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Abstract. General action languages, like e.g. the Situation Calculus,
use full classical logic to represent knowledge of actions and their effects
in dynamic domains. Description Logics, on the other hand, have been
developed to represent static knowledge with the help of decidable sub-
sets of first order logic. In this paper, we show how to use Description
Logic as the basis for a decidable yet still expressive action formalism. To
this end, we use ABoxes as decidable state descriptions in the basic Flu-
ent Calculus. As a second contribution, we thus obtain an independent
semantics – based on a general action formalism – for a recent method
for ABox-Update.

1 Introduction

General action languages like the Situation Calculus [1] or the Fluent Calculus [2]
are highly expressive formalisms for representing knowledge of actions and ef-
fects in dynamic domains. In this way, they provide the formal foundations for
programming languages and systems for the design of logically reasoning agents
who can execute high-level strategies and solve planning problems [3]. However,
the use of full classical logic as the basis for these calculi implies, in general, un-
decidability even of static questions such as whether the current state knowledge
entails that a specific action is executable. The existing solutions to this problem
often restrict the action calculi to being essentially propositional and/or employ-
ing the closed-world assumption. Description Logics, on the other hand, provide
expressive but decidable languages for the representation of static knowledge. In
particular, they are of far greater expressivity than propositional logic. Efficient
decision procedures have been developed and implemented for a variety of such
logics [4].

In this paper, we show how to integrate Description Logics into a general
action formalism. Our motivation is two-fold: On the one hand, the integra-
tion allows to restrict the expressiveness of general reasoning about actions to
expressive yet decidable fragments of first order logic. This also provides the for-
mal foundations for integrating decision procedures for Description Logics into
action programming languages and systems, which will allow agents to resort
to these algorithms whenever they have to verify conditions against their state

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 68–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Integrating Action Calculi and Description Logics 69

knowledge. On the other hand, the integration of Description Logics into an ac-
tion language provides a semantics for a recent definition of ABox-Update [5],
which is thus embedded into a general formalism for reasoning about actions
and change.

The specific contributions of this paper are the following:

1. We show how ABoxes can be used as expressive, decidable state descriptions
in the basic Fluent Calculus.

2. We provide semantics for ABox-Update by capturing them with Fluent Cal-
culus state update axioms.

3. We lay the theoretical foundations for a practical action programming lan-
guage built on top of Description Logic reasoners.

The rest of the paper is organized as follows: In Section 2, we recall the basics
of the Fluent Calculus and give a brief introduction to Description Logics. In
Section 3, we show how ABoxes can be used as state descriptions in the Fluent
Calculus, and we prove that state update axioms provide a correct character-
ization of ABox-Update. Furthermore, we show how to integrate simple TBox
reasoning and discuss some of the problems that arise in the general case. After
a discussion of related work, we conclude with a summary and outlook.

2 Preliminaries

In this section, we introduce the general action formalism Fluent Calculus; we
assume familiarity with the classical Situation Calculus. We then recall the very
essentials of Description Logics.

2.1 Fluent Calculus

The Fluent Calculus is a general action formalism: it enables the axiomatization
of dynamic domains, i.e. of initial knowledge about the world, action precon-
ditions and action effects. As running example of a dynamic domain we will
use the following simplistic online-store scenario; we will give a Fluent Calculus
axiomatization of this scenario at the end of this section.

Example 1. Initially, all that is known is that customer John has ordered the
item NiceBook. An order cancellation can be processed only if the order is known.
If the order already has been paid for, the customer is entitled to a refund.

We refer to the mutable properties of a dynamic domain as the fluents. In
the Situation Calculus fluents are modelled as first order atoms, extended by
an additional argument for a point in time, e.g. Ordered(John,NiceBook, S0).
The Fluent Calculus extends the Situation Calculus with an explicit notion
of a state associated with a situation, denoted State(S0). Intuitively, a state
may be identified with the set of all the fluents that hold at any one time. To
this end reification is employed: both fluents and states are modelled as terms;
cf. Holds(Ordered(John,NiceBook), State(S0)). This allows to apply first-order
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quantification to fluents and states, which in turn is helpful for devising a solu-
tion to the famous Frame Problem. In the following we give a compact, formal
introduction to the technical basics of Fluent Calculus and the axiom schemes
employed to encode dynamic domains.

