with free variables among ~x, s and in which
s is the only term of sort sit .

As an example, let Press(Button(x)) denote the ac-
tion of pressing the button next to door x, by which
the door opens if it is closed and closes if it is open.
This is a suitable pair of state update axioms for this
action:

Poss(Press(Button(x)), s)∧ Holds(Closed(x), s)
⊃ State(Do(Press(Button(x)), s)) ◦ Closed(x)

= State(s)
Poss(Press(Button(x)), s)∧¬Holds(Closed(x), s)
⊃ State(Do(Press(Button(x)), s))

= State(s) ◦ Closed(x)

(10)

That is to say, if x is currently closed then Closed(x)
becomes false whereas it becomes true if x is cur-
rently open. Let the precondition of Press(Button(x))
be given by the axiom Poss(Press(Button(x)), s) ≡
Holds(InFrontOf (x), s). Suppose a scenario where
the initial situation is described by formula (3),
and consider the action of pressing the button
next to Door2 . The result can be inferred
using the instance {x/Door2 , s/S0} of the sec-
ond one of our state update axioms (10): Af-
ter verifying that Poss(Press(Button(Door2)), S0)
and ¬Holds(Closed(Door2), S0), we can replace
the expression State(S0) in the entailed equa-
tion by the term which equals State(S0) accord-
ing to (3). So doing yields—setting S1 =
Do(Press(Button(Door2)), S0) and repeating the rel-
evant additional information in (3) about z—,

(∃z) [State(S1) = Closed(Door1)◦InFrontOf (Door2)
◦ z ◦ Closed(Door2)

∧ (∀y, z′) (z 6= InFrontOf (Door1) ◦ z′ ∧
z 6= InFrontOf (Door3) ◦ z′)]

We thus obtain from an incomplete initial specifica-
tion a still partial description of the successor state,
which in particular includes the unaffected fluents
Closed(Door1) and InFrontOf (Door2) and the still
valid information about the robot not being in front
of the two doors Door1 and Door3 . Hence, all these
pieces of information survived the computation of the
effect of the action and so need not be carried over by
separate application of axioms. This illustrates why
and how state update axioms provide a solution not
only to the representational but also the inferential
Frame Problem.

Under the provision that actions have only closed ef-
fects, state update axioms of the form (6) can be fully
mechanically generated from a set of simple Situa-
tion Calculus-style effect axioms if the latter can be
assumed to provide a complete account of the rele-
vant effects of an action. It has been proved that a
collection of thus generated state update axioms cor-
rectly reflects the fundamental assumption of persis-
tence. This is the primary theorem of the simple Flu-
ent Calculus [Thielscher, 1999].

4 AXIOMATIZING KNOWLEDGE

UPDATE

4.1 Extending the signature

The only addition to the signature of the basic Flu-
ent Calculus required to represent knowledge, is the
predicate

KState : sit × state

with the intended meaning that according to the
robot’s knowledge the second argument is a possible
state in the situation denoted by the first argument.
On this basis, the fact that some property of a situa-
tion is known to the robot is specified using the macro
Knows , which is defined as follows:

Knows(ϕ, s)
def
= (∀z) (KState(s, z) ⊃ HOLDS (ϕ, z))

where

HOLDS (f, z)
def
= Holds(f, z)

HOLDS (¬ϕ, z)
def
= ¬HOLDS (ϕ, z)

HOLDS (ϕ ∧ ψ, z)
def
= HOLDS (ϕ, z) ∧HOLDS (ψ, z)

HOLDS ((∀x)ϕ, z)
def
= (∀x)HOLDS (ϕ, z)

4.2 Foundational axioms

The Fluent Calculus with knowledge requires the ad-
dition of two foundational axioms, which character-
ize properties of the knowledge predicate. First, the

knowledge of a robot is correct:

KState(s,State(s)) (11)

(That is, the actual state of the world is always among
the states considered possible.) Second, no possi-
ble state contains multiple occurrences of fluents (c.f.
foundational axiom (4) of the simple Fluent Calculus):

KState(s, z) ⊃ (∀f, z′) z 6= f ◦ f ◦ z′ (12)

4.3 Knowledge update axioms

While state update axioms specify the effect of actions
on the external world, update axioms for knowledge
specify their effect on what the robot knows about the
world.

Definition 2 A knowledge update axiom for an ac-
tion A(~x) takes the form

∆(~x, s) ⊃
(∀z) (KState(Do(A(~x), s), z) ≡

(∃z′)(KState(s, z′) ∧Ψ(~x, z, z′, s)))

where ∆ and Ψ are first-order formulas with free
variables among ~x, s and ~x, z, z′, s, resp.

