
Representing Concurrent Actions

and Solving Conflicts?

Sven-Erik Bornscheuer Michael Thielscher

FG Intellektik, FB Informatik, Technische Hochschule Darmstadt
Alexanderstraße 10, D–64283 Darmstadt (Germany)

E-mail: {sven,mit}@intellektik.informatik.th-darmstadt.de

Abstract. As an extension of the well–known Action Description lan-

guage A introduced by M. Gelfond and V. Lifschitz [7], C. Baral and
M. Gelfond recently defined the dialect AC which allows the descrip-
tion of concurrent actions [1]. Also, a sound but incomplete encoding of
AC by means of an extended logic program was presented there. In this
paper, we work on interpretations of contradictory inferences from par-
tial action descriptions. Employing an interpretation different from the
one implicitly used in AC , we present a new dialect A+

C
, which allows

to infer non-contradictory information from contradictory descriptions
and to describe nondeterminism and uncertainty. Furthermore, we give
the first sound and complete encoding of AC , using equational logic
programming, and extend it to A+

C
as well.

In: B. Nebel, L. Dreschler-Fischer, ed.’s, Proc. of the German Annual Conference on AI.

Springer LNAI 861, p. 16–27, Sep. 1994. (Best Paper Award.)

1 Introduction

Intelligent beings are able to treat contradictory information more or less ap-
propriately. For instance, imagine yourself asking two passers-by for the shortest
way to the train station. The first one answers: “Turn right, and you will get
there in five minutes.” while the second one answers: “Turn right, and you will
get there in ten minutes.” Reasoning about these answers you find out that they
are contradictory, i.e. the provided information is inconsistent and cannot be
true. However, since both passers-by are in agreement with their recommenda-
tion to turn right, you would assume this part of the information to be true; you
are only left in uncertainty about the time it takes to reach the station.

One should be aware of the difference between uncertain information explic-
itly stated as such like “you will arrive in five or in ten minutes” and contradic-
tory information like the answers above. Contradictory information cannot be
true; so, it has to be interpreted appropriately if you nonetheless want to derive
some benefit from it.

When machines are used to reason about some complex information, it makes
no sense to assume this information to be consistent in general; we know,i.a., from

? The second author was supported in part by ESPRIT within basic research action
MEDLAR-II under grant no. 6471 and by the Deutsche Forschungsgemeinschaft
(DFG) within project KONNEKTIONSBEWEISER under grant no. Bi 228/6-1.

Software Engineering that in general formalizations of something non-trivial are
incorrect. Therefore, if a machine detects the incorrectness of the information
it reasons about, this only gives certainty about circumstances which had to be
assumed anyway. But it still has to be decided how this machine has to act in
such a situation.

A typical field where the detection of the inconsistence of the used informa-
tion has to be expected, is the one of reasoning about the execution of concurrent
actions in dynamic systems.

Most complex dynamic systems include concurrent actions. Therefore, the
ability for describing concurrent actions is of central interest in AI. For instance,
to open a door locked by an electric door opener an autonomous robot has to
press a button and to push the door concurrently. Hence, only knowing the
effects of the seperate execution of each action, will not enable to open the door.

Since it is of course impractical to define the effects of the concurrent execu-
tion of each possible tuple of actions explicitly, it is preferable to infer most of
these effects from the various descriptions of the involved individual actions. In
certain cases, some of these descriptions may propose contradictory effects. The
crucial question is again how to interpret such contradictions.

We discuss this question in the first part of this paper, and, for that, use a
formalism AC introduced by C. Baral and M. Gelfond.AC allows the describ-
tion of concurrent actions and was developed in [1] as an extension of the Action
Description Language A [7] which was introduced in 1992 and became very
popular since. Both A and AC attract by the simple, elegant, and natural way
in which the effects of actions are described. The execution of actions adds or
removes elements from a particular set of facts representing some situation in the
world; all non-affected facts continue to hold in the resulting situation due to the
common assumption of persistence. The language AC is defined in Section 2.