Basics of Fluent Calculus. Fluent Calculus is based on many-sorted classical
logic with equality. The standard sorts are object, action, situation, fluent
and state, with fluent a sub-sort of state.1 A term of sort fluent is a fluent
– analogously we speak of states, situations, actions and objects. Situations are
sequences of actions rooted in an initial situation S0 – e.g. Do(Order(NiceBook),
S0). Just as in the classical Situation Calculus, they provide a branching time
structure for Fluent Calculus. At the heart of Fluent Calculus is an axiomatiza-
tion of states representing combinations of fluents.

Definition 1 (basic signature). The signature of Fluent Calculus contains:

– A countable infinity of function symbols into sort object and fluent – but
only a finite number thereof into sort action.2

– Two symbols for functions into sort situation:
• S0 : situation — the initial situation.
• Do : action × situation → situation — mapping a situation to its

successor, as the result of executing an action.
– Three symbols for functions into states:

• ∅ : state — the empty state.
• ◦ : state × state → state — for conjoining fluents into states and

states into bigger states.
• State : situation → state — denoting the state of a situation.

– A binary predicate symbol Poss : action × situation — relating action
preconditions to situations.

To gain an intuition for the role played by ◦, compare Situation Calculus’

Ordered(John,NiceBook, S0) ∧ Ordered(Mary,EvenNicerBook, S0)

with Fluent Calculus’

(∃z)State(S0) = Ordered(John,NiceBook) ◦Ordered(Mary,EvenNicerBook) ◦ z.

Definition 2 (holds macro). A fluent f is said to hold in a state z if the
latter is composed of f and some other state z′ via ◦; a fluent holds in a situation
if it holds in the state of the situation:

Holds(f, z)
def
= (∃z′)z = f ◦ z′and

Holds(f, s)
def
= Holds(f,State(s)).

1 By convention, variables x,a,s,f and z are used for objects, actions, situations, fluents
and states, respectively.

2 Each with arguments of sort object only.
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The foundational axioms Σstate of the Fluent Calculus govern the behavior
of states.

Definition 3 (foundational axioms). 3

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3) ( Associativity )
z1 ◦ z2 = z2 ◦ z1 ( Commutativity )
¬Holds(f, ∅) ( Empty state )
Holds(f1, f2) ⊃ f1 = f2 ( Irreducibility )
Holds(f, z1 ◦ z2) ⊃ (Holds(f, z1) ∨Holds(f, z2)) ( Decomposition )
(∀f)(Holds(f, z1) ≡ Holds(f, z2)) ⊃ z1 = z2 ( State equality )
(∀P )(∃z)(∀f)(Holds(f, z) ≡ P (f)) ( State existence )

where P is a unary predicate variable of sort fluent.

The last axiom ensures the existence of a state for every combination of fluents.
For a detailed introduction to this and the other axioms the interested reader is
referred to [6].

Definition 4 (finite state). A finite state ϑ is a term f1 ◦ . . . ◦ fn such that
each fi (1 ≤ i ≤ n) is a fluent. If n = 0, then ϑ = ∅.

Definition 5 (fluent addition/subtraction). The following macros provide
an intuitive notation for describing relations between different states:

– z1 + f
def
= z1 ◦ f

– z1 − f = z2
def
= (z2 = z1 ∨ z2 ◦ f = z1) ∧ ¬Holds(f, z2)

These definitions are recursively extended to addition and subtraction of finite
states ϑ+ and ϑ−: these will consist of the positive and negative effects of actions.

We next introduce formulas capable of expressing which (fluent or non-fluent)
properties hold in a state and in a situation, respectively.

Definition 6 (state/situation formula). A state formula Δ(z) is a first or-
der formula with free state variable z and without any occurrences of states other
than in expressions of the form Holds(f, z), and without actions or situations.
Replacing every occurrence of z by State(s) in a state formula Δ(z), we obtain
a situation formula Δ(s).

