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Abstract. A new theory of evaluating counterfactual statements is pre-
sented based on the established predicate calculus formalism of the Flu-
ent Calculus for reasoning about actions. The assertion of a counter-
factual antecedent is axiomatized as the performance of a special action.
An existing solution to the Ramification Problem in the Fluent Calculus,
where indirect effects of actions are accounted for via causal propagation,
allows to deduce the immediate consequences of a counterfactual condi-
tion. We show that our theory generalizes Pearl etal.’s characterization,
based on causal models, of propositional counterfactuals.

1 Introduction

A counterfactual sentence is a conditional statement whose antecedent is known
to be false as in, “Had the gun not been loaded, President Kennedy would
have survived the assassination attempt.” If counterfactuals are read as material
implications, then they are trivially true due to the presupposed falsehood of the
condition. Nonetheless it can be both interesting and important to use a more
sophisticated way of deciding acceptability of a counterfactual query like, e.g.,
“Had the hit-and-run driver immediately called the ambulance, the injured would
not have died.” Counterfactuals can also teach us lessons which can be useful
in the future when similar situations are encountered, as in “Had you put your
weight on the downhill ski, you would not have fallen” [11]. Other applications
of processing counterfactuals are fault diagnosis, determination of liability, and
policy analysis [1].1

The first formal theory of reasoning about counterfactuals was developed
in [8], where a counterfactual sentence was accepted iff its consequent holds in
all hypothetical ‘worlds’ which are ‘closest’ to the factual one but satisfy the
counterfactual antecedent. A first method for processing actual counterfactual
queries on the basis of a concrete concept of worlds and closeness was proposed
in [5]. Generally, the value of a theory of processing counterfactuals depends
crucially on how well the expected consequences of a counterfactual condition
are determined. It has been observed, among others, by the authors of [1, 4] that
knowledge of causality is required to this end. Accordingly, their method is based

1 It is worth mentioning that the importance of theories of counterfactual reasoning
for the field of AI is documented by the fact that Judea Pearl receives this year’s
IJCAI award for research excellence also for his pioneering work on causality.



on so-called causal models. A distinguishing feature of this approach is that it
deals with probabilities of statements and the way these probabilities change un-
der counterfactual conditions. On the other hand, causal models are essentially
propositional. This does not allow for processing counterfactuals which involve
disjunctions or quantifications as in, “Had you worn a safety helmet, or had you
taken any other route, you would not have been hurt by a roof tile.” Further
restrictions of the causal models approach to counterfactual reasoning are en-
tailed by the requirement that the value of each dependent variable is uniquely
determined by the exogenous variables (see Section 4 on the implications of this).
The Fluent Calculus is a general strategy for axiomatizing knowledge of ac-

tions and effects using full classical predicate logic [14]. Based on a Situation
Calculus-style branching time structure, the plain Fluent Calculus allows for
processing a particular kind of counterfactual statements, namely, where the
counterfactual antecedent asserts a sequence of actions different from the one
that has actually taken place as in, “Had the assassin shot at the vice presi-
dent, the president would have survived the shot:” Consider the generic predi-
cate Holds(f, s) denoting that fluent2 f holds in situation s, and the generic
function Do(a, s) denoting the situation reached by performing action a in
situation s. Then it is a simple exercise to axiomatize, by means of the Fluent
Calculus, knowledge of the effect of Shoot(p), denoting the action of shooting p,
in such a way that the following is entailed:3

Holds(Alive(President), S0) ∧Holds(Alive(Vice), S0)
∧S1 = Do(Shoot(President), S0) ∧ S′

1 = Do(Shoot(Vice), S0)
⊃ ¬Holds(Alive(President), S1) ∧ Holds(Alive(President), S ′

1)

The obvious reason for this to work without further consideration is that the
two statements ¬Holds(Alive(President), S1) and Holds(Alive(President), S ′