In Section 3 we examine the possibilities of interpreting contradictory infer-
ences from partial action descriptions. Coming from a different point of view
than the one implicitly underlying AC , we present an extension of AC which
we call A+

C . This new dialect allows to infer the non-contradicted information
from contradictory descriptions, while such inference is not possible in A nor
in AC . Moreover, A+

C allows the describtion of nondeterministic actions with
randomized effects and uncertain knowledge.

In the second part of this paper, we present the first sound and complete
translation from AC into a logic program with an underlying equational theory
and, by modifying this translation in an appropriate way, an encoding of A+

C

as well. This translation allows to automate reasoning about dynamic systems
following the concepts determined by A+

C (and AC , respectively). Moreover,
the translation of such high-level languages into different approaches designed
for reasoning about dynamic systems, actions, and change, allows to compare the
possibilities and limitations of these approaches in a precise and uniform way,
which is in favorable contrast to the traditional way of explaining new approaches
with reference to a few standard examples, such as some in the blocksworld or
the famous “Yale Shooting Scenario” and its enhancements [7, 16, 17].

To this end, A was translated into several formalisms [7, 5, 14, 4, 19]. In [1],
a sound but, unfortunately, incomplete encoding of AC using extended logic
programs following the lines of [7] was presented. In this paper, we extend the
work [19] and show how an approach based on equational logic programming
(ELP) [10, 9] can be used as a sound and even complete method for encoding
AC and A+

C .
ELP is a deductive approach using first-order-logic for describing actions.

Similar to A and AC , the effects of actions are described by adding or removing
resources from a single term representing a complete situation in the world (see
also [2]). ELP is introduced in Section 4, and the translations encoding AC and
A+

C , respectively, are evolved in Section 5. Finally, our results are summarized
in Section 6.

2 AC

We briefly review the concepts underlying the language AC as defined in [1].
A domain description D in AC consists of two disjoint sets of symbols,

namely a set FD of fluent names and a set AD of unit action names, along with
a set of value propositions (v-propositions) — each denoting the value of a single
fluent in a particular state — and a set of effect propositions (e-propositions)
denoting the effects of actions. A (compound) action is a non-empty subset of
AD with the intended meaning that all of its elements are executed concurrently.
A v-proposition is of the form

f after [a1, . . . , am] (1)
where a1, . . . , am (m ≥ 0) are (compound) actions and f is a fluent literal ,
i.e. a fluent name possibly preceded by ¬ . Such a v-proposition should be in-
terpreted as: f has been observed to hold after having executed the sequence
of actions [a1, . . . , am] . In case m = 0 , (1) is written as initially f .

An e-proposition is of the form
a causes f if c1, . . . , cn (2)

where a is an action and f as well as c1, . . . , cn (n ≥ 0) are fluent literals. (2)
should be read as: Executing action a causes f to hold in the resulting state
provided the conditions c1, . . . , cn hold in the actual state.

Example. You can open a door by running into it if at the same time you activate
the electric door opener; otherwise, you will hurt yourself by doing this. The dog
sleeping beside the door will wake up when the door opener is activated. You can
close the door by pulling it. To formalize this scenario in AC , consider the two
sets AD1

= {activate , pull , run into } and FD1
= {open , sleeps , hurt } . The

initial situation is partially described by the v-proposition initially sleeps ,
and the effects of the actions can be described by the e-propositions

{activate } causes ¬sleeps
{run into } causes hurt if ¬open
{pull } causes ¬open
{activate , run into } causes open
{activate , run into } causes ¬hurt if ¬hurt

Informally, the last e-proposition is needed to restrict the application of the

second one (which we call to overrule an e-proposition). Let D1 denote the
domain description given by these propositions.

Given a domain description D , a state σ is simply a subset of the set of
fluent names FD . For any f ∈ FD , if f ∈ σ then f is said to hold in σ ,
otherwise ¬f holds. For instance, sleeps and ¬open hold in {sleeps , hurt } .
A structure M is a pair (σ0, Φ) where σ0 is a state — called the initial state
— and Φ is a partially defined mapping — called a transition function — from
pairs consisting of an action and a state into the set of states. If Φ(a, σ) is
defined then its value is interpreted as the result of executing a in σ .

