
A Formal Assessment Result for Fluent Calculus

Using the Action Description Language Ak
?

Ozan Kahramanoğulları and Michael Thielscher

Department of Computer Science
Dresden University of Technology

Abstract. Systematic approaches like the family of Action Description

Languages have been designed for the formal assessments of action cal-
culi. We assess the fluent calculus for knowledge and sensing with the
help of the recently developed, high-level action language Ak. As the
main result, we present a provably correct embedding of this language
into fluent calculus, excluding the while loops in the query language. As
a spin-off, the action programming language FLUX, which is based on
fluent calculus, provides a system for answering queries to Ak domains.
Conversely, the action description language may serve as a high-level
surface language for specifying action domains in FLUX.

1 Introduction

An unsatisfactory aspect of research into reasoning about actions is the co-
existence of a variety of different approaches, which are difficult to assess and
compare. Systematic approaches such as [11] or the Action Description Lan-
guage A [2] have been developed to help eliminate this deficiency. Providing a
high-level but formal semantics, these approaches are intended to be used to
prove correctness of different action calculi for well-defined problem classes. A
formal evaluation is particularly important when it comes to modeling complex
phenomena such as knowledge and sensing actions.

In this paper, we follow this systematic approach and assess the fluent cal-
culus for knowledge and sensing [12]. To this end, we use the extended Action
Description Language Ak developed in [9] as a minimal extension of the action
description language A [2] to handle non-deterministic actions, knowledge, and
sensing. We present a mapping from Ak domains and queries (without loops)
into fluent calculus and, as the main result, prove soundness and completeness
wrt. the high-level semantics. Doing so, we show that fluent calculus can ex-
press an intricate commonsense phenomena of sensing captured by Ak, namely,
the unknown preconditions of a sensing action being learned during sensing. In
addition, we have developed a logic programming realization of this translation
into the action programming language FLUX—the Fluent Executor [13]. Our
achievement is three-fold:

? A preliminary version of this paper has been presented at the 2003 AAAI Spring
Symposium on Logical Formalizations of Commonsense Reasoning.

1. The result shows that fluent calculus for knowledge and sensing is correct
wrt. the problem class defined by Ak.

2. Augmented by the translation program, FLUX provides a system for an-
swering queries to Ak domains.

3. The syntax of Ak can serve as a high-level surface language for specifying
action domains in FLUX.

The rest of the paper is organized as follows. We begin by recapitulating basic
notions and notations of Ak and fluent calculus, respectively. We then present
a provably correct translation of domain descriptions in Ak into fluent calculus
axiomatizations. Thereafter, we extend the translation to queries in Ak so that
query entailment in fluent calculus is sound and complete wrt. the high-level
semantics. We conclude with a sketch of the logic programming realization of
our translation using FLUX, followed by a brief discussion and outlook.

2 The Action Description Language Ak

The language Ak [9] is the minimal extension of the action description language
A [2] to handle non-deterministic actions, knowledge, and sensing. Domain de-
scriptions in Ak allow one to answer queries about what will hold after executing
a sequence of actions of that domain description.

2.1 Syntax of the Domain Language

The language of Ak consists of two non-empty disjoint sets of symbols F, A.
They are called fluents and actions, respectively. The set A consists of two
disjoint sets of actions: Sensing actions and non-sensing actions. Actions will be
generically denoted by a, possibly indexed. A fluent literal is an element from
the set of fluents that is possibly preceded by a ¬ sign. Fluents will be denoted
by f or g and fluent literals by `, p, or q, all possibly indexed.

There are three kinds of propositions in Ak: A value proposition is an ex-
pression of the form

initially ` (1)

where ` denotes a fluent literal. Value propositions describe the initial knowledge
the agent has about the world.

Effect propositions are expressions of the form

a causes ` if p1, . . . , pn (2)

a may affect f if p1, . . . , pn (3)

where a is a non-sensing action, ` and p1, . . . , pn (n ≥ 0) are fluent literals, and
f is a fluent. Intuitively, the first expression above mean that in a state where
p1, . . . , pn are true, the execution of a causes ` to become true. The second
expression says that the truth value of f may indeterminately change if a is
executed in a state where p1, . . . , pn are true.