Definition 7 (unique name axioms). Every Fluent Calculus instance in-
cludes a set Σuna of unique-name axioms that contains a formula of the form

fi(x) �= fj(y)

3 Variables not within the scope of any quantifier are to be read as universally quan-
tified throughout this paper unless otherwise stated.
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for each pair of distinct function symbols of sort fluent as well as for each pair
of distinct function symbols of sort action and a formula of the form

(fi(x) = fi(y) ⊃ x = y),

for each function symbol of sort fluent or action.

Domain Specifications. In order to specify a dynamic domain we need to
axiomatize knowledge about the initial state, action preconditions and the effects
resulting from action execution. Formally, a domain is specified as a set of axioms
Σ = Σstate ∪Σuna ∪Σinit ∪Σposs ∪Σsua, where :

– Σinit = {(∃z)State(S0) = z ∧Δ(z)}, with Δ(z) a state formula,
– Σposs is a set of precondition axioms, one for each action, and
– Σsua is a set of state update axioms, one for each action.

Definition 8 (precondition axiom). A precondition axiom for action A(x)
is a formula Poss(A(x), s) ≡ Δ(s), where Δ(s) is a situation formula with free
variables among x and s.

Definition 9 (state update axiom). A state update axiom is a formula of
the form

Poss(A(x), s) ⊃
(∃y1)(Δ1(s) ∧ State(Do(A(x), s)′ = State(s) − ϑ−1 + ϑ+

1 )
∨ ...∨
(∃yn)(Δn(s) ∧ State(Do(A(x), s)′ = State(s) − ϑ−n + ϑ+

n ).

The finite states ϑ−i and ϑ+
i with free variables among x,yi are the negative and

positive effects of A(x) under condition Δ(s). Δ(s) itself is a situation formula
with free variables among x,yi and s.

Example 1. (continued) The online-store scenario from example 1 is axioma-
tized in Fluent Calculus as follows, illustrating each type of axiom:

(∃z)State(S0) = z ∧ Holds(Ordered(John,NiceBook), z),

Poss(CancelOrder(customer, item), s) ≡ Holds(Ordered(customer, item), s),

Poss(CancelOrder(customer, item), s) ⊃
(Holds(Paid(item), s) ∧ State(Do(CancelOrder(customer, item), s)) =

State(s) − Ordered(customer, item) + Refund(customer, item))
∨

(¬Holds(Paid(item), s) ∧ State(Do(CancelOrder(customer, item), s)) =
State(s) − Ordered(customer, item)).
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Name Syntax Semantics

negation ¬C DI \ CI

conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

existential restriction ∃R.C { x | ∃y(x, y) ∈ RI ∧ y ∈ CI}
universal restriction ∀R.C { x | ∀y(x, y) ∈ RI ⊃ y ∈ CI}

Fig. 1. Syntax and semantics of ALC

This axiomatization entails

¬Holds(Ordered(John,NiceBook),Do(CancelOrder(John,NiceBook), S0))
and

Holds(Paid(NiceBook),Do(CancelOrder(John,NiceBook), S0) ⊃
Holds(Refund(John,NiceBook),Do(CancelOrder(John,NiceBook), S0)).

2.2 Description Logics

In this section, we recall those facts about Description Logics (DLs) that are
essential to the ensuing discussion. A gentle introduction can be found in [4].
Description Logics are a family of Knowledge Representation formalisms; typi-
cally, they are decidable fragments of classical first order logic. In the following
we employ the term Description Logic solely for such fragments.

A particular DL is based on a set of concept names NC (unary predicates),
a set of role names NR (binary predicates), a set of individual names NI (con-
stants), and a number of constructors for inductively defining complex concepts
and roles.

The semantics of Description Logics is defined via interpretations I=(DI , ·I).
The domain DI is a non-empty set of individuals. The interpretation function ·I
maps each concept name C ∈ NC to a subset CI of DI , each role name R ∈ NR

to a binary relation RI on DI , and each individual name I ∈ NI to an individual
II ∈ DI . The semantics is extended inductively to complex concepts and roles.
Figure 1 introduces the syntax and semantics of the core DL ALC.