Let M (a1,...,ak) be an abbreviation of Φ(ak, Φ(ak−1, . . . , Φ(a1, σ0) . . .)) where
M = (σ0, Φ) , then a v-proposition like (1) is true in M iff

∀1 ≤ k ≤ m. M (a1...ak) is defined and
f holds in M (a1,...,am) .

The given set of e-propositions determines how a transition function should
be designed which is suitable for a domain description. If a is an action, f a
fluent literal, and σ a state then we say (executing) a causes f in σ iff there
is an action b such that a causes f by b in σ . We say that a causes f by
b in σ iff

1. b ⊆ a ,

2. there is an e-proposition b causes f if c1, . . . , cn such that each
c1, . . . , cn holds in σ.

3. there is no action c such that b ⊂ c ⊆ a and a causes ¬f by c in σ.

(3)

If 3. does not hold then action b is called to be overruled (by action c).
Using the two sets

Bf (a, σ) := {f ∈ FD | a causes f in σ}
B′

f (a, σ) := {f ∈ FD | a causes ¬f in σ} ,
(4)

a structure M = (σ0, Φ) is called a model of a domain description iff

1. every v-proposition is true in M and
2. for every action a and every state σ , Φ(a, σ) is only defined in case

Bf (a, σ) ∩B′
f (a, σ) = {} .

If it is defined then Φ(a, σ) = σ ∪Bf (a, σ) \B
′
f (a, σ) .

(5)

A domain description admitting at least one model is said to be consistent . A
v-proposition ν like (1) is entailed by a domain description D , written D |= ν ,
if ν is true in every model of D .

Example (continued). The transition function determined by the e-propositions
in our domain description D1 is defined as follows. Let σ be an arbitrary state
then

Φ({}, σ) = σ

Φ({run into }, σ ∪ {open }) = σ ∪ {open }
Φ({run into }, σ \ {open }) = σ \ {open } ∪ {hurt }
Φ({pull }, σ) = σ \ {open }
Φ({activate }, σ) = σ \ {sleeps }
Φ({activate , pull }, σ) = σ \ {sleeps , open }
Φ({run into , pull }, σ ∪ {open }) = σ \ {open }

Φ({run into , pull }, σ \ {open }) = σ \ {open } ∪ {hurt }
Φ({activate , run into }, σ) = σ ∪ {open }
Φ({activate , run into , pull }, σ) is undefined

D1 has four models, viz.

({sleeps }, Φ) ({open , sleeps }, Φ)
({sleeps , hurt }, Φ) ({open , sleeps , hurt }, Φ)

(6)

If, for instance, the v-proposition ¬hurt after {run into } is added to D1

then the only remaining model is ({open , sleeps }, Φ) since for all other struc-
tures in (6) we find that hurt ∈ Φ({run into }, σ0) . Hence, the v-proposition
initially open , say, is entailed by this extended domain.

3 Interpreting and handling contradictions

and a robust language A+

C

In this section, we present different ways of interpreting descriptions of actions
which may be executed concurrently. To illustrate our exposition, we use the
terms of AC ; nevertheless, the differences we work out classify other languages
describing possibly concurrent actions as well.

Suppose a rather complex description of a part of the world has to be con-
structed. Because of the combinatorial explosion it obviously is impractible to
describe the effects of all possible combinations of unit actions. Therefore, the
effects of compound actions have to be inferred from the descriptions given
seperately for the various involved actions. Combining these action descriptions
might yield a contradiction among their effects.2 In terms of AC this means that
Bf ∩B

′
f 6= {} and, hence, the particular compound action is not executable (see

(5)). For instance, recall our domain description D1 . The e-propositions describ-
ing the effects of the elements of {activate , pull , run into } propose both open
and ¬open .

There are several different ways of inferring the effects of a compound action
from such contradictory partial descriptions. Therefore, languages describing
actions can be classified according to the explicit resp. implicit methods they
use to draw these conclusions.