1)
do not mutually contradict due to the differing situation argument.
Counterfactual assertions about situations instead of action sequences cannot

be processed in such a straightforward manner. If to an axiom like,

Holds(Loaded(Gun), S0)∧
¬Holds(Alive(President),Do(Shoot-with(Gun,President), S0))

(1)

the counterfactual condition ¬Holds(Loaded(Gun), S0) is added, then a plain
inconsistency is produced. Our theory for processing counterfactual statements
with the Fluent Calculus solves this problem by associating a new situation
term with a counterfactual antecedent that modifies facts about a situation.
The step from an actual one to a situation thus modified is modeled by per-
forming an action which has the very modification as effect. Suppose, e.g., the

2 A fluent represents an atomic property of the world which is situation-dependent,
that is, whose truth value may be changed by actions.

3 A word on the notation: Predicate and function symbols, including constants, start
with a capital letter whereas variables are in lower case, sometimes with sub- or
superscripts. Free variables in formulas are assumed universally quantified.
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Fig. 1. An electric circuit consisting of a battery, two switches, and a light bulb, which
is on if and only if both switches are closed.

‘action’ Modify(Not-Loaded(x)) has the sole effect of x becoming unloaded,
then a suitable axiomatization in the Fluent Calculus yielded,

(1) ∧ S′
0 = Do(Modify(Not-Loaded(Gun)), S0)

⊃ Holds(Alive(President),Do(Shoot-with(Gun,President), S ′
0))

(2)

which corresponds to the counterfactual statement above, “Had the gun not
been loaded, the president would have survived the assassination attempt.”
A counterfactual antecedent may have consequences which are more imme-

diate, that is, which do not refer to another action like in (2). Consider, for
example, the simple electric circuit depicted in Fig. 1, taken from [9]. A counter-
factual statement whose truth is obvious from the wiring (and the assumption
that battery, light bulb, and the wires are not broken) is, “Were Sw1 closed
in the situation depicted, light would be on.” This conclusion is rooted in this
so-called state constraint :

Holds(On(Light), s) ≡ Holds(Closed(Sw1 ), s) ∧Holds(Closed(Sw2 ), s) (3)

However, it is less obvious how to formalize the grounds by which is rejected
the counterfactual statement, “Were Sw1 closed in the situation depicted,
Sw2 would be open,” suggested by the implication, Holds(Closed(Sw1 ), s) ∧
¬Holds(On(Light), s) ⊃ ¬Holds(Closed(Sw2 ), s), which is a logical consequence
of axiom (3). This question is closely related to the Ramification Problem [6],
that is, the problem of determining the indirect effects of actions. If someone
closes Sw1 in our circuit, does the light come on as an indirect effect or does
Sw2 jump open to restore state consistency?
A standard extension of the Fluent Calculus addresses the Ramification Prob-

lem, and in particular meets the challenge illustrated with the circuit, by means
of directed causal relations where indirect effects are obtained via causal propa-
gation [12]. This solution, together with our proposal of modeling counterfactual
antecedents as actions, furnishes a ready method for accommodating the imme-
diate consequences caused by a counterfactual assertion.
Our proposal for evaluating counterfactuals with the Fluent Calculus and

the approach of [1, 4] thus have in common the property of being grounded on
causality. On the other hand, two features are not shared even if we confine



ourselves to the restricted case of propositional counterfactuals. First, our the-
ory is not restricted by the so-called reversibility property [4]. Second, a rather
unique feature of our account of counterfactuals is that a counterfactual an-
tecedent may be rejected as being unacceptable in the current state of affairs.
Both non-reversibility and the possibility of rejecting counterfactual conditions
will be discussed in detail below. We will also show formally how, despite these
differences, the approach of [1, 4], if restricted to causal models without proba-
bilities, is embedded in our proposal.