Example 1 Consider a Fluent Calculus signature
with fluents InFrontOf (x), Closed(x) and actions
SenseDoor(x), Press(Button(x)) with the obvious
meaning. The robot may sense a door or press the
button next to it iff it knows that it is in front of the
door:

Poss(SenseDoor(x), s) ≡
Knows(InFrontOf (x), s)

Poss(Press(Button(x)), s) ≡
Knows(InFrontOf (x), s)

(13)

Being a sensing action, SenseDoor has no effect on the
external world, hence the simple state update axiom

Poss(SenseDoor(x), s) ⊃
State(Do(SenseDoor(x), s)) = State(s)

The action does, however, affect the knowledge of the
robot in that the actual status of the door becomes
known, as specified by knowledge update axiom (2) of
Section 2.

Pressing the button next to a door causes a closed door
to open and an open door to close; hence the state up-
date axiom (10) of Section 3. If the robot knows about
this effect, then the appropriate knowledge update ax-
iom mirrors the actual update:

Poss(Press(Button(x)), s) ⊃
(∀z) (KState(Do(Press(Button(x)), s), z) ≡

(∃z′) (KState(s, z′) ∧
[Holds(Closed(x), z′) ⊃ z ◦ Closed(x) = z′] ∧
[¬Holds(Closed(x), z′) ⊃ z = z′ ◦ Closed(x)]))

(14)

Put in words, any previously possible state z′ in which
door x is closed is considered possible after pressing
the button if z′ is modified by making false Closed(x),
and any previously possible state z′ in which door x
is open is considered possible after pressing the button
if z′ is modified by adding Closed(x).

Our example illustrates two kinds of actions with spe-
cial properties as regards knowledge, namely, pure
sensing actions and actions of whose effects the agent
has accurate knowledge.

Definition 3 Consider a set of state and knowledge
update axioms Ax .

1. An action A(~x) is pure sensing in Ax if it has a
single state update axiom and if this axiom is of
the form

Poss(A(~x), s) ⊃ State(Do(A(~x), s)) = State(s)

2. Let

Poss(A(~x), s) ∧∆1(~x, s) ⊃
(∃~y1)State(Do(A(~x), s)) ◦ ϑ

−

1 = State(s) ◦ ϑ+
1

...
Poss(A(~x), s) ∧∆n(~x, s) ⊃

(∃~yn)State(Do(A(~x), s)) ◦ ϑ
−

n
= State(s) ◦ ϑ+

n

be all state update axioms for an action A(~x),
then A(~x) is accurately known in Ax if the fol-
lowing is the unique knowledge update axiom for
this action:9

Poss(A(~x), s) ⊃
(∀z) (KState(Do(A(~x), s), z) ≡

(∃z′)(KState(s, z′) ∧ Poss(A(~x), z′)∧
[∆1(~x, z

′) ⊃ (∃~y1) z ◦ ϑ
−

1 = z′ ◦ ϑ+
1]∧

...
[∆n(~x, z

′) ⊃ (∃~yn) z ◦ ϑ
−

n
= z′ ◦ ϑ+

n
]))

Our approach to robot knowledge enjoys two impor-
tant properties as regards these two kinds of actions.

Theorem 4

1. Pure sensing does not affect the world state.

9Below, the expression ∆i(~x, z) stands for ∆i(~x, s)
with each Holds(f, s) replaced by Holds(f, z); and
the expression Poss(A(~x), z) stands for π(~x, s) with
each Holds(f, s) replaced by Holds(f, z)], where π(~x, s)
is the specification for Poss(A(~x), s) (c.f. precondition
schema (9)).

2. For any situation s, any accurately known ac-
tion a which is known to be possible in s, and
any fluent f not affected by a, f is known to
hold after performing a in s iff it is known to
hold in s.

Proof: The first claim follows immediately by def-
inition of pure sensing actions.