Sensing actions are described by knowledge laws:

as causes to know f if p1, . . . , pn (4)

where as is a sensing action, f is a fluent and p1, . . . , pn are preconditions as in
(2) and (3). This expression says that if p1, . . . , pn are true, then the execution
of as causes the agent to realize the current value of f in the world. Sensing
actions are not allowed to occur in any effect proposition. A collection of the
above propositions and laws is called a domain description.

Example Consider a robot that faces the door of the room but does not know
if the door is open or not. The robot can execute the sensing action Look, which
makes it realize the door’s being open or closed, provided it is facing the door.
The robot can also execute the action SendId, which is the action of sending the
electronic signal of the door. This action causes the door to open if it is closed,
and to close if it is open:

D1 =

r1 : initially FacingDr
r2 : SendId causes DrOpn if ¬DrOpn
r3 : SendId causes ¬DrOpn if DrOpn
r4 : Look causes to know DrOpn if FacingDr

2.2 Semantics of the Domain Language

The semantics of Ak explains how an agent’s knowledge changes according to
the effects of the actions defined by a domain description. A state is a set of
fluents. A set of states represents a situation. This way, incomplete descriptions
of the world are captured.2 The knowledge of the robot is represented by a set
of (possibly incomplete) worlds (i.e., situations) in which the agent believes that
it can be. Such a set is called an epistemic state. For example, the epistemic
state (a) in Figure 1 represents that the robot knows FacingDr but is ignorant
of whether or not DrOpn holds. In contrast, in the epistemic state (b) the robot
knows whether the door is open: In situation Σ1 fluent DrOpn is false in all
states. Conversely, in situation Σ2 fluent DrOpn is true in all states. Hence, in
all situations of epistemic state (b) the status of DrOpn is known.

A fluent f holds in a state σ iff f ∈ σ (denoted by: σ |=Ak
f). A fluent f does

not hold in a state σ iff f /∈ σ (denoted by: σ 6|=Ak
f). The truth of a formula

ϕ made of fluents and the standard logical connectives in a state is recursively
defined as usual. A formula ϕ is true in a situation Σ (denoted by: Σ |=Ak

ϕ) if
the formula is true in every state in Σ; it is false if ¬ϕ is true in every state in
Σ. A formula is true in an epistemic state if it is true in every situation in the
epistemic state; it is false if its negation is true. A situation is consistent if it
is non-empty, otherwise it is inconsistent. A situation is complete if it contains
only one state, otherwise it is incomplete.
2 Unfortunately, the inventors of Ak decided to use the term situation to denote some-
thing very different from what is normally called a situation in action calculi, namely,
a sequence of actions. The reader should not be confused by this clash of names.

{FacingDr}

{DrOpn, FacingDr}

(a) (b)

Σ1

Σ2

{FacingDr}

{DrOpn, FacingDr}

Fig. 1. Two epistemic states.

Interpretations for Ak are transition functions that map pairs of actions and
situations into situations. In order to interpret the effects of the actions at state
level, 0-interpretations map actions a and states σ into sets of states Φ0(a, σ).
Each state in Φ0(a, σ) represents a possible result of performing a in σ; this is
how nondeterministic actions are dealt with.

Definition 1 A 0-interpretation Φ0 is a 0-model of a domain description D iff
for every state σ and action a, Φ0(a, σ) is the set that contains every state σ′

such that:

1. For a fluent f of any effect proposition of the form ‘a causes f if p1, . . . , pn’
in D, the fluent f holds in σ′ if the preconditions p1, . . . , pn hold in σ;

2. For a fluent literal ¬f of any effect proposition of the form ‘a causes ¬f
if p1, . . . , pn’ in D, the fluent f does not hold in σ′ if the preconditions
p1, . . . , pn hold in σ;

3. For a fluent f such that there are no effect propositions of the above types,
f ∈ σ′ iff f ∈ σ unless there is a non-deterministic effect proposition of the
form ‘a may affect f if p1, . . . , pn’ for which p1, . . . , pn hold in σ.

According to item 3, if there is no applicable deterministic effect proposition,
then f keeps its truth-value unless there is an applicable non-deterministic effect
proposition concerning f , in which case f can take on either truth-value in σ′,
thus giving rise to several possible resulting states.