Definition 10 (ABox). An assertional box (ABox) is a finite, non-empty set
of concept assertions C(I) and role assertions R(I1, I2) and ¬R(I1, I2), where C
and R may be complex concepts and roles, respectively.

For example, {Outbound � Delivered(Package)} is an ABox expressing uncer-
tainty over the whereabouts of a particular package.

A number of highly-optimized tableau-based reasoners for effectively deciding
even very expressive DLs are available [7,8,9].
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3 Integration

We will now lay the theoretical foundations for an integration of Description Log-
ics into Fluent Calculus. We will first show how the latter can use DL ABoxes
as structured and decidable world descriptions. We then turn our attention to a
recently proposed method for ABox-Update: After recalling the essential defini-
tions we establish a Fluent Calculus semantics for these updates, thus relating
them to standard AI action calculi. Furthermore, these findings will enable us
to identify fragments of Fluent Calculus where questions of action applicability
and effects resulting from action execution can effectively be computed.

3.1 ABoxes and State Formulas

We now establish a connection between Description Logic ABoxes and Fluent
Calculus state formulas. This connection will be a consequence of a more general
result on the relation between first order sentences and state formulas.

Consider an arbitrary countable first order language L.4 We can then define
a Fluent Calculus instance that contains exactly one function symbol Fi of sort
fluent for every predicate symbol Pi ∈ L (except equality). Moreover, its terms
t of sort object are precisely the terms of L.

Definition 11. The mapping τz takes first order sentences in L to state formu-
las Δ(z):

τz(Pi(t)) = Holds(Fi(t), z)
τz(t1 = t2) = (t1 = t2)
τz(ϕ ∧ ψ) = τz(ϕ) ∧ τz(ψ)
τz(¬ϕ) = ¬τz(ϕ)
τz(∃xϕ) = ∃xτz(ϕ).

Theorem 1 (first order sentences and state formulas). A first order
sentence ϕ in a countable language L has a model iff {τz(ϕ)} ∪ Σstate has a
model.

Proof. (⇒)
First, observe that we can restrict our attention to certain models of ϕ, namely
the term models obtained via the standard Henkin construction [10]. The domain
D of these models consists of equivalence classes on all the terms of L. Let
M1 = (DM1 , ·M1) � ϕ be such a model. Let F be the set of all fluents built from
terms occurring in an equivalence class in DM1 .
Then M2 = (Dobject,Dfluent,Dstate, ·M2) � {τz(ϕ)} ∪Σstate where

– Dobject = DM1 ,
– Dfluent = {{f} | f ∈ F},
– Dstate = P(F), the power set of F,

4 In the following we assume without loss of generality that L contains equality.
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– tM2 = tM1 for objects t,
– F (t)M2 = {F (tM2} for each fluent F (t),
– ∅M2 = {},
– (z1 ◦ z2)M2 = (z1)M2 ∪ (z2)M2 , and
– zM2 = { Fi(tM2) | M1 � Pi(t)}.

Interpreting ∅ as empty-set, ◦ as set-union and states as sets of fluents is a
model of the foundational axioms Σstate of Fluent Calculus [6]. The proof is
completed by structural induction on ϕ.

(⇐) In this case simply let M3 = (Dobject,Dfluent,Dstate, ·M3) � {τz(ϕ)}∪Σstate.
Then M4 = (Dobject, ·M4) � φ where

– tM4 = tM3 for terms t of sort object and
– PM4

i = {(tM4) | M3 � Holds(Fi(t), z)}.

This proof, too, is completed by structural induction on ϕ. ��

This result justifies an intuitive identification of state formulas with the more
familiar first order sentences. Moreover, it enables us to transfer known decid-
ability or complexity results for fragments of first order logic to instances of the
Fluent Calculus, where state formulas are restricted accordingly. In particular
this applies to Description Logic ABoxes. Using ABoxes as state formulas, in an
actual implementation we can resort to DL reasoners in order to decide static
state knowledge, e.g. action preconditions. Researchers in DL have investigated
a great number of DLs of varying strength; from these we can choose a logic that
we deem appropriate for the task under consideration.