For the second claim, observe first that if a is accu-
rately known and possible in s, then the knowledge
update axiom implies,

(∀z) (KState(Do(A(~x), s), z) ≡
(∃z′)(KState(s, z′) ∧ Poss(A(~x), z′)∧

[∆1(~x, z
′) ⊃ (∃~y1) z ◦ ϑ

−

1 = z′ ◦ ϑ+
1]∧

...
[∆n(~x, z

′) ⊃ (∃~yn) z ◦ ϑ
−

n
= z′ ◦ ϑ+

n
]))

Since a is known to be possible in s, the assumptions
of consistency and completeness (c.f. (7),(8)) imply
that for each state z′ satisfying KState(s, z′), there
is a unique i = 1, . . . , n such that ∆i(~xi, z

′) is true.
Let

(∃~yi) z ◦ ϑ
−

i
= z′ ◦ ϑ+

i

be the equation implied by this ∆i(~xi, z
′) . In turn,

this equation implies Holds(f, z) iff Holds(f, z′) ac-
cording to the rule of distribution (Proposition 1). For
f is not amongst the fluents in ϑ−

i
, ϑ+

i
following the

assumption that f is not affected by a. Hence, if f
is true in all states possible in s, then f is true in all
states possible in Do(a, s). Conversely, if f is false in
some state possible in s, then f is false in some state
possible in Do(a, s).

The first one of these two fundamental results coin-
cides with a property of the Situation Calculus-based
approach to sensing actions of [Scherl and Levesque,
1993], while the second one generalizes a property
from [Scherl and Levesque, 1993] in that we addition-
ally distinguish between the effect of the action itself
and the robot’s awareness of it. Note the necessity
of the condition in Item 2 which requires the robot
to know that the action is possible. For otherwise the
mere executability of the action may provide the robot
with new knowledge.

Item 2 shows that knowledge update axioms provide
a solution to the representational Frame Problem for
knowledge: Everything that is known before an ac-
tion is performed is still known afterwards, provided
it is known to being unaffected by the action. Knowl-
edge update axioms moreover lay the foundations for
overcoming the inferential aspect of the Frame Prob-
lem for knowledge, too. The following simple infer-
ence scheme can be employed to this end. Suppose

that the knowledge of the robot about a situation σ
is given by KState(σ, z) ⊃ Φ(z). Suppose further an
action A(~τ), sensing or not, with knowledge update
axiom (1) is performed in σ. Then an immediate logi-
cal consequence of the instance {~x/~τ , s/σ} of (1) and
the implication just mentioned, is

KState(Do(A(~τ), σ), z) ⊃ (∃z′)(Φ(z′) ∧Ψ(~τ , z, z′, s))

(assuming successful evaluation of ∆), which provides
a specification of what is known about the successor
situation Do(A(~τ), σ). There is no need to carry over
to the new situation all pieces of knowledge one-by-one
and using separate instances of axioms.

Example 1 (continued) Suppose that of the initial
situation the robot knows that it is in front of Door1
and not in front of Door2 and that Door2 is closed,
that is,

KState(S0, z) ⊃
Holds(InFrontOf (Door1), z)∧
¬Holds(InFrontOf (Door2), z)∧
Holds(Closed(Door2), z)

(15)

Let S1 = Do(SenseDoor(Door1), S0) and consider
the instance {x/Door1 , s/S0} of knowledge update
axiom (2). Then the sub-formula KState(S0, z) of this
instance can be replaced by its consequence as given
in (15), which yields, after evaluating the antecedent
against the precondition axiom in (13),

KState(S1, z) ⊃
Holds(InFrontOf (Door1), z)∧
¬Holds(InFrontOf (Door2), z)∧
Holds(Closed(Door2), z)∧
(Holds(Closed(Door1), z) ≡

Holds(Closed(Door1), S0))

We thus obtain a description of what is known
about the successor state, which in particular includes
the unaffected knowledge about InFrontOf (Door1),
InFrontOf (Door2), and Closed(Door2). Hence, all
this knowledge is still readily available.

4.4 Conditional actions

Employing a theory of sensing actions for robot plan-
ning is known to require more complex a notion of a
plan than given by the classical view of plans as mere
sequences of elementary actions [Levesque, 1996]. At
the very least, a robot must be able to condition its
course of actions on the result of a sensing action. This
minimal requirement can be satisfied in our approach
by introducing the concept of a conditional action,
based on the function

If : fluent × action 7→ action

An instance If (f, a) shall be interpreted as denoting
action a if condition f is known to hold, otherwise as
denoting the ‘action’ of doing nothing. A conditional
action is defined as possible iff the truth value of the
condition is known to the robot and if, provided the
condition is true, the respective action is possible:

Poss(If (f, a), s) ≡ [Knows(f, s) ∨Knows(¬f, s)]
∧ [Knows(f, s) ⊃ Poss(a, s)]

(16)

The effect of a conditional action on the world state
and on the robot’s knowledge state is identical to the
effect of the action if it applies; otherwise, the condi-
tional has no effect:

Poss(If (f, a), s) ⊃
[Knows(f, s) ⊃
State(Do(If (f, a), s)) = State(Do(a, s))∧
(∀z) (KState(Do(If (f, a), s), z) ≡

KState(Do(a, s), z))] ∧
[Knows(¬f, s) ⊃
State(Do(If (f, a), s)) = State(s)∧
(∀z) (KState(Do(If (f, a), s), z) ≡

KState(s, z))]

(17)

Example 2 Suppose that the robot knows it is in
front of Door1 . It is not given whether the door is
open. Formally,

KState(S0, z) ⊃ Holds(InFrontOf (Door1), z) (18)

Let Ax denote the conjunction of this axiom, the pre-
condition and the state and knowledge update axioms
for SenseDoor(x) and Press(Button(x)) from above,
axioms (16) and (17) defining If , and the foundational
axioms of the Fluent Calculus. The task shall be to
find a plan after whose execution the robot knows that
Door1 is open. A solution is the term

σ = Do(If (Closed(Door1),Press(Button(Door1))),
Do(SenseDoor(Door1), S0))

which satisfies Ax |= Knows(¬Closed(Door1), σ):

From (18) and (13), Poss(SenseDoor(Door1), S0).
Let S1 = Do(SenseDoor(Door1), S0), then from (2),

KState(S1, z) ⊃ KState(S0, z)∧
[Holds(Closed(Door1), z) ≡
Holds(Closed(Door1), S0)]

which implies both that Knows(Closed(Door1), S1)∨
Knows(¬Closed(Door1), S1) and, according to (18),
Knows(InFrontOf (Door1), S1). By (16) and (13),
Poss(If (Closed(Door1),Press(Button(Door1))), S1).
Hence, from (17), (14), and (12) it follows that

KState(Do(If (Closed(Door1),
Press(Button(Door1))), S1), z)

⊃ ¬Holds(Closed(Door1), z)

which implies Ax |= Knows(¬Closed(Door1), σ).

5 WHAT DOES A ROBOT NOT

KNOW?

The explicit notion of a state in the Fluent Calculus
for the representation of state knowledge offers an in-
triguingly simple and elegant way of reasoning about
what a robot does not know, following the motivation
of [Lakemeyer and Levesque, 1998]. To specify that a
robot knows and only knows certain facts about the
state of the world in a situation S , one employs an
axiom of the form KState(S, z) ≡ Φ(z), where Φ de-
scribes all that is known about z. On this basis, it is
straightforward to prove that, say, the truth value of
some fluent f is not known in S by proving validity of
(∃z) (Φ(z)∧Holds(f, z))∧ (∃z′) (Φ(z′)∧¬Holds(f, z′)).

Example 3 Suppose the robot knows that in situa-
tion S0 it is in front of two doors Door1 and Door2
and that it knows that at least one of them is not
closed, but it does not know which one.10 This combi-
nation of knowledge with ignorance is formally speci-
fied by,

KState(S0, z) ≡
Holds(InFrontOf (Door1), z)∧
Holds(InFrontOf (Door2), z)∧
[¬Holds(Closed(Door1), z)∨

¬Holds(Closed(Door2), z)]∧
(∀f, z′) z 6= f ◦ f ◦ z′

(19)

Note that the last conjunct is necessary in order not
to produce a logical contradiction to foundational ax-
iom (12). Let Ax denote the conjunction of this ax-
iom, the precondition and the state and knowledge
update axioms for SenseDoor(x) from above, and the
foundational axioms of the Fluent Calculus. Then we
can draw the following conclusions, which exemplify
the interaction between knowing, not knowing, and
sensing.

1. The robot knows that some door is open initially,
that is,

Ax |= Knows((∃x)¬Closed(x), S0)

This can be easily seen from the equivalent propo-
sition

Ax |= (∀z) (KState(S0, z) ⊃
(∃x)¬Holds(Closed(x), z))

which follows directly from (19).

10This is an adaptation of the example of [Lakemeyer
and Levesque, 1999].

2. However, the robot does not know of any partic-
ular open door initially, that is,

Ax |= ¬(∃x)Knows(¬Closed(x), S0)

This follows from the equivalent proposition

Ax |= (∀x)(∃z) (KState(S0, z)∧
Holds(Closed(x), S0))

For in case x = Door1 the state

z = InFrontOf (Door1) ◦ InFrontOf (Door2) ◦
Closed(Door1)

satisfies the conjunct; in case x = Door2 the
state

z = InFrontOf (Door1) ◦ InFrontOf (Door2) ◦
Closed(Door2)

satisfies the conjunct; and in case x 6= Door1 and
x 6= Door2 the state

z = InFrontOf (Door1) ◦ InFrontOf (Door2) ◦
Closed(Door1) ◦ Closed(x)

satisfies the conjunct.