Knowledge laws are interpreted according to the following definitions. An
important aspect of the definition of sensing in Ak is that the conditions under
which a fluent can be sensed will become known to the agent if the value of the
fluent being sensed is previously unknown. For example, if our robot truly learns
whether the door is open by performing the sensing action Look, then it also
realizes that it is facing the door.

Definition 2 Let Σ be a consistent situation, f a fluent, and ϕ a disjunction
of conjunctions of fluent literals (preconditions). A consistent situation Σ ′ is
‘f, ϕ− compatible’ with Σ iff the following holds.

– If f is either true or false in Σ then Σ ′ = Σ.
– If f is unknown (neither true nor false) in Σ then Σ ′ must satisfy one of
the following conditions:

1. Σ′ = {σ ∈ Σ | ϕ is not true in σ}
2. Σ′ = {σ ∈ Σ | ϕ is true in σ, f /∈ σ}
3. Σ′ = {σ ∈ Σ | ϕ is true in σ, f ∈ σ}

In other words, if the fluent being sensed is unknown, then the sensing action
splits situation Σ into three situations: One in which ϕ is false, one in which ϕ is
true and f is false, and one in which ϕ is true and f is true. These situations are
the worlds that are considered possible after the execution of the sensing action.
Then the set containing all these situations is the epistemic state.

Definition 3 A fluent f is a potential sensing effect of a sensing action as in
a domain D if there is a knowledge law of the form as causes to know f if ϕ
in D. The knowledge precondition of a fluent f with respect to a sensing action
as in a domain D is ϕ1 ∨ . . . ∨ ϕn where

{as causes to know f if ϕ1, . . . , as causes to know f if ϕn}

are the knowledge laws with action as and potential sensing effect f .

Definition 4 Given an interpretation Φ of Ak, Φ is a model of domain descrip-
tion D, if and only if it satisfies the following: Φ(a,Σ) = ∅ if Σ inconsistent,
and for any consistent situation Σ:

1. There exists a 0-model Φ0 of D, such that for any non-sensing action a,
Φ(a,Σ) =

⋃

σ∈Σ Φ0(a, σ).
2. For each sensing action as, let f1, . . . , fn be the potential sensing effects of

as and ϕi the knowledge precondition of fi with respect to as. Then Φ(as, Σ)
must be consistent, and if n = 0 then Φ(as, Σ) = Σ otherwise Φ(as, Σ) =
⋂

i∈[1..n] Σi, such that each Σi is a situation fi, ϕi − compatible with Σ.

Definition 5 A state is called initial state of a domain description D iff for
every value proposition of the form ‘ initially `’ in D, ` is true in σ. The initial
situation Σ0 of D is the set of all the initial states of D.

2.3 The Query Language

Queries in Ak are of the form ϕ after α where ϕ is a conjunction of fluent literals
and α is a plan, which is inductively defined as follows: The empty sequence []
is a plan. If a is an action and α is a plan then the concatenation [a|α] is a plan.
If ϕ is a conjunction of fluent literals and α, α1, and α2 are plans then [if ϕ
then α1 | α] and [if ϕ then α1 else α2 | α] are (conditional) plans.3

Definition 6 The plan evaluation function ΓΦ of an interpretation Φ is a func-
tion such that for any situation Σ:

1. ΓΦ([], Σ) = Σ.

3 The full query language of Ak includes plans with loops, which we do not consider
in this paper.

2. ΓΦ([a|α], Σ) = ΓΦ(α,Φ(a,Σ)) for any action a.
3. ΓΦ([if ϕ then α1 | α], Σ) = ΓΦ(α,Σ

′), where

Σ′ =

ΓΦ(α1, Σ) if ϕ is true in Σ
Σ if ϕ is false in Σ
∅ otherwise

4. ΓΦ([if ϕ then α1 else α2 | α], Σ) = ΓΦ(α,Σ
′), where

Σ′ =

ΓΦ(α1, Σ) if ϕ is true in Σ
ΓΦ(α2, Σ) if ϕ is false in Σ
∅ otherwise

Definition 7 A query ‘ϕ after α’ is entailed by a domain description D
(written as: D |=Ak

ϕ after α) iff for every model Φ of D, ϕ is true in
ΓΦ(α,Σ0) where Σ0 is the initial situation of D.