3.2 Updated ABoxes and State Update Axioms

In a recent paper, a method for updating Description Logic ABoxes has been
proposed. Next we will briefly recall essential definitions and results; for in-depth
coverage, the interested reader is referred to [5]. Subsequently, we will provide
a Fluent Calculus semantics for ABox-Update, and thus relate the latter to a
standard AI formalism.

ABox-Update. After introducing the syntactic objects describing an ABox-
Update, we restate the semantic considerations underlying the whole approach.

Definition 12 (conditional ABox update). A conditional update U is a fi-
nite, non-empty set of expressions ϕ/ψ, where the condition ϕ is an ABox as-
sertion and the postcondition ψ is a concept/role literal. Consistency of the con-
dition part ϕi for a number of expressions ϕi/ψi implies the consistency of their
postconditions ψi. The condition part may be omitted by writing �/ψ, where �
abbreviates a tautology.

The semantics of ABox-Update is defined using the possible models approach of
Winslett [11]; that is, for every interpretation I we define an updated interpreta-
tion I ′. E.g., if U = {ϕ1/C(I1), ϕ2/¬C(I2)} and I entails both ϕ1 and ϕ2, then
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I ′ should interpret C as I, but include the individual I1 into the interpretation
of C and exclude the individual I2 from it. These should be the only changes to
occur. The following definition captures this minimal change policy.

Definition 13 (conditional interpretation update). Let U be a conditional
update and I, I ′ interpretations such that DI = DI′

and I and I ′ agree on the
interpretation of individual names. Then I′ is the result of updating I with U ,
written I =⇒U I ′, if the following holds for all concept names C ∈ NC and role
names R ∈ NR:

CI′
=(CI ∪ { II | ϕ/C(I) ∈ U ∧ I � ϕ})

\ { II | ϕ/¬C(I) ∈ U ∧ I � ϕ}and

RI′
=(RI ∪ { (II1 , I

I
2 ) | ϕ/R(I1, I2) ∈ U ∧ I � ϕ})

\ { (II1 , II2 ) | ϕ/¬R(I1, I2) ∈ U ∧ I � ϕ}.

Let M(A) denote the set of all models of an ABox A.

Definition 14 (updated ABox). For an ABox A and a conditional update
U the updated ABox A′ is defined model-theoretically such that:

M(A′) = { I ′ | I ∈ M(A) ∧ I =⇒U I ′}.

For applying a conditional update U to an ABox A resulting in ABox A′ we
also write A′ = A ∗ U . In spite of some negative results in [5] it has been
established for a whole range of DLs that these admit ABox-Update; i.e. for
arbitrary A and U the updated ABox A′ = A ∗ U always exists. For the DLs
ranging from ALCO@ to ALCQIO@– which are closely related to the familiar
SHOIN (D)underlying the Ontology Web Language (OWL) – algorithms for
computing updated ABoxes have been presented. For an updated ABox A′ =
A ∗ U there are polynomials p1, p2 and q such that

– |A′| ≤ 2p1(|A|) · 2p2(|U|) and
– A′ is computed in time q(|A′|).

For repeated updates the final ABox can be exponential only in the size of
the original ABox and the total size of all updates.

The authors of [5] also propose two mechanisms for obtaining smaller updated
ABoxes; in both cases the result of updating is exponential only in the size of the
update. One is based on introducing abbreviations for some complex concepts.
The other eliminates the asymmetry between concepts and roles typically found
in DLs: it introduces powerful operators on roles. Update algorithms for such
DLs are also given; the strongest DL under consideration is as expressive as the
two variable fragment of first order logic with counting quantifiers [12].

Fluent Calculus Semantics for ABox-Update. We will now establish a
Fluent Calculus semantics for any DL that is both embeddable into first order
logic and closed under the above definition of update. To do so, for a given DL,
ABoxes A, A′ and update U with A′ = A ∗ U , we will define a corresponding



Integrating Action Calculi and Description Logics 77

domain axiomatization Σ in a suitable Fluent Calculus instance. We will then
prove that for every model of Σ there are models I and I ′ of A and A′ satisfying
I =⇒U I ′ and vice versa.