Explicit methods provide further information about the effects of certain
compound actions. In terms of AC , additional e-propositions may

1. add a fluent to Bf or B′
f : obviously, the set Bf∩B

′
f will remain nonempty,

i.e., no conflicts will be solved;
2. remove a fluent from Bf or B′

f : this allows to remove predicted conflicts,
but not to redefine facts not mentioned by the unit action descriptions (the
approach [15] uses this method)

3. add or remove a fluent from Bf orB′
f : this allows to give a complete new de-

finition of Bf and B′
f (used in AC , A+

C , and in the State Event Logic [8]).

2 Of course, this prolem might even occur without concurrency involved, i.e. if several
descriptions of the same unit action are used to infer the effects of this single action.
If such an inference yields a contradiction, the semantics of A , for instance, define
the whole domain description to be inconsistent.

Example (continued). The e-proposition {activate , run into } causes open adds
the fluent open to the set Bf ({activate , run into }, σ) 3 while the e-proposition
{activate , run into } causes ¬hurt if ¬hurt removes the fluent hurt 4 from
Bf ({activate , run into }, σ) by overruling the unit action description. Our ex-
ample can only be modelled by using both addition and cancellation of effects.

Suppose the effects are not defined explicitly for all possible compound ac-
tions. In this case, it can happen that certain actions still are proposed to have
contradictory effects. This might indicate that these actions are not executable
in the world.5 On the other hand, if such actions are observed then they indicate
that the descriptions of their effects are wrong, uncertain or include nondeter-
ministic actions.6 In this case, depending on the chosen interpretation and the
extent of certainty required one has to regard

1. the whole domain description (State Event Logic [8]),
2. the whole situation (AC and [15])
3. the effects of the conflicting actions, or
4. the contradictory fluents (A+

C).

as unreliable.

Example (continued). Recall our example. Of course, it is conceivable that the
door opener is activated, the door is pulled, and somebody runs into it at the
same moment. The domain description D1 proposes both open and ¬open to
be an effect of this compound action. Hence, D1 is incomplete with respect to
the world it describes. In fact, without further information we cannot say wether
the door will be closed after executing this action or not.

However, we are sure that the dog will not sleep afterwards since we know
that {activate } causes ¬sleeps , and there is no proposition contradicting this.

In our example, by using the semantics of AC it cannot be inferred that
the dog does not sleep after executing {activate , pull , run into } . As an extreme
case, imagine an agent in Saarbrücken executing this action and, concurrently,
another agent in Franfurt switching off a light. Again, by AC it cannot be
inferred that the light is switched off in Frankfurt because the description used
proposes contradictory states of a door in Saarbrücken. Nonetheless it seems
to be reasonable to draw some conclusions about the resulting state instead of
declaring it to be totally undefined, as it is done in AC .

We therefore weaken the basic assumption which says that Φ(a, σ) is un-
defined whenever the corresponding sets Bf (a, σ) and B′

f (a, σ) share one or
more elements. To this end, we adopt a concept which has been introduced in [19]

3 Note that the fluent open is not mentioned by the unit action descriptions {activate }
causes ¬sleeps and {run into } causes hurt if ¬open , respectively.

4 postulated by {run into } causes hurt if ¬open
5 For instance, closing and opening the same door concurrently is not possible; these

actions themselves are contradictory with respect to concurrent execution.
6 In our example, running into the door, activating the door opener, and pulling the

door concurrently might be regarded as a nondeterministic action wrt. the truth
value of open . Also, D1 could be intended to express uncertain knowledge about
the effect of this action.

where A has been extended by integrating nondeterministic actions. The cru-
cial idea is to drop the notion of a single resulting state determined by an action
and a state, and to define a collection of possible resulting states instead. We
use a ternary transition relation Φ such that an action a and two states σ, σ ′

are related if the execution of a in σ possibly yields σ′ . Informally, if no con-
flicts occur wrt. a and σ then there is only one possible resulting state which
should be exactly as in AC . If, on the other hand, there are conflicts, i.e. if the
corresponding set Bf (a, σ) ∩ B′

f (a, σ) is not empty, then each combination of
the truth values of the controversial fluent names determines one possible result.

