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Abstract Although we humans cannot compete with

computers at simple brute-force search, this is often

more than compensated for by our ability to discover

structures in new games and to quickly learn how to

perform highly selective, informed search. To attain the

same level of intelligence, general game playing systems

must be able to figure out, without human assistance,

what a new game is really about. This makes General

Game Playing in ideal testbed for human-level AI, be-

cause ultimate success can only be achieved if comput-

ers match our ability to master new games by acquiring

and exploiting new knowledge. This article introduces

five knowledge-based methods for General Game Play-

ing. Each of these techniques contributes to the ongoing

success of our FLUXPLAYER [15], which was among

the top four players at each of the past AAAI competi-
tions and in particular was crowned World Champion

in 2006.
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1 Introduction

As a Grand Challenge for Artificial Intelligence, Gen-

eral Game Playing requires to combine methods from a

variety of sub-disciplines, including reasoning, search,

computer game playing, and learning. While simple

games can be solved by brute-force search and recent

research has shown that Monte-Carlo methods provide

a successful form of selective blind search, moving from

blind to informed search is a great endeavour in General

Game Playing as it requires a player to fully automati-

cally analyse the bare rules of unknown games in order

to extract and exploit game-specific knowledge.

This article gives an overview of five essential meth-

ods for knowledge-based General Game Playing:

1. We show how to automatically generate evaluation

functions for non-terminal positions.

2. We demonstrate the application of machine learning

techniques to improve these evaluation functions.

3. We illustrate how a system can automatically derive

new properties of games using automated theorem

proving.

4. We present two specific techniques that help to re-

duce the complexity of the search space by mimick-

ing the ability of humans to

(a) detect symmetries in games and

(b) identify subgames in composite games.

Each of these techniques contributes to the ongoing suc-

cess of our FLUXPLAYER [15], which was among the

top four players at each of the past AAAI competi-

tions and in particular was crowned World Champion

in 2006.
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2 Generating Evaluation Functions

In virtually all interesting game the state space is too

large to be searched exhaustively. It is therefore neces-

sary to be able to evaluate intermediate states and to

decide on the moves based on that evaluation. One way

to evaluate non-terminal states is to use Monte-Carlo

simulations of the game. In contrast, knowledge-based

approaches to General Game Playing typically use a

heuristic evaluation function. Heuristics are typically

derived by making simplifying assumptions about the

domain. The main assumption that we make is that the

atomic properties of the game states can be changed

independently. Of course this does not hold in general,

but it is a good approximation in many games.

We have developed a method for generating a

heuristic function based on the rules of the game, specif-

ically the rules for terminal and goal states. The main

advantage of our approach is that the evaluation func-

tion can be generated very fast and does not need to

be trained with a lot of examples. The idea for our

evaluation function is to calculate a degree of truth

of the formulas defining predicates goal and terminal

in the state to be evaluated. The values for goal and

terminal are combined in such a way that terminal

states are avoided as long as the goal is not fulfilled,

that is, the value of terminal has a negative impact on

the evaluation of the state if goal has a low value and

a positive impact otherwise.

2.1 Evaluating Formulas

Our approach is based on fuzzy logic, which is used to

assign real numbers between 0 and 1 to atoms depend-

ing on their truth value. A pair of functions T and S

is then used similar to standard t-norm and t-co-norms

to calculate the degree of truth of conjunctions and dis-

junctions, respectively. We define the evaluation of a

GDL formula with respect to a game state z as follows:

eval(a, z) ∈ [0, 1]

eval(f ∧ g, z) = T (eval(f, z), eval(g, z))

eval(f ∨ g, z) = S(eval(f, z), eval(g, z))

eval(¬f, z) = 1− eval(f, z)

where f, g are GDL formulas, a is an atomic formula.