Example (continued) As shown in detail in [9], D1 entails4

DrOpn after [Look, if ¬DrOpn then [SendId]] (5)

3 Fluent Calculus

Fluents and states. A many-sorted predicate logic language, fluent calculus
extends the classical situation calculus by the concept of a state. Its signature
includes the standard sorts fluent and state. The intuition is that a state is
characterized by the fluents that hold in it. Formally, every term of sort fluent

also belongs to sort state, and the signature contains the two standard functions
∅ : state (denoting the empty state) and ◦ : state× state 7→ state (written
in infix notation and denoting the union of two states). Let Holds(f, z) be an
abbreviation for the equational formula (∃z′) z = f ◦ z′, then the foundational
axioms of fluent calculus are:5

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3) z1 ◦ z2 = z2 ◦ z1
¬Holds(f, ∅) Holds(f, g) ⊃ f = g
Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨Holds(f, z2)
(∀f) (Holds(f, z1) ≡ Holds(f, z2)) ⊃ z1 = z2
(∀P)(∃z)(∀f) (Holds(f, z) ≡ P (f))

The very last axiom, with P being a second-order predicate variable of sort
fluent, stipulates the existence of a state for any set of fluents.

Actions and situations. The sorts action and sit (for situations) are inher-
ited from situation calculus along with the standard functions S0 : sit (denoting

4 For the sake of readability, we use the standard Prolog list syntax where [a1, . . . , an]
is [a1| . . . [an| []]] .

5 Below, f, g are fluent variables while z1, z2, z3 are state variables. Free variables
are universally quantified.

the initial situation) and Do : action× sit 7→ sit (denoting the successor situ-
ation of performing an action). In addition, fluent calculus includes the special
function State : sit 7→ state to denote the state of the world in a situation.
With this, the basic predicate Holds(f, s) of situation calculus is modeled as a
mere macro in fluent calculus which stands for Holds(f,State(s)). For example,
the statement Holds(FacingDr , S0) means

(∃z)State(S0) = FacingDr ◦ z (6)

State update axioms. Fluent calculus provides a solution to the fundamental
frame problem in classical logic. The key is a purely axiomatic characterization
of removal and addition of fluents to states. Let z1, z2 be states and f a fluent,
then the expression z1− f = z2 (denoting removal of f from z1) is defined as an
abbreviation for the formula

[z2 = z1 ∨ z2 ◦ f = z1] ∧ ¬Holds(f, z2)

Let ϑ− = f1 ◦ . . . ◦ fn (n ≥ 0), then an inductive extension of this macro defines
z1 − (ϑ− ◦ f) = z2 as (∃z) (z1 − ϑ− = z ∧ z − f = z2). Finally, the definition
of the update equation z2 = z1 − ϑ− + ϑ+, where ϑ+ = g1 ◦ . . . ◦ gm (m ≥ 0), is
given by (∃z) (z1 − ϑ− = z ∧ z2 = z ◦ ϑ+). The frame problem is then solved
by state update axioms, which use update equations to specify the effects of an
action. For example, the following state update axiom specifies the (conditional)
effect of SendId for all situations s:6

¬Holds(DrOpn, s) ∧State(Do(SendId , s)) = State(s) +DrOpn
∨ Holds(DrOpn, s) ∧State(Do(SendId , s)) = State(s)−DrOpn

(7)

Representing knowledge. Basic fluent calculus has been extended in [12] by
the foundational predicate KState : sit × state to allow for both representing
state knowledge and reasoning about actions which involve sensing. An instance
KState(s, z) means that, according to the knowledge of the agent, z is a possible
state in situation s. For example, the initial knowledge of our robot can be
specified by this axiom:

(∀z) (KState(S0, z) ≡ Holds(FacingDr , z)) (8)

That is to say, all states which satisfy the initial specification are to be considered
possible by the robot. In particular, it is unknown whether or not the door in
question is open. Generally, a fluent is known to hold in a situation (not to hold,
respectively) just in case it is true (false, respectively) in all possible states:

Knows(f, s)
def

= (∀z) (KState(s, z) ⊃ Holds(f, z))

Knows(¬f, s)
def

= (∀z) (KState(s, z) ⊃ ¬Holds(f, z))

Unknown(f, s)
def

= ¬Knows(f, s) ∧ ¬Knows(¬f, s)
6 For the sake of simplicity, we ignore the concept of action preconditions in this paper,
since actions in Ak are always executable. Empty positive and negative effects of
actions in update equations are simply omitted.