By using this transition relation Φ , it becomes necessary to define which
action names occuring in different v-propositions denote one and the same ex-
ecution of actions (having distinct effects) and which do not. To this end, as
in [19] we premise each two sequences of actions a1, . . . , ak, ak+1, . . . , am and
a1, . . . , ak, am+1, . . . , an occuring in the same domain description to refer to one
and the same execution of a1, . . . , ak and, consequently, augment each structure
by a function ϕ which maps each sequence [a1, . . . , am] to a distinct resulting
state M (a1,...,am) wrt. Φ and this premise.

The following definition of the dialect A+
C makes these ideas manifest.

Definition 1. A+
C is defined by the syntax and semantics of AC , but where

- a structure is a tripel (σ0, Φ, ϕ)
- a structure (σ0, Φ, ϕ) is a model of a domain description D iff

ϕ([]) = σ0 ,

(ϕ([a1, . . . , am−1]) , am , ϕ([a1, . . . , am])) ∈ Φ ,

(σ, a, σ′) ∈ Φ iff σ′ = ((σ ∪Bf) \B
′
f) ∪BÃ for some BÃ ⊆ Bf ∩B′

f ,

and for all v − propositions (1) in D, f holds in ϕ([a1, . . . , am]) .

A+
C is a proper extension of AC in so far as whenever a v-proposition is

entailed by a consistent domain description in AC then it is also entailed wrt.
the semantics of A+

C .

Example (continued). If our domain description D1 is augmented by either the
v-proposition open after {activate , pull , run into } or the contrary proposi-
tion ¬open after {activate , pull , run into } then both extended domains have
models (with different functions ϕ) according to the semantics of A+

C . On
the other hand, if D1 is augmented by sleeps after {activate , pull , run into }
then there is no model wrt. A+

C . Hence, as intended we can conclude that
D1 |=A+

C
¬sleeps after {activate , pull , run into } .

Note that A+
C does not distinguish between intentionally expressed non-

determinism of actions and the interpretation of contradictory defined actions
as to have uncertain effects. For instance, D1 could be augmented by the e-
propositions activate causes {bark} and activate causes {¬bark} for de-
scribing that the dog possibly starts or stops barking when the door opener is
activated. In fact, for someone or something reasoning about a domain descrip-
tion it makes no difference, whether the producer of this domain description was
conscious of the uncertainty of the described effects of an action or not.

4 The ELP Approach

The equational logic programming approach to reasoning about actions and
change [10, 11] is based on using reification to represent a complete situation by
a single term t1 ◦ · · · ◦ tn where t1, . . . , tn are the facts holding in this situation.
Since the order in such terms should be irrelevant, the connection function ◦
is required to be associative (A) and commutative (C). In addition, it admits a
unit element (1), viz. the constant ∅ denoting the empty situation.

Actions are defined and executed in a Strips-like fashion [6] using a ternary
predicate7

action (V ◦ c1 ◦ · · · ◦ cl , a1 ◦ · · · ◦ am , V ◦ e1 ◦ · · · ◦ en) (7)

meaning that the compound action8 a1 ◦ · · · ◦ am transfers every situation
V ◦ c1 ◦ · · · ◦ cl

9 into the situation V ◦e1◦· · ·◦en (in other words, if a1◦· · ·◦am

is executed in a situation in which the conditions c1 ◦ · · · ◦ cl hold, it removes
these conditions and adds the effects e1 ◦ · · · ◦ en). Thus, all facts which are
not amongst the conditions hold after the application of (7) if they did so be-
fore. Therefore, no additional axioms for solving the frame problem are needed
although dealing with a purely deductive method.

The result of executing a sequence of actions is then defined by the two
clauses (12) (see further below) which conform to the semantics of AC .

Based on similar ideas, a logic program associated with the equational theory
(AC1) was presented in [19] which forms a sound and complete encoding of the
original Action Description Language A . In the following section we evolve
an analogous program encoding of domain descriptions given in AC or A+

C ,
respectively. Due to the large number of compound actions implicitly described
by a domain description in AC , it seems impractical to describe all of them
explicitly in ELP. Therefore, definitions (7) are represented implicitly by clause
(8) in the translations defined in the following section.