An atomic formula a is evaluated against state z and

given a value between 0 and 1 depending on whether

a holds in z and possibly additional information, e.g.,

the likelihood of a to stay true (or false) until the final

state of the game. Values between 0.5 and 1 are used

for atoms that hold in z, and values between 0 and

0.5 for atoms that do not hold in z. The exact values

may be chosen according to distance metrics or other

information about the game. A value of 1 is assigned

to an atom a only if a is currently true and persistent

until the end of the game, like markers in Tic-Tac-Toe

or pieces in Quarto that cannot be moved or removed

from the board. Similarly, a value of 0 is assigned to a

if it is currently false and can not be fulfilled any more,

e.g., because there is already another persistent marker

in the same position. The additional information, like

persistence of markers, boards and distance metrics can

be acquired using pattern recognition on the rules of

the game [15,10], simulations of the game [15,10,4], or

automatic theorem proving as described in Section 4

below.

As we use values < 1 for atoms that are true, we

cannot simply adopt a standard continuous t-norm like

T (x, y) = x∗y, because their monotonicity implies that

eval(a1∧. . .∧an, z) is near 0 for large n. In other words,

the evaluation may consider the formula a1 ∧ . . . ∧ an
to be false even if all ai hold in z. To overcome this

problem, we use a threshold t with 0.5 < t < 1, with

the following intention: values above t denote true and

values below 1 − t denote false. The truth function we

use for conjunction is now defined as:

T (a, b) =

{
max(T ′(a, b), t), if min(a, b) > 0.5

T ′(a, b) otherwise

where T ′ denotes an arbitrary standard t-norm. This

function together with the associated truth function for

disjunctions, S(a, b) = 1− T (1− a, 1− b), ensures that

formulas that are true always get a value greater or

equal t and formulas that are false get a value smaller

or equal 1−t. Thus the values of different formulas stay

comparable. This is necessary, for example, in a game

with multiple goals. The disadvantage of this definition

is that T is not associative, at least in cases of contin-

uous t-norms T ′, and is therefore not a t-norm itself

in general. Therefore, the evaluations of semantically

equivalent but syntactically different formulas can dif-

fer. However, it is possible to minimise that effect by

choosing an appropriate t-norm T ′.

2.2 Evaluating States

The complete heuristic evaluation function for a state

z and role r in a particular game is defined as follows:

h(r, z)=
1∑

v∈GV v
∗

∑
v∈GV

h(r, v, z) ∗ v

h(r, v, z)=

{
eval(goal(r, v)∨terminal, z), if goal(r, v)

eval(goal(r, v)∧¬terminal, z), otherwise
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Here, GV is the domain of goal values, goal(r, v) is the

goal formula for the goal value v of role r, and terminal

is the terminal condition of the game. That means the

heuristic value of a state is calculated by combining

heuristics h(r, v, z) for each goal value v of the domain

of goal values GV weighted by the goal value v. The

heuristics for each possible goal value is calculated as

the evaluation of the disjunction of the goal and ter-

minal formulas in case the goal is fulfilled, that is, the

heuristics tries to reach a terminal state if the goal has

been achieved. On the other hand the heuristics tries to

avoid terminal states as long as the goal is not reached.

The use of a disjunction in the first case and conjunc-

tion in the second case ensures a clear distinction be-

tween both cases: in the first case the evaluation yields

a value > 0.5, whereas the evaluation is ≤ 0.5 in the

second case.

The observant reader may have noticed that we only

deal with propositional formulas in the evaluation func-

tion. In fact, before applying the evaluation function we

try to ground the goal and terminal rules and remove all

non-keyword predicates by unfolding them, i.e., replac-

ing every occurrence of a predicate p by a disjunction of

the bodies b of rules p : −b. Grounding and unfolding

may fail or may be incomplete, e.g., because it takes

too long, the representation gets too big, or there are

recursive rules. In that case we treat subformulas with

quantifiers (variables) as atomic formulas.

3 Improving Evaluation Functions

While fuzzy logic proves to be a plausible way to eval-

uate non-terminal states, it also suffers from two disad-

vantages: Since propositional fuzzy logic formulas pro-

vide no native means to weigh propositions, all con-

stituents of a formula are implicitly assumed to be

equally important, a fact that we consider too restric-

tive for most games. On the other hand, a fuzzy logic

evaluation comes with no learning capabilities. Given

that learning is a crucial ability for humans to under-

stand and play games well, a lack thereof is a substantial

disadvantage.

While these problems can be addressed by neural

networks, their application brings other disadvantages.