First, we associate with U the name Update. The Fluent Calculus instance is
defined such that

– it contains exactly one action, namely Update, and
– there is a bijection between

• the objects and the individual names NI , and
• the function symbols of sort fluent and the union of the concept and

role names, NC ∪NR.

Next, since we consider only first order embeddable DLs, we can clearly define
a mapping τz from ABoxes to state formulas Δ(z), analogously to the mapping
from Definition 11; similarly, τs maps ABoxes to situation formulas. In the do-
main axiomatization Σ to be constructed, let

Σinit = {(∃z)State(S0) = z ∧ τz(A)}.

We now turn to the construction of a state update axiom corresponding to
the update U = {ϕ1/ψ1, . . . , ϕn/ψn}. Define the set E1 = {ϕi/ψi | ϕi/ψi ∈
U} ∪ {¬ϕi/nil | ϕi/ψi ∈ U} and let E2 be the set of all subsets of E1 that are
maximally consistent with regard to the condition part ϕi. Note that E2 will
be exponential in the size of U . For every member E3 of E2 we form an update
formula

γ(s)
def
= Δ(s) ∧ (∃z)State(Do(Update), s) = State(s) − ϑ− + ϑ+

where

– Δ(s) denotes the conjunction of all the situation formulas in the set {τs(ϕ) |
ϕ/ψ ∈ E3 ∨ ϕ/nil ∈ E3}, and

– ϑ+ (respectively, ϑ−) denotes the finite state consisting of the ground fluents
corresponding to the assertions ψ such that ϕ/ψ ∈ E3 (respectively, ϕ/¬ψ ∈
E3). 5

Then Σ contains the single state update axiom

Σsua = {Poss(Update, s) ⊃ Γ (s)},

where Γ (s) denotes the disjunction of all the γ(s) resulting from the above
construction. Observe that all the γ(s) are mutually exclusive.

Example 2. Consider the update
U={�/¬Ordered(John,NiceBook),Paid(NiceBook)/Refund(John,NiceBook)}.

5 If there is no such assertion we obtain the empty state ∅.
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The above construction yields – after a little simplification –

Poss(Update, s) ⊃
(Holds(Paid(NiceBook), s) ∧ State(Do(Update, s)) =

State(s) − Ordered(John,NiceBook) + Refund(John,NiceBook))
∨

(¬Holds(Paid(NiceBook), s) ∧ State(Do(Update, s)) =
State(s) − Ordered(John,NiceBook)).

Finally, we define the set of precondition axioms to be

Σposs = {Poss(Update, s) ≡ �},

completing the definition of Σ.
Before stating the main theorem, we recall a fundamental result about Fluent

Calculus [6] that will be essential to our discussion.

Theorem 2 (fluent calculus foundational theorem). Let ϑ+ and ϑ− be two
finite states. Then foundational axioms Σstate together with z′ = z − ϑ− + ϑ+

entail

Holds(f, z′) ≡ Holds(f, ϑ+)
∨
Holds(f, z) ∧ ¬Holds(f, ϑ−).

Theorem 3 (fluent calculus semantics for ABox-Update). For an ABox
A, an update U and the corresponding domain axiomatization Σ it holds that
A has a model I with I =⇒U I ′ if and only if Σ has a model. Moreover, in
a model of Σ, State(S0) and State(Do(Update, S0)) relate in the same way as
I and I′.