3. After sensing the state of Door1 , the robot will
know of a particular open door (although it is not
known in advance which one), that is,

Ax |= (∃x)Knows(¬Closed(x), S1)

where S1 = Do(SenseDoor(Door1), S0). This
follows from the equivalent proposition

Ax |= (∃x)(∀z) (KState(S1, z) ⊃
¬Holds(Closed(x), z))

For, we have Poss(SenseDoor(Door1), S0) from
(13) and (19). Hence, from (2) it follows that

(∀z) (KState(S1, z) ≡KState(S0, z)∧
¬Holds(Closed(Door1), z))

in case ¬Holds(Closed(Door1), S0), and

(∀z) (KState(S1, z) ≡ KState(S0, z)∧
Holds(Closed(Door1), z))

in case Holds(Closed(Door1), S0). Furthermore,
from (19) we have

(∀z) (KState(S0, z) ∧Holds(Closed(Door1), z)
⊃ ¬Holds(Closed(Door2), z))

Altogether, both if ¬Holds(Closed(Door1), S0)
and if Holds(Closed(Door1), S0) there is some
x such that for all z, KState(S1, z) implies
¬Holds(Closed(x), z).

With knowledge update axioms the inferential Frame
Problem for ‘only knowing’ can be solved by employing
an inference scheme analogous to the one presented in
Section 4.3. Suppose that the given complete knowl-
edge of the robot about a situation σ is specified by
KState(σ, z) ≡ Φ(z), as described above. Suppose fur-
ther an action A(~τ), sensing or not, with update ax-
iom (1) is performed in σ. Then an immediate logical
consequence of the instance {~x/~τ , s/σ} of (1) and the
equivalence just mentioned, is

KState(Do(A(~τ), σ), z) ≡ (∃z′)(Φ(z′) ∧Ψ(~x, z, z′, s))

(assuming successful evaluation of ∆), which provides
a complete specification of what is known and what is
not known about the successor situation Do(A(~τ), σ).
Again, there is no need to carry over to the new situ-
ation all pieces of knowledge and non-knowledge one-
by-one and using separate instances of axioms.

6 REASONING ABOUT ABILITY

The independence of state update specifications from
knowledge update specifications enables the ready us-
age of our formalism for the purpose of reasoning about
possibly restricted subjective achievability. Two kinds
of ‘mental’ limitations may prevent a robot from reach-
ing a goal although it would be physically able to do
so: The robot may lack crucial state knowledge with-
out having at hand the appropriate sensing action, or
it may lack complete knowledge of the effect of its ac-
tions.

Formal proofs of non-achievability rely on induction
over situations along the line of [Reiter, 1993], where
the following second-order axiom has been introduced:

(∀Π) (Π(S0) ∧ (∀a, s) (Π(s) ⊃ Π(Do(a, s)))
⊃ (∀s)Π(s))

That is, a property Π holds for all situations if it holds
initially and if all actions preserve it. Usually, one is
interested in proving properties only for those situa-
tions that are reachable by an executable sequence of
actions. To this end, [Reiter, 1993] adds the following
foundational axioms:

(∀s)¬s < S0

(∀a, s, s′) (s < Do(a, s′) ≡ Poss(a, s′) ∧ s ≤ s′)

where s ≤ s′ abbreviates s < s′ ∨ s = s′ .

Using induction in the Fluent Calculus requires a do-
main closure axiom for actions since the induction step
can never be proved if there are actions without state
update axioms, in which case successor situation may

enjoy arbitrary properties. Let A1(~x1), . . . , An(~xn) be
the actions available to a robot, then this is the corre-
sponding closure axiom:

(∀a) (∃~x1) a = A1(~x1) ∨ . . . ∨ (∃~xn) a = An(~xn)

Example 4 Recall robot Blindie from the introduc-
tion, who may be in front of an open door without
knowing the state of that door:

¬Holds(Closed(Door1), S0) (20)

Knows(InFrontOf (Door1), S0) (21)

¬Knows(¬Closed(Door1), S0) (22)