Before using them, neural networks must be trained

in order to capture the behaviour of a given function

— a process known to be time-consuming. Moreover,

the yet-to-be-trained networks are difficult to initialise

with regard to parameters as the number of neurons,

the connections between them, and their initial con-

nection weights. A bad initialisation may result in the

non-convergence of the network.

Both problems, however, can be solved by employ-

ing a logic-to-neural-network transformation. Here, the

structure and parameters of the neural network are di-

rectly derived from the set of propositional rules that

the network is supposed to represent. In this way, we

can map the goal function of a game to a neural network

such that the network is usable ad-hoc while it correctly

evaluates goal states and allows for a fuzzy-comparable

distinction of non-terminal states.

3.1 Goal to Value Function Transformation

To transform a goal function for a specific role to an

evaluation function, one first needs to obtain a proposi-

tional representation of the goal function. Again, we en-

counter the problem described in Section 2.2 and solve

it similarly. Besides, for neural networks there are algo-

rithms that enable correct representation of first-order

logic clauses, however, up to now none of these has been

successfully put into practice for a complex problem do-

main.

Having obtained a propositional representation, we

translate it further to a neural network using the C −
IL2P algorithm [5].

The algorithm represents truth and falsity using

bipolar neurons with an output in the interval (−1, 1).

An equivalence between a propositional variable p and

its corresponding neuron with output op is established

by enforcing

p ↔ op ∈ (A, 1)

¬p ↔ op ∈ (−1,−A)

where the parameter A > k−1
k+1 depends on the max-

imum number k of antecedents in any conjunction or

disjunction in the propositionalised goal formula.

Neuron output values in (−A,A) are guaranteed not

to occur by imposing further conditions on the standard

weight W for connections between two neurons; due

to lack of space we have to refer the interested reader

to [11] for details.

With all goal functions transformed, we can con-

struct exactly one network for each tuple of role and

goal value in the game. To obtain an evaluation func-

tion for a specific role, we normalise the output for each

of the role’s associated networks and aggregate the out-

puts of these networks weighted by the goal value the

network represents. The resulting evaluation function is

equivalent to the one described in [15], with the same

heuristic measures applicable. The difference, however,

consists in facts in a state (= propositions) being repre-

sented as input neurons, and all conjunctions and dis-

junction on these facts represented as hidden layer neu-

rons.
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3.2 Learning in General Games

A direct benefit of this new representation is that we

can now define a learning process that is basically the

opposite process of state evaluation: Since for terminal

states we know the exact state value, we may also iden-

tify the network(s) that are supposed to return true and

may assign training signal t = 1 to their respective out-

put neurons. Correspondingly, all other networks not

matching the state value are assigned a negative train-

ing signal. Training can now be performed by simply

presenting the terminal state as network input and ap-

plying standard learning algorithms such as backprop-

agation.

The training can be further enhanced by using not

only terminal states, but also non-terminal states. By

discounting non-terminal states with increasing dis-

tance to the terminal state, we may thus resemble learn-

ing patterns as used in TD(λ) [18,19] where the train-

ing signal for the kth predecessor is discounted by λk

with λ ∈ [0, 1].

Finally, we may even refrain from discounting a

state if we know the state to inevitably lead to a termi-

nal state of the same value. If we encounter a state

where optimal play leads to a winning position, we

may count this state as well as already won. This type

of search for optimal play is already done during the

match when searching the game tree, and by reusing

this information we substitute a probably erroneous dis-

counted training signal by a provably correct one.

The application of these learning strategies allows

the evaluation function to gradually adopt a bidirec-

tional search pattern where forward game-tree search

is complemented by learned preterminal state patterns.

3.3 Further Ramifications

By extracting training data directly from matches, we

may use non-artificial states that occur in the course of

reasonable game play and under no time constraints, as

opposed to possibly invalid pseudo-states [4] or states

generated from expensive random playouts.

Furthermore, the approach enables the refinement

of the evaluation function at any point of time where

a correct state value for some state is available. In the

context of Game Playing, this amounts to the possibil-

ity to initiate a learning cycle directly after each match,

or even within matches due to the monotonicity of goal

values required by GDL. This allows a constant im-

provement of weights for non-logical features as e.g.

distance evaluations or, in fact, any other proposition

in the evaluation function. These weights correspond

to the utility of the proposition/feature and represent

a form of feedback that allows further enhancements

such as continuous feature integration and removal, or

a self-improving agent based on self-play.