The frame problem for knowledge is solved by axioms that determine the
relation between the possible states before and after an action, be it sensing or
not. An example of such a knowledge update axiom is

KState(Do(Look, s), z) ≡
(KState(s, z) ∧
[Holds(FacingDr , s) ⊃ (Holds(DrOpn, z) ≡ Holds(DrOpn, s))] ∧
[Unknown(DrOpn, s) ⊃ (Holds(FacingDr , z) ≡ Holds(FacingDr , s))])

(9)

Put in words, if the robot faces the door, then all possible states in the resulting
situation agree with the actual situation on whether DrOpn holds. Moreover,
if it is unknown whether the door is open, then a side-effect of the sensing
action is that the robot learns the condition of the conditional effect, that is,
whether or not FacingDr holds. A pure sensing action, Look strictly reduces
the set of possible states according to axiom (9). In general, however, knowledge
update axioms may define arbitrary changes in the set of possible states, so
that knowledge may also get lost after performing the action, e.g., in case of
non-deterministic actions.

4 From Ak Domains to Fluent Calculus

In this section, we present a translation function which maps an Ak domain
description D into a set of fluent calculus axioms Π(D). To begin with, the
fluents {f1, . . . , fn} and actions {a1, . . . , am} in D determine the unique-name
axioms Πuna(D) = {

∧

i6=j fi 6= fj ,
∧

i6=j ai 6= aj}.

4.1 Translating the Value Propositions

The axioms for the initial state and the initial knowledge state, respectively, are
determined by the value propositions: Let

{

initially f1, . . . , initially fn,
initially ¬g1, . . . , initially ¬gm

}

be the set of all the value propositions of D, then the set Πinit(D) contains these
two axioms:

(∃z) (State(S0) = f1 ◦ . . . ◦ fn ◦ z ∧
¬Holds(g1, z) ∧ . . . ∧ ¬Holds(gm, z))

KState(S0, z) ≡ Holds(f1, z) ∧ . . . ∧Holds(fn, z)
∧¬Holds(g1, z) ∧ . . . ∧ ¬Holds(gm, z)

Example (continued) The domain description D1 contains only one value
proposition, which determines the set Πinit(D1) as the fluent calculus axioms (6)
and (8) mentioned earlier.

4.2 Translating the Effect Propositions

The translation handles each action a of an Ak domain description separately.
Since sensing actions are not allowed to occur in any effect proposition, effect
propositions are translated independently from the knowledge laws. As the first
step for translating the effect propositions, we define a set which summarizes the
effects of a non-sensing action of an Ak domain description:

Definition 8 Let D be an Ak domain description. Let
{

a causes `1 if ϕ1, . . . , a causes `m if ϕm,
a may affect f1 if φ1, . . . , a may affect fn if φn

}

be the set of all effect propositions for the action a in D, where each `i is a
fluent literal, each fj is a fluent, each ϕi and φj is a sequence of fluent literals
(1 ≤ i ≤ m, 1 ≤ j ≤ n). The effect bag of action a (denoted by Ba) is the set

Ba = {(`1, S1, dt), . . . , (`n, Sm, dt),
(f1, Sm+1, nd), . . . , (fm, Sn+m, nd)},

where Si = {p1, . . . , pk} for each sequence of fluent literals ϕi, and φj of the
form p1, . . . , pk. The tags ‘dt’ and ‘nd’ signify the deterministic effect and the
non-deterministic effect, respectively.