Proof. (⇒)
We will only give a sketch of the proof. As in the proof of Theorem 1 we can
restrict our attention to Henkin-style term interpretations: When constructing
τz(A) we simultaneously construct the first order representation of A, using the
same variable names. A term model of this is readily turned into a model of A.
We then interpret the objects by their equivalence classes, and fluents by fluent
terms built from these equivalence classes as in the proof of Theorem 1. We
extend this treatment to situations and actions: here we restrict the respective
universes to the set of ground situations and actions built using only terms of sort
object occurring in an equivalence class. Interpreting ◦ and ∅ as set union and
empty set as before, we fix the interpretation of State(S0) as the set of fluents
corresponding to atoms that are true in I. We observe that, once we have fixed
the interpretation of State(S0), the model of Σ is uniquely determined, due to
Theorem 2 and the fact that the conditions Δ(s) in the state update axiom are
mutually exclusive. Theorem 2 is also the key to proving that State(S0) and
State(Do(Update, S0)) are related in the same way as I and I ′.
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(⇐)
Let M2 = (Dobject,Dfluent,Dstate,Dsituation,Daction, ·M2) � Σ.
Set I3 = (Dobject, ·I3), I4 = (Dobject, ·I4) where

– P I3
i = {(tM2) | M2 � Holds(Fi(t), State(S0))},

– P I4
i = {(tM2) | M2 � Holds(Fi(t), State(Do(Update, S0)))} and

– ·I3 , ·I4 and ·M2 agree on sort object.

Then I3 � A and I3 =⇒U I4. ��

Figure 2 depicts the relationship just established.

M � Σ

=⇒U =⇒U

A A′ = A ∗ U

� �

I I′

State(S0)
M State(Do(Update, S0))

M

Fig. 2. Fluent Calculus semantics for ABox-Update

This result has two important consequences: On the one hand, by establish-
ing a Fluent Calculus semantics for ABox-Update, it relates the latter to an
established, general action formalism. On the other hand, it provides the for-
mal underpinnings of using the update algorithms of [5] for computing updated
states in a Fluent Calculus that uses ABoxes as state descriptions. Using an
accordingly restricted Fluent Calculus instead of plain ABox-Update the notion
of update resides within the language instead of being meta-logical.

3.3 TBoxes and Domain Constraints

The reader already familiar with Description Logics may wonder why we have
not yet mentioned TBoxes. By allowing the definition of concepts in terms of
other concepts, these contribute considerably to the expressive power of DLs.

Definition 15 (TBox/knowledge base). C ≡ D is a concept definition,
where C is a defined concept name and D is a complex concept. A TBox T is a
finite set of concept definitions. An interpretation I satisfies a concept definition
C ≡ D if CI = DI . I satisfies a TBox T , if it satisfies all concept definitions
in T . A Knowledge Base is a pair KB = (T ,A), with TBox T and ABox A.
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A TBox T is a terminology if every defined concept is defined only once. A
defined concept name C directly uses a concept name D if D occurs on the right
hand side of the concept definition. A terminology is acyclic if no concept name
is connected with itself via the transitive closure of directly uses. Reasoning in a
knowledge base KB = (T ,A), where T is an acyclic terminology, can always be
reduced to reasoning wrt. the empty TBox by unfolding the definitions [4].

For example, in our online-store scenario we can introduce the concept of a
good customer with the help of the TBox

{GoodCustomer ≡ PurchasedManyItems� PaidOnTime}.

In action formalisms the concept of a domain constraint allows to state general
knowledge and laws that have to be satisfied by every world state.

Definition 16 (domain constraint). In Fluent Calculus a domain constraint
is a formula of the form (∀s)Δ(s), where Δ(s) is a situation formula.

TBoxes are captured neatly by appropriate domain constraints. E.g. we map the
above TBox to

(∀s.∀x)Holds(GoodCustomer(x), s) ≡
Holds(PurchasedManyItems(x), s) ∧ Holds(PaidOnTime(x), s).

It is trivial, but potentially useful, to admit acyclic TBoxes. We can faithfully
apply the update algorithms from [5] to an ABox serving as world state descrip-
tion after unfolding the TBox, resulting in a potentially exponential blowup.
However, in the ABoxes that serve as action preconditions in a domain ax-
iomatization, we can admit defined concepts without unfolding them into the
ABox. This is possible since the semantics of the undefined concepts uniquely
determines the semantics of the defined ones. The above result on the semantic
correspondence between ABox-Update and Fluent Calculus state update axioms
can be extended to take acyclic TBoxes into account.