In this way, the approach can be seen as a synergetic

approach that unifies logic with neural networks and

reinforcement learning. Given that the approach is very

recent, however, more empirical evidence is needed in

order to prove the claims and to demonstrate its full

capacity.

4 Learning by Theorem Proving

The ability to form knowledge about a new game is

a prerequisite for both the automated generation of

search heuristics and the construction of evaluation

functions for non-terminal positions. While successful

general game playing systems like [10,4] do extract this

kind of knowledge, they do not actually attempt to

prove it; rather they generate a number of random sam-

ple matches to test a property, and then rely on the

correctness of this informed guess.

The first formal approach to the formalisation

and automated proving of properties employs com-

plete search through the state transition diagram for a

game [13]. However, for games that are simple enough

to make this practically feasible, a general game player

does not actually need game-specific knowledge because

it can solve the game by exhaustive search anyway. For

this reason, we have developed a local proof method

that is practically feasible [16]. In case of game-specific

properties that hold across all reachable states the key

idea is to reduce the automated theorem proving task

to a simple proof of an induction step and its base case.

An example from this property class is the uniqueness

of cell content in a game of Tic-Tac-Toe, which can be

proved by checking the property in the initial state of

the game for the base case, and by checking all direct

successor states of states that itself entail the property

for the induction step.

A recent extension enlarges this class to properties

which need to be verified against reachable finite se-

quences of successive game states. An example is the

fact that, again in Tic-Tac-Toe, a marked cell persists

from one state to the next, which needs a lookahead

to all direct successor states in order to be verified

in a state. The extension incorporates ideas of an ap-

proach to solve single player games, which is especially

useful for endgame position evaluation via depth re-

stricted forward search [20]. In the following, we give

an overview of syntax and semantics of the language

which allows to formulate what we call temporally ex-

tended state invariants; we then sketch a local proof

method to verify properties of this class against a given
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game description; and finally we recast the main ideas

of [20] in terms of our general framework.

4.1 Temporal Property Formulas

Syntax Temporally extended state invariants, in the

following also called (temporal) properties, are formu-

lated via essentially propositional formulas, based on

the ground atoms of a given game description. Addi-

tionally, the unary connective © is allowed to refer to

a successor game state. E.g., the aforementioned prop-

erty of cell content persistence, here exemplarily for a

board cell with coordinates (1, 1) and marker x, can be

formulated via the formula

true(cell(1, 1, x)) ⊃ ©true(cell(1, 1, x)).

It states that once cell (1, 1) is marked with x in a game

state, the cell keeps that content in each direct succes-

sor game state. This formula being entailed in every

reachable state implies that marker x, once placed, is

persistent throughout the remainder of the game. We

further on refer to the maximal nesting of © in ϕ as

the degree of ϕ, denoted by deg(ϕ).

Semantics A GDL description can be interpreted as a

transition system over states [17], where a state is a

finite set of terms over the signature of the GDL de-

scription. A transition from state S to state S′ occurs

if S is non-terminal and each player performing exactly

one of its legal actions in S results in S′. Entailment

of a temporally extended state invariant ϕ in a state

S then amounts to checking ϕ w.r.t. the partial game

tree which roots in S and is built up to depth deg(ϕ) via

the defined transition system. E.g., the aforementioned
property true(cell(1, 1, x)) ⊃ ©true(cell(1, 1, x)) is en-

tailed in a state S if and only if either cell(1, 1, x) is

not contained in S, or ©true(cell(1, 1, x)) is entailed in

S, which holds if and only if cell(1, 1, x) is contained in

each of the direct successor states of S.

4.2 Verification of Temporal Properties

The induction proof method to verify a temporally ex-

tended state invariant ϕ w.r.t. all reachable states is

put into practice using Answer Set Programming. (For

a thorough introduction to answer set programming see,

e.g., [7].) We construct two answer set programs (ASPs)

dependent on ϕ in order to establish proofs for a base

case and an induction step. The base case shows that

ϕ is entailed in the initial state. The induction step

shows that, provided a state entails ϕ, each legal suc-

cessor state will also entail ϕ. In conclusion, then, ϕ is

entailed in all reachable states.