The goal of entering the room cannot be achieved by
this robot without assistance. Although it could move
into the room through the open door, the robot has
no way of arriving at this conclusion if it is not able
to sense the states of doors: Let Ax denote the con-
junction of the axioms just mentioned, the precondi-
tion and the state and knowledge update axioms for
Press(Button(x)) from above, the foundational ax-
ioms including the induction and accompanying ax-
ioms, and the following closure axiom, stating that
pressing buttons is the only action available to the
robot:

(∀a) (∃x) a = Press(Button(x))

Then the robot can never know whether Door1 is
open or not:

Ax |= (∀s) (S0 ≤ s ⊃¬Knows(Closed(Door1), s)
∧¬Knows(¬Closed(Door1), s)

This follows from the induction axiom instantiated by
{Π/λs. F} where F denotes the entire formula in the
range of the quantification. The base case, S0 , is
given by (22) and by (20) in conjunction with (11).
For the induction step, consider the only action a =
Press(Button(x)) in conjunction with knowledge up-
date axiom (14) and foundational axiom (12). Then
Ax entails,

Poss(Press(Button(x)), s) ⊃
x 6= Door1 ⊃

(∀z) (KState(Do(Press(Button(x)), s), z) ⊃
[Holds(Closed(Door1), z) ≡

(∃z′)KState(s, z′) ∧Holds(Closed(Door1), z′)])

and

Poss(Press(Button(x)), s) ⊃
x = Door1 ⊃

(∀z) (KState(Do(Press(Button(x)), s), z) ⊃
[Holds(Closed(Door1), z) ≡

(∃z′)KState(s, z′) ∧ ¬Holds(Closed(Door1), z′)])

The induction step now follows from the induction hy-
pothesis that the robot does not know the status of
Door1 in s.

Example 5 Recall robot Dumbie from the introduc-
tion, who is aware of the fact that a door is somehow
under the control of a button next to it without know-
ing the precise causal relation, namely, that pressing
the button always alters the state of the door. Hence,
while the state update itself is still suitably described
by the two axioms of (10), this is the knowledge update
axiom characterizing Dumbie:

Poss(Press(Button(x)), s) ⊃
(∀z) (KState(Do(Press(Button(x)), s), z) ≡

(∃z′) (KState(s, z′) ∧
[Holds(Closed(x), z′) ⊃ z = z′ ∨ z ◦ Closed(x) = z′]∧
[¬Holds(Closed(x), z′) ⊃ z = z′ ∨ z = z′◦Closed(x)]))

(Compare this to knowledge update axiom (14), which
encodes accurate effect knowledge.) Although it could
open a closed door by pressing the button next to
it, the robot does not know this: Let Ax denote
the knowledge update axiom just mentioned along
with the precondition and state update axioms for
Press(Button(x)) from above, the foundational ax-
ioms including including the induction and accompa-
nying axioms, the axiom

Knows(Closed(Door1), S0) (23)

and the closure axiom

(∀a) (∃x) a = Press(Button(x))

Then the robot can never know that it is possible to
open the door:

Ax |= (∀s) (S0 ≤ s ⊃¬Knows(¬Closed(Door1), s)

This follows from the induction axiom instantiated by
{Π/λs. F} where F denotes the entire formula in the
range of the quantification. The base case, S0 , is given
by (23) in conjunction with (11). For the induction
step, consider the only action a = Press(Button(x))
in conjunction with the knowledge update axiom of
Dumbie for this action and foundational axiom (12).
Then Ax entails,

Poss(Press(Button(x)), s) ⊃
x 6= Door1 ⊃

(∀z) (KState(Do(Press(Button(x)), s), z) ⊃
[Holds(Closed(Door1), z) ≡

(∃z′)KState(s, z′) ∧Holds(Closed(Door1), z′)])

and

Poss(Press(Button(x)), s) ⊃
x = Door1 ⊃

(∃z) (KState(Do(Press(Button(x)), s), z) ⊃
Holds(Closed(Door1), z))

The induction step now follows from the induction hy-
pothesis.

7 DISCUSSION

We have developed a formal account of a robot’s
changing knowledge about the state of its environ-
ment. Based on the established predicate calculus
formalism for reasoning about actions of the Fluent
Calculus, our approach is kept representationally and
inferentially simple in that it avoids non-classical ex-
tensions to standard predicate logic. Our formalism
accounts for both knowledge preconditions of actions
and information gathering actions which enhance the
state knowledge of a robot. Our theory also provides
simple and elegant means to reason about what a robot
does not know and about goal achievability.