2 The Fluent Calculus

In what follows we give a concise introduction to the axiomatization strategy of
the Fluent Calculus. The reader who is unfamiliar with it might want to consult
the (electronically available) gentle introduction [13]. A distinguished purpose
of the Fluent Calculus, which roots in the logic programming formalism of [7],
is to address not only the representational but also the inferential aspect [2] of
the classical Frame Problem. We use a many-sorted second order language with
equality, which includes sorts for fluents, actions, situations, and states. Fluents
are reified propositions. That is to say, we use terms like On(Sw1 ) to denote
fluents, where On is a unary function symbol. States are fluents connected via
the binary function symbol “ ◦ ”, written in infix notation, which is assumed
to be both associative and commutative and to admit a unit element, denoted
by ∅. Associativity allows us to omit parentheses in nested applications of ◦. A
function State(s) relates a situation s to the state of the world in that situation,
as in the following partial description of the initial state in our circuit example:

∃z [State(S0) = Closed(Sw2 ) ◦ z ∧ ∀z′. z 6= Closed(Sw1 ) ◦ z′ ] (4)

Put in words, of state State(S0) it is known that Closed(Sw2 ) is true and
possibly some other fluents z hold, too—with the restriction that z does not
include Closed(Sw1 ), of which we know that it is false.
Fundamental for any Fluent Calculus axiomatization is the axiom set EUNA

(the extended unique names-assumption) [12]. This set comprises the axioms
AC1 (i.e., associativity, commutativity, and unit element) and axioms which
entail inequality of two state terms whenever these are not AC1-unifiable. In
addition, we have the following foundational axiom, where f is of sort fluent,

∀s, f, z. State(s) 6= f ◦ f ◦ z (5)

by which double occurrences of fluents are prohibited in any state which is
associated with a situation. Finally, we need the Holds predicate introduced in
Section 1, though it is not part of the signature but a mere abbreviation of an

equality sentence: Holds(f, s)
def
= ∃z.State(s) = f ◦ z.

So-called state update axioms specify the entire relation between the states
at two consecutive situations. Regarding our circuit example, let the only direct
effect of an action called Toggle(x) be that switch x changes its position from



open to closed or vice versa. Ignoring indirect effects for the moment, this is a
suitable pair of state update axioms:

¬Holds(Closed(x), s) ⊃ State(Do(Toggle(x), s)) = State(s) ◦ Closed(x)
Holds(Closed(x), s) ⊃ State(Do(Toggle(x), s)) ◦ Closed(x) = State(s)

That is, if Toggle(x) is performed in a situation s where x is not closed, then
the new state equals the old state plus Closed(x). Conversely, if x happens
to be closed, then the new state plus Closed(x) equals the old state. In other
words, in the first case Closed(x) is the only positive direct effect, while it is
the only negative direct effect in the second case.
A crucial extension of the basic Fluent Calculus introduced so far copes with

the Ramification Problem. Recall, for instance, state constraint (3). It gives rise,
among others, to the indirect effect that light turns on if Sw1 gets closed when-
ever Sw2 is already closed. Such indirect effects are accounted for by the succes-
sive application of directed causal relations [12]. An example for such a relation,
which holds for the circuit, is Closed(Sw1 ) causesOn(Light), if Closed(Sw2 )
while the following should not be formalized and added to the axiomatization:
Closed(Sw1 ) causes ¬Closed(Sw2 ), if ¬On(Light).
It cannot be gathered from a mere state constraint which of its logical con-

sequences correspond to ‘real’ indirect effects. Yet with the aid of additional
domain knowledge about potential causal influence it is possible to automati-
cally extract suitable causal relationships from state constraints [12]:4

Consider a given binary relation I among the underlying fluents.5 For
all state constraints C , all prime implicates L1 ∨ . . .∨Lm of C , all i =
1, . . . ,m, and for all j = 1, . . . ,m, j 6= i: If (atom(Li), atom(Lj)) ∈ I ,

6

then this is a valid causal relationship:

¬Li causes Lj , if
∧

k = 1, . . . , m
k 6= i; k 6= j

¬Lk

For example, I = {(Closed(Sw1 ),On(Light)), (Closed(Sw2 ),On(Light))} is the
appropriate influence relation for our electric circuit. If I is used for the gener-
ation of causal relationships from state constraint (3), then this is the result of
the above algorithm:

Closed(Sw1 ) causes On(Light), if Closed(Sw2 )
Closed(Sw2 ) causes On(Light), if Closed(Sw1 )
¬Closed(Sw1 ) causes ¬On(Light)
¬Closed(Sw2 ) causes ¬On(Light)

(6)

4 The following procedure assumes state constraints to have a format where each
occurrence of Holds(ϕ, s) is replaced by the simple atomic expression ϕ. For the sake
of simplicity, we confine ourselves to constraints with the universally quantified s

being the only variable. A generalization can be found in [12].
5 If (F, G) ∈ I , then this indicates that fluent F may have direct causal influence on

fluent G.
6 By atom(L) we denote the atom of a literal L.



The axiomatization of each single causal relationship in the Fluent Calculus
is based on a predicate Causes(z, e, z′, e′), which shall be true if, according to
the causal relationship, in the current state z the occurred effects e give rise to
an additional, indirect effect resulting in the updated state z ′ and the updated
current effects e′ . Let R be a set of causal relationships, then by Π[R] we
denote the corresponding set of Fluent Calculus axioms defining Causes in this
way.

In order to account for possible indirect effects, the state update axioms from
above are refined as follows:

¬Holds(Closed(x), s) ⊃
[ z = State(s) ◦ Closed(x) ⊃ Ramify(z,Closed(x),State(Do(Toggle(x), s))) ]

Holds(Closed(x), s) ⊃
[ z ◦ Closed(x) = State(s) ⊃ Ramify(z, −Closed(x),State(Do(Toggle(x), s))) ]

where the term −F represents the occurrence of a negative effect and where
Ramify(z, e, z∗) means that state z∗ is reachable from z, e by the successive
application of (zero or more) causal relationships. Following [12], Ramify is
defined via a standard second-order axiom characterizing the reflexive and tran-
sitive closure of Causes .

To summarize, let ΣCircuit be the union of the two state update axioms just
mentioned, state constraint (3), Π[(6)] , the second-order definition of Ramify ,
foundational axiom (5), and the appropriate axioms EUNA. This Fluent Calcu-
lus theory we will use in the next two sections to illustrate various features of
our approach to counterfactual reasoning.

3 Axiomatizing Counterfactuals

We now propose a theory for evaluating counterfactual queries whose antecedent
changes what is known about one or more situations. Our theory is implicitly de-
fined by an axiomatization strategy—based on the Fluent Calculus—for counter-
factual statements. Consider, for example, the atomic counterfactual condition,
for some x and s, “If Closed(x) were true in situation s, . . . ”. By making
this assertion one wishes to talk about a situation which is like s except for
Closed(x) being true and except for all consequences caused by that modifica-
tion. Generally, our theory allows to process counterfactual statements of the
form, “If Φ, then Ψ ,” where the antecedent Φ expresses modifications—of one
or more situations—which can be modeled as actions, and Ψ is a statement
about what holds in these (and possibly other) situations. A unified treatment
of modifications according to Φ is provided by the following generic state up-
date axiom, which defines the action Modify(p, n) where p and n are finite
collections of fluents which shall become true and false, resp., as requested by the
counterfactual antecedent. All further consequences of this update are obtained



as indirect effects via ramification. Hence, Modify(p, n) is suitably defined by,7

Poss(Modify(p, n), s) ⊃
[ z ◦ n = State(s) ◦ p ⊃ Ramify(z, p ◦ −n,State(Do(Modify(p, n), s))) ]

where the generic predicate Poss(a, s) means that action a is possible in sit-
uation s. The state update axiom is accompanied by this action precondition
axiom:8 Poss(Modify(p, n), s) ⊃ Holds(p, s) ∧Holds(n, s).
To enhance readability, we introduce the following notation: The expression

s ¢ f1 ∧ . . . ∧ fm ∧ ¬fm+1 ∧ . . . ∧ ¬fn

denotes the situation Do(Modify(f1 ◦ . . . ◦ fm, fm+1 ◦ . . . ◦ fn), s). For example,
the term S0 ¢ Closed(Sw1 ) shall denote Do(Modify(Closed(Sw1 ), ∅), S0).