5 Translating AC and A+

C into ELP

In AC , classical negation of fluent symbols determines these fluents to be
false. Since in the ELP based method fluents are reified and, hence, cannot
be negated in this way we represent negated fluent symbols by defining a new
complementary symbol for each fluent name. Let FD

ϕ
denote a set of sym-

bols such that FD ∩ FD
ϕ
= {} then we define a bijective mapping ϕ over

FD ∩ FD
ϕ

such that x ∈ FD ⇔ ϕ(x) ∈ FD
ϕ

and ϕ(ϕ(x)) = x . For instance,
if FD = {open , sleeps , hurt } then we might use FD

ϕ
= {closed , awake , safe } ,

7 Throughout this paper, we use a Prolog-like syntax, ie. constants and predicates
are in lower cases whereas variables are denoted by upper case letters. Moreover,
free variables are assumed to be universally quantified and, as usual, the term [h | t]
denotes a list with head h and tail t .

8 In [12] the concurrent execution of actions is not taken into consideration; this ex-
tension is obviously necessary for encoding AC .

9 i.e. every situation unifiable with V ◦ c1 ◦ · · · ◦ cl wrt. to the underlying equational
theory (AC1)

say, along with ϕ(open) = closed , ϕ(sleeps) = awake , ϕ(hurt) = safe , and
vice versa.

Now, we are able to map sequences of fluent literals using a function τϕD

into a single term based on the (AC1)–function ◦ :

τϕD
(f1, . . . , fm,¬fm+1, . . . ,¬fn) := f1 ◦ · · · ◦ fm ◦ ϕD(fm+1) ◦ . . . ◦ ϕD(fn)

where fi ∈ FD .
In AC , a state in the world is described as a set σ of fluent symbols fi

implying that the fluent literals fi are true and the fluent literals corresponding
to FD \ σ are false in this state. Therefore, a state σ is represented by an
(AC1)–term corresponding to σ ∪ {ϕ(f) | f 6∈ σ} :

γϕD
({f1, . . . , fm}) := f1 ◦ . . . ◦ fm ◦ ϕD(fm+1) ◦ . . . ◦ ϕD(fn),

where {f1, . . . , fn} = FD .
Finally, we represent compound actions by simply connecting the unit action

names using again our (AC1)–function:

µϕD
({a1, . . . , ak}) := a1 ◦ · · · ◦ ak

where {a1, . . . , ak} ⊆ AD .
Using the definitions above, we are now prepared for translating AC domain

descriptions into an equational logic program. For each fluent name, we use a
unit clause to relate it to its counterpart in the set FD

ϕ
:

ϕELP
D := {complement (f ◦ ϕD(f)). | f ∈ FD}

For each e-proposition we use a unit clause stating its conditions, its action
name, and its effect:

EPROPϕD
:= {eprop (τϕD

(c1, . . . , cn), µϕD
(a), τϕD

(f)). |
a causes f if c1, . . . , cn ∈ D}

To encode the semantics of AC we use a ternary predicate action (i, a, h)
intending that executing action a in state i yields state h . It is defined as
follows. action (I, A,H)← ¬overruled (H, I, ∅, A),

¬non inertial (H, I,A),
¬inconsistent (H).

(8)

where the resulting state h is required

1. not to be overruled , i.e. there is no non-overruled e-proposition applicable
to i and postulating the complement of a fluent literal in h .

2. not to be non-inertial , i.e. there is no resource in h but not in i which is
not postulated by an applicable e-proposition, and

3. not to be inconsistent , i.e. h contains exactly one element of each pair of
complementary resources and, thus, is of the form τϕD

(σ) for some σ .

The predicates overruled , non inertial , and inconsistent are defined by

overruled (F ◦H,C ◦ J,A,A ◦B ◦D)
← eprop (C,A ◦B,G) ,

F 6=AC1 ∅ ,
B 6=AC1 ∅ ,
complement (F ◦G) ,
¬overruled (G,C ◦ J,A ◦B,A ◦B ◦D) .