Base Case The ASP for the base case is constructed as

follows:

(1) Temporal GDL description: We construct a vari-

ant of the game rules for each of the time points

i = 0, . . . , deg(ϕ), omitting the rules for the initial

state. In each variant we enrich each predicate with

a further argument i and “glue” all time extended

game rule variants together by replacing each en-

riched next(f, i) with true(f, i+ 1).

(2) State Encoding: We include a variant of the rules

for the initial state where each init(f) is replaced

by true(f, 0).

(3) Action Encoding: We add rules encoding that each

player performs exactly one legal action at each time

point between 0 and deg(ϕ) − 1. As a result, each

solution to the constructed ASP (1) + (2) + (3)

corresponds to a finite sequence of successive game

states with time horizon deg(ϕ), starting in the ini-

tial state.

(4) Property Encoding: We encode ϕ such that only so-

lutions of (1) + (2) + (3) are kept which represent

ϕ-violating sequences of successive game states.

The proof of ϕ being entailed in the initial state Sinit

is then obtained via contradiction: if the ASP for the

base case is inconsistent, then no sequence starting in

Sinit violates ϕ. Hence, Sinit entails ϕ.

Induction Step The encoding for the induction step dif-

fers from the base case encoding only in that the veri-

fication is done over property formula ϕ ⊃ ©ϕ instead

of just ϕ. Moreover, the initial state encoding (2) is re-

placed by an ASP which generates the reachable states.

In conclusion, if the induction step encoding is incon-

sistent, then every generated state entails ϕ ⊃ ©ϕ. If

additionally the base case ASP is inconsistent, it follows

that ϕ is entailed in all reachable states.

4.3 Solving Single Player Games

Answer Set Programming can also be used when play-

ing Single-Player Games [20]. The main idea is to ac-

complish the goal of the single player p—a terminal

state which maximises its outcome—by constructing an

ASP such that each solution represents a sequence of

legal actions for p by which the goal is reached. The

construction assumes a given time horizon for the max-

imal length of this sequence.

A goal can be seen as the set of all states that entail

property formula ϕ = terminal ∧ goal(p, 100). In order

to find a sequence that starts in the initial state and
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ends in a state which entails ϕ, we construct a base

case ASP for the formula

ϕt = ©0¬ϕ ∧©1¬ϕ ∧ . . . ∧©t¬ϕ,

where ©t denotes t consecutive © connectives for a

given time horizon t. If the constructed ASP is consis-

tent, then each solution represents a sequence of suc-

cessive game states that starts in the initial state and

violates ϕt. By construction of ϕt this sequence is of

length ≤ t and such that its last state entails ϕ—in

other words, we obtain an action sequence that achieves

the goal. If, however, the constructed ASP does not

have a solution, then there exists no sequence achiev-

ing the goal within time horizon t.

4.4 Characteristics and Experiments

We have formally proved the soundness of our auto-

mated theorem proving method [21], hence it provides

a reliable technique to prove valuable game properties.

It is also practically useable—we briefly report on ex-

periments in the next paragraph—but this is attended

by the loss of completeness: since the exact set of reach-

able states is initially unknown and hard to compute

in general, we construct an easily obtainable superset

when encoding the ASP for an induction step. This,

however, may result in phantom states which provide

counter-examples for properties that are actually valid.

The incompleteness of our proof method notwith-

standing, numerous experiments have shown that a va-

riety of properties can easily be proved in practice, in-

cluding the detection of board properties, uniqueness

and periodicity of player control, zero-sum, turn taking,

persistence and the solving of single-player games [16,

21,20]. The computation times are in the range of

seconds for many games taken from previous General

Game Playing competitions, confirming that our ap-

proach provides significant assistance to a general game

player.

5 Symmetry Detection

In this and the following section we present two ap-

proaches for finding properties in general games that

help to reduce the complexity of the search space. The

properties are symmetries and independent subgames.

Both approaches have in common that they analyse the

rules of the game as opposed to the search tree itself,

which has the advantage that the analysis is typically

quite fast.