9

The axiomatization of a counterfactual conclusion Ψ refers to the modi-
fied situation(s) produced by the counterfactual antecedent, as in the following
proposition, which asserts the correctness of, “If Sw1 were closed in the situa-
tion depicted in Fig. 1, then light would be on:”

Proposition 1. The formulas ΣCircuit ∪ {(4)} entail,

Poss(S0 ¢ Closed(Sw1 )) ⊃ Holds(On(Light), S0 ¢ Closed(Sw1 ))

A counterfactual statement may also involve the performance of actions in
the hypothetical situation(s) as in, “If Sw1 were closed in the situation depicted
in Fig. 1, then light would be off after toggling Sw1 :”

Proposition 2. The formulas ΣCircuit ∪ {(4)} entail,

Poss(S0 ¢ Closed(Sw1 )) ⊃
¬Holds(On(Light),Do(Toggle(Sw1 ), S0¢Closed(Sw1 )))

As opposed to existing, propositional accounts of counterfactual reasoning,
our theory allows evaluating counterfactual antecedents which exploit the full
expressive power of first-order logic and, for instance, include disjunctions of
modifications and modifications of more than one situation as in, “If either Sw2
would have been open in the initial situation as depicted in Fig. 1, or if Sw1
were open now that we have toggled it, then light would be off now:”

Proposition 3. The formulas ΣCircuit ∪ {(4)} entail,

Poss(S0 ¢ ¬Closed(Sw2 )) ∧ Poss(Do(Toggle(Sw1 ), S0) ¢ ¬Closed(Sw1 ))
∧ [S1 = Do(Toggle(Sw1 ), S0 ¢ ¬Closed(Sw2 ))
∨ S1 = Do(Toggle(Sw1 ), S0) ¢ ¬Closed(Sw1 ) ] ⊃ ¬Holds(On(Light), S1)

7 Below, −(f1 ◦ . . . ◦ fm) means −f1 ◦ . . . ◦ −fm .
8 Below, Holds(f1 ◦ . . . ◦ fm, s) means ¬Holds(f1, s) ∧ . . . ∧ ¬Holds(fm, s). The use-

fulness of preconditions for the Modify action will become clear in Section 5, where
we consider the rejection of counterfactual antecedents.

9 With a slight abuse of notation, Poss(Modify(f1 ◦ . . . ◦ fm, fm+1 ◦ . . . ◦ fn), s) shall
similarly be written as Poss(s ¢ f1 ∧ . . . ∧ fm ∧ ¬fm+1 ∧ . . . ∧ ¬fn).



4 Non-Reversibility

The part of our theory where the immediate consequences of a counterfactual
antecedent are determined via causal propagation, and the approach of [1, 4]
based on causal models, have in common the notion of causality. Nonetheless
and even if we cut down the expressiveness of our theory to propositional coun-
terfactuals, there are some important properties which are not shared, one of
which is reversibility [4]. Informally, reversibility means that if counterfactually
asserting that a fluent F has a value x results in a value y for some fluent
G, and on the other hand asserting G to have value y results in F achieving
value x, then F and G will have the respective values x and y anyway, that
is, without any counterfactual assertion.
No comparable property is implied by a set of causal relationships in our

approach. This allows to process counterfactuals of the following kind, which
cannot be dealt with in the approach of [1, 4]. Suppose the two switches in our
main example are tightly mechanically coupled so that it cannot be the case that
one is open and the other one is closed [12]. Then both of these counterfactuals
are obviously true: “If Sw1 were in a different position than it actually is, Sw2 ,
too, would assume a different position,” and “If Sw2 were in a different position
than it actually is, Sw1 , too, would assume a different position.” Yet this does
not imply, contrary to what reversibility would amount to, that both Sw1 and
Sw2 actually do occupy different positions than they do.
In order to evaluate these counterfactuals, let Σ ′