If we admit general TBoxes, semantic problems arise. The semantics of the
undefined concepts no longer uniquely determines the semantics of the TBox. As
a consequence the one-to-one relation between original and updated interpreta-
tion – that is at the heart of ABox-Update – can not be maintained. This issue is
well known to researchers in action formalisms as the Ramification Problem [13].
Considerable effort went into singling out intended interpretations, usually by
appealing to some notion of causality [14,15,16]. This work should prove helpful
when extending the definition of interpretation update.

4 Summary

4.1 Related Work

Recently, a number of works have addressed the issue of finding a decidable
yet expressive logical framework for reasoning about actions and change. In the
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following we will relate our work to other DL-based approaches. Such approaches
have continued to attract considerable interest, not least since Description Logics
form the foundation of the Semantic Web, and a dynamic view of the web is
intuitively very appealing.

In [17] de Giacomo et al. show that DL-Lite is closed under update in the
above sense; they also present a polynomial algorithm for computing updated
ABoxes. The Description Logic DL-Lite is of reduced expressivity, but admits
tractable reasoning and updated ABoxes of polynomial size. They also address
updates in the presence of general TBoxes. If the models of the update and the
general TBox have an empty intersection their algorithm guarantees correctness;
otherwise it returns with an error. Our framework can also be instantiated with
DL-Lite ABoxes; returning an error is not an option for an autonomous agent.

Liu et al. [18] provide an in-depth discussion of the semantic problems that
arise when updating ABoxes in the presence of general TBoxes. They also ob-
serve that these problems are closely related to the ramification problem. As a
solution they propose to provide the domain axiomatizer with a syntactic means
to indicate which assertions may fluctuate freely during the update.

Baader et al. [19] is another work on DL-based reasoning about action and
change. They employ reasoning similar to regression and among many other re-
sults, they outline how their work can be regarded as an instance of the Situation
Calculus. Gu and Soutchanski [20] directly define a modified Situation Calcu-
lus, based on a DL with role operators that is equally expressive as C2. They
adapt regression from the general Situation Calculus to their setting extended
with acyclic TBoxes. They address the problem of using progression, i.e. up-
date, instead of regression in [21]. To this end, since fluents are not reified in
the Situation Calculus, they have to appeal to second order logic. An in-depth
comparison of their work will be subject of future work. The fact that Situation
Calculus and Fluent Calculus semantically agree has been shown in [22].

Employing existing DL reasoners we have to start reasoning from scratch after
each update. In [23] the problem of incremental maintenance of a solver state is
addressed under a very simple semantics for ABox-Update. It would be nice to
extend these ideas to updates under the possible models approach.

4.2 Conclusion

We have shown how to integrate Description Logics into a general action formal-
ism. We have thus restricted the latter to a decidable, yet expressive fragment
of classical first order logic. To do so, we have proved that ABoxes can serve as
a faithful substitute for state formulas in Fluent Calculus. Moreover, by proving
that Fluent Calculus state update axioms correctly capture ABox-Update, we
have related the latter to established research in reasoning about action and
change. Our work lays the theoretical foundations for an integration of DL rea-
soning and update algorithms into a practical agent programming language.
There are a number of interesting open issues for future work:

– Applying existing solutions to the ramification problem to handle ABox-
Update in the presence of general TBoxes.
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– Integrating inference algorithms for Description Logic problems into a gen-
eral action programming language, like e.g. FLUX [2].

References

1. McCarthy, J.: Situations, actions, and causal laws. Technical Report AIM-2, AI
Project, Stanford University (1963)

2. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming 5, 533–565 (2005)

3. Lespérance, Y., Levesque, H.J., Lin, F.D., Marcu, R.R., Scherl, R.B.: A logical
approach to high-level robot programming—A progress report. In: Papers from
the 1994 AAAI Fall Symposium, AAAI (1994)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

5. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes. In:
Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 46–56. AAAI Press (2006)

6. Thielscher, M.: Reasoning Robots: The Art and Science of Programming Robotic
Agents. Applied Logic Series, vol. 33. Kluwer Academic Publishers, Dordrecht
(2005)

7. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proceedings of the 2004
International Workshop on Description Logics (DL2004) (2004)

8. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006)
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