Exploiting symmetries of the underlying domain is

an important optimisation technique for all kinds of

search algorithms. Typically, symmetries increase the

search space and thus the cost for finding a solution

to the problem exponentially. There is a lot of research

on symmetry breaking in domains like CSP [12], Plan-

ning [6] or SAT-solving [1]. However, the methods de-

veloped in these domains are either limited in the types

of symmetries that are handled or are hard to adapt to

the general game playing domain because of significant

differences in the structure of the problem.

Formally, games can be understood as state ma-

chines [17] with the states of the state machine cor-

responding to the states or positions of the game and

transitions in the state machine corresponding to the

joint actions of the players. Using this notion of a game,

a symmetry is a mapping between states and actions of

a game such that the structure of the state machine

stays the same. Although theoretically possible, finding

and representing the symmetries directly in the state

machine is not feasible because the direct representa-

tion of the state machine is too large even for sim-

ple games. Our approach finds symmetries of the game

solely based on the rules of the game.

To find symmetries, we transform the game rules

into a so-called rule graph and use standard tools to

compute the automorphisms of this graph. These au-

Fig. 1 The rule graph for the rule next(cell(M,N,x)) :-

does(xplayer,mark(M,N)) of Tic-Tac-Toe. Different labels
are depicted by different shapes. There is an automorphisms
for this graph interchanging the vertices shown in red and
green.

tomorphisms correspond to mappings of the symbols

(constants, functions, and relations) of the game rules

and thus to symmetries of states, actions and roles of

the game that are described with these symbols. For

example the rule graph in Figure 1 has an automor-

phism that maps the vertices shown in red to those

shown in green and vice versa. This automorphism cor-

responds to interchanging the x- and y-coordinates of

the Tic-Tac-Toe board and thus represents one of the

symmetries of the Tic-Tac-Toe game. We showed that

the approach is indeed a sound method for detecting
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symmetries in general games. However, the method is

incomplete because it is always possible to write rules

with the same semantics but a different structure.

Once we know the symmetries of a game, we can

exploit them in different ways depending on the algo-

rithms that we use for playing the game. In [14] we have

shown the effectiveness of an extended use of transposi-

tion tables to reduce the search space for depth-limited

search. In a similar way, symmetries can certainly be

exploited for Monte-Carlo simulation based players. We

also use the symmetries to reduce the effort for proving

properties of games as described in Section 4.

6 Factoring

The general value of factoring has been widely recog-

nised in AI Planning, where it is used to help solve large,

complex problems arising in practical settings using a

divide-and-conquer strategy [2,3,9]. We address the fol-

lowing two issues: Given its mere rules, how can a previ-

ously unknown game be automatically decomposed into

independent subgames? And how can a successful de-

composition be exploited for a significant improvement

of game tree search during play?

6.1 Subgame Detection

The basic idea is to build a dependency graph for a

given GDL description of a game, consisting of the ac-

tions and fluents as vertices and edges between them if

a fluent is a precondition or an effect of an action. The

connected components of this graph then correspond to
independent subgames of that particular game.

The main difficulty is to find an easy way to detect

preconditions and effects of actions based on the game

rules. In [22] we provide formal definitions, which we

can informally summarise as follows:

– A move m is called a noop move if it is the only

legal move of a player when not in control.

– A rule next(f) : −B is a called a frame axiom for

f if B implies true(f).

– Fluent f is a potential positive effect of move

m if m is not a noop move and there is a next rule

with head next(f) that is compatible with the exe-

cution of the action and is not a frame-axiom. Thus,

a fluent is a potential positive effect of a move if it

could be true in the successor state when the action

is executed.

– Fluent f is a potential negative effect of move

m if m is not a noop move and there is no frame

axiom for f that always applies when m is executed.

Thus, a fluent is a potential negative effect if there

is no rule stating that it will stay true whenever the

action is executed.

– Fluent f is a potential precondition of move m

if f occurs in the body of a game rule with head

legal(p,m), or head next(f ′) where f ′ is a poten-

tial positive or negative effect of m. Therefore, the

potential preconditions of a move include all fluents

occurring in a legal rule for that move and also the

fluents that are preconditions of its (conditional) ef-

fects.