The effect of actions on state knowledge is specified by
so-called knowledge update axioms, by which is solved
the representational Frame Problem for knowledge ac-
cording to the main theorem of the Fluent Calculus
for sensing (Item 2 of Theorem 4). Moreover, knowl-
edge update axioms have been shown to lay the foun-
dations for overcoming the inferential aspect of this
Frame Problem, too.

We have axiomatically introduced the concept of a
conditional action, by which a robot may condition
its intended course of actions on the result of a sens-
ing action included in its plan. Our If -construct uses
only atomic conditions and only allows for a single con-
ditionally executed action. The integration of more
expressive notions, say arbitrarily complex conditions
and unbounded iteration [Levesque, 1996], is consid-
ered an important direction of future research. Fol-
lowing [Levesque et al., 1997], such complex actions
can be dealt with in two fundamentally different ways:
They can be defined via macros or be integrated into
the language. The former approach, actually taken
in [Levesque et al., 1997], has the drawback that non-
sequential plans (that is, which include conditional and
loop statements) cannot be planned by deduction as
they are not part of the language. The latter approach,
on the other hand, requires complete reification of ar-
bitrary formulas. Inasmuch as reification plays an im-
portant role in the simple Fluent Calculus anyway, it
is this second alternative approach which seems most
promising a route to take towards an extension of our
formalism.

Knowledge and sensing actions were first investigated
in [Moore, 1985] in the context of the Situation Cal-
culus [McCarthy, 1963], and in [Scherl and Levesque,
1993] this approach was combined with the solution

to the Frame Problem provided by so-called succes-
sor state axioms [Reiter, 1991]. The basic idea of this
approach is to represent state knowledge by a binary
situation-situation relation K(s, s′), meaning that as
far as the robot knows in situation s it could as well
be in situation s′ . Hence, every given fact about any
such s′ is considered possible by the robot. Having
readily available the explicit notion of a state in the
Fluent Calculus, our formalization avoids this indirect
encoding of state knowledge, which is intuitively less
appealing because it seems that a robot should always
know exactly which situation it is in—after all, situa-
tions in the Situation Calculus are merely sequences
of actions that have been or will be taken by the
robot [Levesque et al., 1998].

Apart from this clash of intuitions, there is a more
crucial difference between our approach and that
of [Moore, 1985; Scherl and Levesque, 1993]: The
latter defines the effect of a non-sensing action a
on the robot’s state knowledge via the equivalence
relation K(Do(a, s), s′′) ≡ (∃s′) (K(s, s′) ∧ s′′ =
Do(a, s′)). Hence, the very same successor state ax-
ioms apply to both the state update (when moving
from s to Do(a, s)) and the knowledge update (when
moving from s′ to s′′ = Do(a, s′)). In contrast,
with independent specifications of state and knowl-
edge update, our formalism furnishes a ready approach
for representing and reasoning about goal achievabil-
ity that is possibly restricted due to limited knowl-
edge of the effects of actions. This separating what
a user knows from what a robot knows distinguishes
our theory from other existing accounts of sensing ac-
tion and knowledge, too, such as [Lobo et al., 1997;
Son and Baral, 1998], where also non-sensing ac-
tions have identical effect on the external and internal
states.

Representing and reasoning about non-knowledge has
previously been realized in the context of the Situa-
tion Calculus [Lakemeyer and Levesque, 1998; Lake-
meyer and Levesque, 1999]. Two approaches to ‘only
knowing’ have been offered, one of which is by a non-
standard semantics while the other one is an axiomati-
zation in classical logic but with two complex second-
order axioms involved. Exploiting the reification of
fluents and states, knowledge and non-knowledge can
be expressed in our approach by mere first-order sen-
tences along with the standard semantics of classical
predicate logic.

Goal achievability has been analyzed previously in [Lin
and Levesque, 1997], independently of the second au-
thor’s approach to knowledge and sensing. The result
of the present paper can thus be viewed as a unify-

ing theory for representing and reasoning about knowl-
edge, sensing, and mental ability of achieving goals.

Our further plans for future work include the integra-
tion of the formalism for reasoning about a robot’s
knowledge into existing extensions of the basic Flu-
ent Calculus. A particularly interesting combination
is that of ramifications and knowledge. Just like it
may have only restricted knowledge of the direct ef-
fects of actions, a robot may lack knowledge of state
constraints and of indirect effects. The solution to the
Ramification Problem of [Thielscher, 1997] is readily
available for a combination with knowledge update ax-
ioms to allow a robot to reason about the indirect ef-
fects it is aware of.