(9)

In words, the effect F of an action A is overruled by an eprop postulating
the effect G = ϕD(F) of an action B ⊃ A if B is not overruled with respect
to G . The termination of the decision about overruled (H, I,B,B ◦ A) for all
H, I,B,A can be shown by induction over the strictly increasing third argument,
if a fair selection rule is used.

non inertial (F ◦G,H ◦ J,A)← complement (F ◦H) ,
¬overruled (H,H ◦ J, ∅, A) .

(10)

In words, the truth value of a fluent literal F of the initial state H ◦ J is
changed although no non-overruled e-proposition postulates this change.

inconsistent (G ◦G ◦H)← G 6=AC1 ∅ .
inconsistent (F ◦G) ← complement (F) .
inconsistent (H) ← complement (F ◦G) ,

F 6=AC1 ∅ , G 6=AC1 ∅ ,
¬holds (F,H) , ¬holds (G,H) .

holds (F,H ◦ F) .

(11)

In words, a situation term is inconsistent if it contains a resource twice or if it
contains a resource along with its counterpart ϕ(f) or if it neither contains f

nor ϕ(f) for some f ∈ FD .

The transition of σ0 into the state M (a1,...,am) (the result G of executing
[a1, . . . , am] in the initial state I) is modelled by

result (I, [], G) ← I =AC1 G .

result (I, [A | P], G)← action (I, A,H) ,
result (H,P,G) .

(12)

The termination of the decision about result (H,P,G) for all H,P,G can be
shown by induction over the strictly decreasing second argument.

Finally, let n be the number of v-propositions of the form (1) then these are
translated into the clause

model (I) ← ¬inconsistent (I) ,
result (I, [µϕD

(a11), . . . , µϕD
(a1m1

)], τϕD
(f1) ◦G1) ,

...
result (I, [µϕD

(an1), . . . , µϕD
(anmn

)], τϕD
(fn) ◦Gn) .

(13)

with the intended meaning that model (i) is true if i represents a consistent
initial state such that all v-propositions are satisfied.

To summarize, a domain description D in AC is translated into the set
of clauses P = ϕELP

D ∪ EPROPϕD
∪ {(8)–(13)} . As we have negative literals

in the body of some clauses, the adequate computational mechanism for P is
SLDNF–resolution where, due to our equational theory (AC1), standard unifica-
tion is replaced by a theory unification procedure. Following [18], the semantics
of our program is then given by its completion (cf. [3]) (P ∗

D, AC1∗) where AC1∗

denotes a unification complete theory wrt. AC1 (see [13] or [18]).
The following theorem forms the basis of our soundness and completeness

result regarding the completion of our constructed equational logic program.

Theorem2. Let D be a domain description in AC determining a transition
function Φ ; then,there exists a σ0 such that the structure (σ0, Φ) is a model of
D and some I = γϕD

(σ0) iff

(P ∗
D, AC1∗) |= model (I) .

Example(continued) Let ϕD1
be defined by

ϕD1
(sleeps) = sleeps , ϕD1

(hurt) = hurt , ϕD1
(open) = open

Then PD1
=

complement (sleeps ◦ sleeps) .
complement (hurt ◦ hurt) .
complement (open ◦ open) .
eprop (∅, activate , sleeps) .
eprop (open , run into , hurt) .
eprop (∅, pull , open) .
eprop (∅, activate ◦ run into , open) .

eprop (hurt , activate ◦ run into , hurt) .
model (I) ← ¬inconsistent (I) ,

result (I, ∅, sleeps ◦G1) .
∪(8)− (12)

The equational logic program developed above can be easily modified to simu-
late the semantics defined by A+

C . We use the very same translation, but the lite-
ral ¬overruled (H, I, ∅, A) in the body of (8) is replaced by ¬impossible (H, I,A)
and the following clause is added.

impossible (F ◦H, I,A)← overruled (F, I, ∅, A) ,
complement (F ◦G) ,
¬overruled (G, I, ∅, A) .

In words, a causes ¬f in σ and ¬(a causes f in σ) where I = γϕD
(σ)

Also, according to Definition 1, the head of (8) is replaced by action (I, A(H), H)
and the action names in (9) have to be labeled similarly with variables such that
two action names are labeled with the same variable iff they denote one and the
same execution of an action (see also [19]).