Circuit be ΣCircuit aug-
mented by the state constraint Holds(Closed(Sw1 ), s) ≡ Holds(Closed(Sw2 ), s),
along with the causal relationships (or rather the Fluent Calculus axiomatiza-
tion thereof) which are determined by the constraint if the influence relation is
extended by (Closed(Sw1 ),Closed(Sw2 )) and (Closed(Sw2 ),Closed(Sw1 )).

Proposition 4. The formulas Σ ′
Circuit entail,

Poss(S0 ¢ Closed(Sw1 )) ∧ S′
0 = S0 ¢ Closed(Sw1 )

∨ Poss(S0 ¢ ¬Closed(Sw1 )) ∧ S′
0 = S0 ¢ ¬Closed(Sw1 )

⊃ [Holds(Closed(Sw2 ), S′
0) ≡ ¬Holds(Closed(Sw2 ), S0) ]

To the same class as this example belong counterfactuals which talk about
properties that by their very definition are mutually dependent as in, “If the
president were alive, he would not be dead—and vice versa.” The reversibility
property of the causal models approach to counterfactual reasoning prohibits
processing this kind of counterfactual statements.

5 Rejecting Counterfactual Antecedents

Causal propagation of indirect effects is in general not guaranteed to produce
a unique result, nor to produce any result at all [12]. In the context of the
Ramification Problem, the lack of a resulting state is known as an instance
of the Qualification Problem: Rather than giving rise to indirect effects of an



action, a state constraint implies an implicit precondition.10 For our theory of
counterfactuals this property of causal relationships implies the rather unique
feature that counterfactual antecedents may be rejected if desired.
Consider, for example, this counterfactual sentence due to [11]: “If there had

been another car coming over the hill when you passed the car, there would have
been a head-on collision.” But suppose you as the driver knew that you are on a
on-way street, then it seems most appropriate to reject the counterfactual asser-
tion by saying, “But there could not have been another car coming because we
are on a one-way.” This answer is indeed obtained in our approach by a straight-
forward formalization of the underlying scenario. Consider, to this end, the state
constraint, Holds(Oncoming-car , s) ∧ Holds(Passing , s) ⊃ Holds(Collision, s).
Both fluents Oncoming-car and Passing may influence Collision . Hence, these
two causal relationships are determined by the constraint:

Oncoming-car causes Collision, if Passing
Passing causes Collision, if Oncoming-car

Next we add the knowledge that on a one-way road there are no oncoming
cars, formalized by Holds(One-way , s) ⊃ ¬Holds(Oncoming-car , s). Changing
the status of a road may causally affect the flow of oncoming traffic but not
the other way round, which means that the only causal relationship triggered
by the new constraint is, One-way causes ¬Oncoming-car . Let ΣCollide denote
the complete Fluent Calculus axiomatization of this scenario along the line of
ΣCircuit in Section 2, then we have the following result:

Proposition 5. ΣCollide ∪ {Holds(Passing , S0) ∧ ¬Holds(Oncoming-car , S0) ∧
¬Holds(Collision, S0) ∧Holds(One-way , S0)} entails,

¬Poss(S0 ¢ Oncoming-car)

The reason is that no available causal relationship allows to restore consis-
tency wrt. the state constraint, Holds(One-way , s) ⊃ ¬Holds(Oncoming-car , s).
Proposition 5 is to be interpreted as a rejection of the counterfactual antecedent,
“If there had been another car coming over the hill, . . . ” as ‘unrealistic’ in the
state of affairs. In this way, counterfactual antecedents are only accepted if a
world can be constructed around them which is consistent with the state con-
straints and which does not require ‘acausal’ modifications.
In the approach of [1, 4], ‘acausal’ modifications are also not permitted,

but the realization of counterfactual conditions involves annulling some of what
corresponds to our state constraints, namely, those which normally determine
the values of the fluents being altered by the counterfactual antecedent. Any
antecedent is thus accepted.