The next step is to consider all combinations of preconditions of a. Given
the effect bag Ba = {(`1, S1, dt), . . . , (`n, Sn, nd)}, let Θa be all fluent literals
that occur in some precondition Si (1 ≤ i ≤ n). Let Pa = {P1, . . . , Pn} be the
power-set of Θa, and for each Pi let Θa \Pi = {fi,1, . . . , fi,k}. Then the condition
set of an action a of an Ak domain description is the set Ca = {C1, . . . , Cn},
where for each i = 1 . . . n

Ci = Pi ∪ {¬fi,1, . . . ,¬fi,k}

The condition set Ca contains all the combinations of fluent literals under which
the execution of the action a has an effect. Then, for each element Ci of Ca,
the sets Fdt

i and Fnd
i shall contain the fluents that are affected or that may be

affected, respectively, by the execution of action a under the condition Ci:

Fdt
i = {fk | (fk, Sk, dt) ∈ Ba, Sk ⊆ Ci}
Fnd
i = {fk | (fk, Sk, nd) ∈ Ba, Sk ⊆ Ci}

The set of fluent literals that represents the deterministic effects of the action
a under the condition Ci, viz. F

dt
i , can be partitioned into two sets of positive

and negative effects. That is, if Fdt
i = {f1, . . . , fn,¬g1, . . . ,¬gm}, then

F+
i = {f1, . . . , fn} and F−i = {g1, . . . , gm}

Definition 9 A pre-update Λa for an action a of an Ak domain description D
is the set

Λa = {(C1,F
+
1 ,F

−
1 ,F

nd
1), . . . , (Cn,F

+
n ,F

−
n ,F

nd
n)}

A pre-update Λa of an action a contains all effects of the action a under the
different conditions. However, the non-deterministic effects of actions have been
treated separately so far. In the next step, we introduce the recursive function µ
that allows branching for a non-deterministic effect of an action. That is, given
that a fluent f is a non-deterministic effect of an action a under precondition Ci,
if f does not occur in the positive effects F+

n nor in the negative effects F−n , then
there will be two possible effects for this action under precondition Ci: One in
which f becomes a positive effect and one in which f becomes a negative effect.

Definition 10 Let µ(Ci,F
+
i ,F

−
i ,F

nd
i) be defined as

{(Ci,F
+
i ,F

−
i)}

if Fnd
i = ∅

µ((Ci,F
+
i ,F

−
i ,F

nd
i \ {f}))

if f ∈ Fnd
i , and either f ∈ F+

i or f ∈ F−i)
µ((Ci,F

+
i ∪ {f},F

−
i ,F

nd
i \ {f}))

∪µ((Ci,F
+
i ,F

−
i ∪ {f},F

nd
i \ {f}))

if f ∈ Fnd
i , f /∈ F+

i , and f /∈ F−i

Then, given a pre-update Λa = {γ1, . . . , γn}, an update for an action a is the
set Ωa =

⋃n
i=1 µ(γi).

An update Ωa of a non-sensing action a of an Ak domain description contains
all the information to construct the fluent calculus state update and knowledge
update axioms for this action. Before, we proceed with constructing these axioms
from an update Ωa, below we illustrate the translation up to this point on the
domain description D1.

Example (continued) The effect bag BSendId is

{(DrOpn, {¬DrOpn}, dt), (¬DrOpn, {DrOpn}, dt)}

Then ΘSendId = {DrOpn}, which is the set of all the fluents that appear in
the conditions of the effect propositions for action SendId; hence, PSendId =
{{}, {DrOpn}}. From this we obtain the condition set

CSendId = {{¬DrOpn}, {DrOpn}}

After getting the pre-update

ΛSendId = {({¬DrOpn}, {DrOpn}, {}, {}), ({DrOpn}, {}, {DrOpn}, {})}

according to Definition 9, plugging all the elements of it into function µ, and
taking their union, we obtain the update ΩSendId according to Definition 10:

ΩSendId = {({¬DrOpn}, {DrOpn}, {}),
({DrOpn}, {}, {DrOpn})}.

(10)

From Ωa to State and Knowledge Update Axioms In Ak it is not possible
to differentiate between the actual effects of actions and what an agent knows
of the effects of an action. Hence, in our translation state update axioms and
knowledge update axioms coincide as far as non-sensing actions are concerned.