6 Summary

We investigated possible interpretations of partially contradictory descriptions
of the effects of concurrently executed actions. Our analysis lead to a new lan-
guage A+

C describing concurrent actions which extends the work of C. Baral and
M. Gelfond: A+

C allows to infer all the non-contradicted information from con-
tradictory descriptions, whereas A and AC does not. Moreover, A+

C enables
one to describe nondeterministic actions and uncertain knowledge.

Furthermore, we presented sound and complete encodings of the languages
AC and (by a simple modification) A+

C by means of equational logic programs.

Acknowledgements. The authors would like to thankWolfgang Bibel, Gerd Große
and Wulf Röhnert for valuable discussions and comments on an earlier version
of this paper.

References

1. C. Baral and M. Gelfond. Representing Concurrent Actions in Extended Logic
Programming. In R. Bajcsy, ed., Proc. of IJCAI, p. 866–871, Chambéry, August
1993. Morgan Kaufmann.

2. W. Bibel. A Deductive Solution for Plan Generation. New Generation Computing,
4:115–132, 1986

3. K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, ed.’s, Workshop

Logic and Data Bases, p. 293–322. Plenum Press, 1978.
4. M. Denecker and D. de Schreye. Representing Incomplete Knowledge in Abductive

Logic Programming. In D. Miller, ed., Proc. of ILPS, p. 147–163, Vancouver,
October 1993. MIT Press.

5. P. M. Dung. Representing Actions in Logic Programming and its Applications in
Database Updates. In D. S. Warren, ed., Proc. of ICLP, p. 222–238, Budapest,
June 1993. MIT Press.

6. R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 5(2):189–208, 1971.

7. M. Gelfond and V. Lifschitz. Representing Action and Change by Logic Programs.
Journal of Logic Programming, 17:301–321, 1993.

8. G. Große. Propositional State-Event Logic. To appear JELIA’94, Springer LNAI.
9. G. Große, S. Hölldobler, J. Schneeberger, U. Sigmund, and M. Thielscher. Equa-

tional Logic Programming, Actions, and Change. In K. Apt, ed., Proc. of IJCSLP,
p. 177–191, Washington, 1992. MIT Press.

10. S. Hölldobler and J. Schneeberger. A New Deductive Approach to Planning. New
Generation Computing, 8:225–244, 1990.

11. S. Hölldobler and M. Thielscher. Actions and Specificity. In D. Miller, ed., Proc.
of ILPS, p. 164–180, Vancouver, October 1993. MIT Press.

12. S. Hölldobler and M. Thielscher. Computing Change and Specificity with Equa-
tional Logic Programs. Annals of Mathematics and Artificial Intelligence, special
issue on Processing of Declarative Knowledge, 1994. (To appear).

13. J. Jaffar, J.-L. Lassez, and M. J. Maher. A theory of complete logic programs with
equality. Journal of Logic Programming, 1(3):211–223, 1984.

14. G. N. Kartha. Soundness and Completeness Theorems for Three Formalizations of
Actions. In R. Bajcsy, ed., Proc. of IJCAI, p. 724–729, Chambéry, France, August
1993. Morgan Kaufmann.

15. F. Lin and Y. Shoham. Concurrent Actions in the Situation Calculus. In Proc. of

AAAI, p. 590–595, South Lake Tahoe, California, 1992.
16. E. Sandewall. Features and Fluents. Technical Report LiTH-IDA-R-92-30, Insti-

tutionen för datavetenskap, Technical University Linköping, Schweden, 1992.
17. E. Sandewall. The range of applicability of nonmonotonic logics for the inertia

problem. In R. Bajcsy, ed., Proc. of IJCAI, p. 738–743, Chambéry, France, August
1993. Morgan Kaufmann.

18. J. C. Shepherdson. SLDNF-Resolution with Equality. Journal of Automated Rea-

soning, 8:297–306, 1992.
19. M. Thielscher. Representing Actions in Equational Logic Programming. In P. Van

Hentenryck, ed., Proc. of ICLP,p. 207–224, Santa Margherita Ligure, Italy, 1994.
MIT Press.