10 A standard example is the constraint which says that in certain cultures you cannot
be married to two persons. This axiom gives rise to the (implicit) precondition that
you cannot marry if you are already married. The constraint should not imply the
indirect effect of automatically becoming divorced [10].



The possibility of a counterfactual being rejected, desired as it could be in
general, may not always be accepted a reaction. Consider the counterfactual, “If
light were on in the situation depicted in Fig. 1, the room would not be pitch
dark.” As it stands, our axiomatization would reject the condition of this coun-
terfactual on the grounds that the light could not possibly be on because the
controlling switches are not in the right position. Insisting upon the counterfac-
tual condition in question, and coming to the conclusion that the counterfactual
statement holds, would require to deny the background knowledge of the rela-
tion between the switches and the light bulb. Making explicit the desire to deny
this relation, the counterfactual statement can be evaluated without rejection if
state constraint (3) is replaced by,

¬Holds(Denied(Switch-Light-Relation), s) ⊃
[Holds(On(Light), s) ≡ Holds(Closed(Sw1 ), s) ∧Holds(Closed(Sw2 ), s) ]

The generic fluent Denied(x) shall be used in general whenever there is
desire to weaken a state constraint in this fashion. Situations which do not
result from counterfactual reasoning are supposed to not deny any underlying
relation among fluents. This is expressed by these three axioms:

Factual(S0)
Factual(s) ∧ ∀p, n. a 6= Modify(p, n) ⊃ Factual(Do(a, s))
Factual(s) ⊃ ¬Holds(Denied(x), s)

Let Σ∗
Circuit be ΣCircuit thus modified. Then the above counterfactual an-

tecedent is acceptable if the denial of the dependence of the light is made explicit:

Proposition 6. Σ∗
Circuit ∪ {(4)} is consistent with,

Poss(S0 ¢ On(Light) ∧Denied(Switch-Light-Relation))

6 Axiomatizing Causal Model-Counterfactuals

In concentrating on the crucial connection between reasoning about counterfac-
tuals and causal reasoning, the approach of [1, 4] based on causal models has a
strong relation to the proposal of the present paper. Despite the conceptual dif-
ference between probabilistic, propositional causal models and the second-order
Fluent Calculus with the full expressive power of logic, and despite the further
differences discussed in the preceding two sections, counterfactual reasoning in
causal models, in the non-probabilistic case, can be embedded into our theory.
For the sake of simplicity and clarity, we assume all variables in causal models
to be binary. The following definitions follow [4].

Definition 7. A causal model is a triple M = 〈U ,V,F〉 where U and V =
{V1, . . . , Vn} are disjoint sets of propositional variables (exogenous and endoge-
nous, resp.), and F is a set of propositional formulas {F1, . . . , Fn} such that
(i) Fi contains atoms from U and V \ {Vi}. (The set of variables from V that
occur in Fi is denoted by PAi (the parents of Vi).)



(ii) For each interpretation for the variables in U there is a unique model of
(V1 ≡ F1) ∧ . . . ∧ (Vn ≡ Fn).

As an example, consider the causal model MCircuit consisting of U = {U1, U2};
V = {Sw1 ,Sw2 ,Light}; and FSw1 = U1 , FSw2 = U2 , and FLight = Sw1 ∧
Sw2 , which models the electric circuit of Fig. 1 using two additional, exogenous
variables U1 and U2 that determine the positions of the two switches.