References

[Bibel, 1998] Wolfgang Bibel. Let’s plan it deduc-
tively! Artificial Intelligence, 103(1–2):183–208,
1998.

[Hölldobler and Schneeberger, 1990]

Steffen Hölldobler and Josef Schneeberger. A new
deductive approach to planning. New Generation
Computing, 8:225–244, 1990.

[Hölldobler and Thielscher, 1995] Steffen Hölldobler
and Michael Thielscher. Computing change and
specificity with equational logic programs. Annals
of Mathematics and Artificial Intelligence, 14(1):99–
133, 1995.

[Lakemeyer and Levesque, 1998] Gerhard Lakemeyer
and Hector J. Levesque. AOL : A logic of acting,
sensing, knowing, and only knowing. In A. G. Cohn,
L. K. Schubert, and S. C. Shapiro, editors, Proceed-
ings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR),
pages 316–327, Trento, Italy, 1998.

[Lakemeyer and Levesque, 1999] Gerhard Lakemeyer
and Hector J. Levesque. Query evaluation and pro-
gression in AOL knowledge bases. In T. Dean, ed-
itor, Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 124–
131, Stockholm, Sweden, 1999.

[Levesque et al., 1997] Hector J. Levesque, Raymond
Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl. GOLOG: A logic programming
language for dynamic domains. Journal of Logic
Programming, 31(1–3):59–83, 1997.

[Levesque et al., 1998] Hector Levesque, Fiora Pirri,
and Ray Reiter. Foundations for a calculus of

situations. Linköping Electronic Articles in Com-
puter and Information Science, 3(18), 1998. URL:
http://www.ep.liu.se/ea/cis/1998/018/.

[Levesque, 1996] Hector J. Levesque. What is plan-
ning in the presence of sensing? In B. Clancey and
D. Weld, editors, Proceedings of the AAAI National
Conference on Artificial Intelligence, pages 1139–
1146, Portland, OR, August 1996. MIT Press.

[Lin and Levesque, 1997] Fangzhen Lin and Hector
Levesque. What robots can do: Robot programs
and effective achievability, 1997. (Manuscript).

[Lobo et al., 1997] Jorge Lobo, Gisela Mendez, and
Stuart R. Taylor. Adding knowledge to the ac-
tion description language A . In B. Kuipers and
B. Webber, editors, Proceedings of the AAAI Na-
tional Conference on Artificial Intelligence, pages
454–459, Providence, RI, July 1997. MIT Press.

[McCarthy, 1963] John McCarthy. Situations and Ac-
tions and Causal Laws. Stanford Artificial Intelli-
gence Project, Memo 2, 1963.

[Moore, 1985] Robert Moore. A formal theory of
knowledge and action. In J. R. Hobbs and R. C.
Moore, editors, Formal Theories of the Common-
sense World, pages 319–358. Ablex, 1985.

[Reiter, 1991] Ray Reiter. The frame problem in the
situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. In V.
Lifschitz, editor, Artificial Intelligence and Math-
ematical Theory of Computation, pages 359–380.
Academic Press, 1991.

[Reiter, 1993] Ray Reiter. Proving properties of states
in the situation calculus. Artificial Intelligence,
64:337–351, 1993.

[Scherl and Levesque, 1993] Richard Scherl and Hec-
tor Levesque. The frame problem and knowledge-
producing actions. In Proceedings of the AAAI Na-
tional Conference on Artificial Intelligence, pages
689–695, Washington, DC, July 1993.

[Son and Baral, 1998] Tran Cao Son and Chitta
Baral. Formalizing sensing actions—a transition
function based approach, 1998. (Manuscript).

[Störr and Thielscher, 2000] Hans-Peter Störr
and Michael Thielscher. A new equational foun-
dation for the fluent calculus, 2000. (Manuscript.)
URL: http://pikas.inf.tu-dresden.de/˜mit/
publications/conferences/FCeq.ps.

[Thielscher, 1997] Michael Thielscher. Ramification
and causality. Artificial Intelligence, 89(1–2):317–
364, 1997.

[Thielscher, 1998] Michael Thielscher. Introduction to
the Fluent Calculus. Electronic Transactions on
Artificial Intelligence, 2(3–4):179–192, 1998. URL:
http://www.ep.liu.se/ea/cis/1998/014/.

[Thielscher, 1999] Michael Thielscher. From Situation
Calculus to Fluent Calculus: State update axioms as
a solution to the inferential frame problem. Artificial
Intelligence, 111(1–2):277–299, 1999.