The control-fluent that is used to encode turn-

taking in multi-player games typically occurs in the

legal rules of all actions. We identify and subsequently

ignore the control-fluent (independent on the actual

name) as precondition during the subgame detection

in turn-taking games. Otherwise, it would connect all

actions in the dependency graph, effectively rendering

subgame detection for turn-taking games impossible.

The definitions are weak in the sense that some of

the potential effects or preconditions might not be ac-

tual effects or preconditions in a game, thus making the

subgame detection less effective. However, the advan-

tage of these definitions is that they admit an efficient

implementation using a sound but potentially incom-

plete inconsistency check for GDL formulas.

To illustrate the definitions, consider the well-known

game Nim. Nim is a two-player game where the players

alternate in removing an arbitrary number (>= 1) of

objects from exactly one of the heaps. The game ends

when all heaps are empty. The player to take the last

object loses the game. The following rules describe an

instance of Nim with four heaps (a,b,c,d):

1 role(player1 ).

2 role(player2 ).

3

4 init(heap(a,1)). init(heap(b,2)).

5 init(heap(c,3)). init(heap(d,5)).

6 init(control(player1 )).

7

8 legal(W,reduce(X,N)) :- true(control(W)),

9 true(heap(X,M)), smaller(N,M).

10 legal(W,noop) :-

11 true(control(W2)), distinct(W,W2).

12

13 next(heap(X,N)) :- does(W,reduce(X,N)).

14

15 next(heap(X,N)) :- true(heap(X,N)),

16 does(W,reduce(Y,M)), distinct(X,Y).

17 ...

In our example, the heaps are represented by the

fluent heap and the four heaps have initially 1, 2, 3,

and 5 objects, respectively (lines 4 and 5). The fluent

control encodes whose turn it is. The player in con-

trol can only choose the action to reduce one of the



8 S. Haufe, D. Michulke, S. Schiffel, M. Thielscher

= positive effect

= negative effect

= preconditionheap(a, )

reduce(a, )

control( )

...

noop

heap(d, )

reduce(d, )

Fig. 2 Dependency graph for the game Nim.

heaps (X) to a number of objects N (lines 8 and 9). The

other player can only do a noop move (lines 10 and

11). The next rule in line 13 encodes the positive effect

that heap X contains N objects after execution of the

action reduce(X,N). The next rule in lines 15 and 16 is

a frame axiom stating that heap(X,N) does not change

if objects were taken from some other heap. Note that

the negative effect of reduce(X,N), namely that heap

X no longer contains the previous number of objects, is

not encoded directly in the rules. It can only be derived

indirectly by the absence of a frame axiom for heap X

that applies when action reduce(X,N) is executed.

Applying the definitions for potential effects and

preconditions to the rules of Nim, we obtain the de-

pendency graph in Figure 2 with six subgames: one for

each heap consisting of the respective heap-fluent and

reduce-action, one consisting of the control-fluent,

and one for the noop-action.

6.2 Solving Decomposable Games

In [8] and [22] we also describe algorithms to solve de-

composable games by solving the subgames and com-

posing solutions for the subgames. The main idea is to

interleave subgame search with global game search.

Subgame search scans the game tree of a subgame

and returns a subtree where paths that are irrelevant to

the solution of the global game are removed. How many

of the paths can be ignored depends on the structure

of the goal of the game. For example, games with ad-

ditive goals, i.e., where the goal value of the complete

game can be understood as the sum of goal values of all

subgames, admit an evaluation of the subgame paths.

In that case a path of the same length as another one

but with a smaller evaluation can be ignored. In gen-

eral, paths can be compared based on so-called local

concepts, i.e., subformulas of the goal and terminal con-

dition that refer only to fluents of one subgame. Paths

that lead to the same evaluation of all local concepts

of the subgame can be considered equivalent regarding

the global game.

The partial game trees of the subgames are then

combined by the global game search. Global game

search selects moves based only on the subgame-trees

returned by the subgame search instead of searching

the game tree of the complete game. This leads to an

exponentially smaller branching factor unless subgame

search returns the complete game tree for every sub-

game.

Further optimisations of the search algorithm are

possible for special classes of games. For example, an

algorithm that is able to solve impartial games in linear

time is also presented in [22].
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