Definition 8. Let M = 〈U ,V,F〉 be a causal model, X ⊆ V , and ιX a partic-
ular interpretation for the variables in X . A submodel of M is the causal model
MιX = 〈U ,V,FιX 〉 with FιX = {Fi ∈ F : Vi 6∈ X} ∪ {X ≡ ιX (X) : X ∈ X},
provided MιX is a causal model according to Def. 7.
For Y ∈ V , let YιX (ιU ) denote the truth-value for Y in the (unique) model

of FιX with interpretation ιU for U . Then YιX (ιU ) is the evaluation of the
counterfactual sentence, “If X had been ιX , then Y ,” in the setting ιU .

E.g., a submodel of MCircuit is given by, F{Sw1=True} = {FSw1 = True, FSw2 =
U2, FLight = Sw1 ∧ Sw2}. Consider ιU = {U1 = False, U2 = True}, which char-
acterizes the situation depicted in Fig. 1. Then Light{Sw1=True}(ιU ) = True ,
which confirms the counterfactual, “If Sw1 were closed, light would be on.”
We will now present a correct Fluent Calculus axiomatization of causal mod-

els and the evaluation of counterfactuals. The (propositional) fluents are the
variables of the model. The definitions {F1, . . . , Fn} of the endogenous vari-
ables are directly translated into state constraints, each of which can possibly
be denied, that is, ¬Holds(Denied(definition-of-Vi), s) ⊃ HOLDS (Fi, s).

11 The
state constraints determine a collection of causal relationships on the basis of
the influence relation I = {(V, Vi) : V ∈ PAi}. For a causal model M , let ΣM

denote the Fluent Calculus axiomatization which consists of the foundational
axioms, including a suitable set EUNA, along with the state constraints and the
axiomatizations of the causal relationships determined by M as just described.

Theorem9. Let M = 〈U ,V,F〉 be a causal model wit Fluent Calculus ax-
iomatization ΣM . Consider a subset X ⊆ V along with a particular realiza-
tion ιX such that MιX is a submodel, a variable Y ∈ V , and a particular
realization ιU for U . Let Σ = ΣM ∪ {

∧

U∈U [Holds(U, S0) ≡ ιU (U)]} and let
S′

0 = S0 ¢
∧

X∈X [X ≡ ιX (X)] ∧
∧

X∈X Denied(definition-of-X). Then,

1. Σ ∪ {Poss(S′
0)} is consistent.

2. Σ |= Poss(S′
0) ⊃ Holds(Y, S′

0) iff YιX (ιU ) = True.
3. Σ |= Poss(S′

0) ⊃ ¬Holds(Y, S′
0) iff YιX (ιU ) = False.

Proof (sketch). The fact that MιX admits a unique model ιV under ιU implies
that there is a unique state which complies with ιU and ιX and which satisfies
the state constraints. From the construction of the underlying causal relation-
ships it follows that this state is reachable by ramification, which proves claim 1.
The construction of the causal relationships also implies that no relationship can

11 HOLDS(F, s) is F but with each atom A replaced by Holds(A, s).



be applied by which is modified any fluent representing a variable from U or
from X . Hence, the aforementioned state is the only one which can be consis-
tently assigned to State(S ′

0). This proves claims 2 and 3, since this state agrees
with ιV on all variables.

7 Discussion

The author of [5] argues against pushing too far the connection between counter-
factual and causal reasoning, on two grounds. First, a counterfactual statement
may stress that antecedent and conclusion are not causally linked, as in, “Even if
I were free tonight, I still would not have dinner with you.” This is perfectly com-
patible with our theory, by which the example counterfactual would be confirmed
because of the lack of a causal connection. Second, a counterfactual statement
may reverse the direction of causality to serve as explanation as in, “If John had
Koplic spots, he would have measles.” In order to accommodate such explana-
tory counterfactuals, which amounts to saying which of the causes of a denied
supposition require modification, an extension of our theory is needed which al-
lows to carefully add appropriate explanatory ‘causal’ relationships which only
apply when performing a Modify action.
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