Let Ωa be the update of a non-sensing action a of an Ak domain descrip-
tion D. The translation algorithm generates the state update axiom and the
knowledge update axiom of action a from the update Ωa as follows.

Let Ωa = {(C1,F
+
1 ,F

−
1), . . . , (Cn,F

+
n ,F

−
n)}, where for each i = 1 . . . n,

Ci = {pi,1, . . . , pi,mi
}

F+
i = {fi,1, . . . , fi,ki

}
F−i = {gi,1, . . . , gi,li}

These are the resulting state and knowledge update axioms for action a in
Πupdate(D):

HOLDS(p1,1 ∧ . . . ∧ p1,m1
, s) ∧

State(Do(a, s)) = (State(s)− g1,1 ◦ . . . ◦ g1,l1)
+f1,1 ◦ . . . ◦ f1,k1

∨ . . . ∨
HOLDS(pn,1 ∧ . . . ∧ pn,mn

, s) ∧
State(Do(a, s)) = (State(s)− gn,1 ◦ . . . ◦ gn,ln)

+fn,1 ◦ . . . ◦ fn,kn

KState(Do(a, s), z) ≡ (∃z′)(KState(s, z′) ∧
[HOLDS(p1,1 ∧ . . . ∧ p1,m1

, z′) ∧
z = (z′ − g1,1 ◦ . . . ◦ g1,l1) + f1,1 ◦ . . . ◦ f1,k1

∨ . . . ∨
Holds(pn,1 ∧ . . . ∧ pn,mn

, z′) ∧
z = (z′ − gn,1 ◦ . . . ◦ gn,ln) + fn,1 ◦ . . . ◦ fn,kn

]))

where HOLDS(ϕ, s) and HOLDS(ϕ, z), respectively, is obtained from ϕ by
substituting each occurrence of a fluent f by Holds(f, s) and Holds(f, z), re-
spectively.

Example (continued) Given the update ΩSendId of equation (10), as the state
update axiom for SendId we obtain formula (7) mentioned earlier, while the
knowledge update axiom is

KState(Do(SendId, s), z) ≡ (∃z′)(KState(s, z′)∧
[¬Holds(DrOpn, z′) ∧ z = z′ +DrOpn ∨
Holds(DrOpn, z′) ∧ z = z′ −DrOpn])

4.3 Translating the Knowledge Laws

We begin the translation of the knowledge laws by defining a set which contains
all the effects of a sensing action.

Definition 11 Let D be an Ak domain description. Let

a causes to knowf1 if P1,1

...
a causes to knowf1 if P1,n1

...
a causes to know fm if Pm,1

...
a causes to know fm if Pm,nm

be the set of all the knowledge laws for the sensing action a in D, where each fi
is a fluent, and each Pi,j is sequence of fluent literals (1 ≤ i ≤ m; 1 ≤ j ≤ ni).
The knowledge bag of sensing action a (denoted by Ka) is the set

Ka = {(f1, ϕ1), . . . , (fm, ϕm)} (11)

where for each i = 1 . . .m, ϕi = Ci,1 ∨ . . .∨Ci,ni
such that for each j = 1 . . . ni,

Ci,j is the conjunction of the fluent literals that appear in Pi,j.

From Ka to Update Axioms Since sensing does not affect the world state,
the state update axiom of a sensing action a is independent of the knowledge
bag of this action:

(∀s)State(Do(a, s)) = State(s)

The knowledge update axiom for sensing action a is determined by knowledge
bag Ka = {(f1, ϕ1), . . . , (fm, ϕm)} as follows:

(∀s)(∀z)(KState(Do(a, s), z) ≡
(KState(s, z)∧

[HOLDS(ϕ1, s) ⊃ (Holds(f1, z) ≡ Holds(f1, s))]∧
[Unknown(f1, s) ⊃

(HOLDS(ϕ1, z) ≡ HOLDS(ϕ1, s))]
∧ . . . ∧
[HOLDS(ϕm, s) ⊃ (Holds(fm, z) ≡ Holds(fm, s))]∧
[Unknown(fm, s) ⊃

(HOLDS(ϕm, z) ≡ HOLDS(ϕm, s))]))

A side-effect of sensing in Ak is that the conditions of a sensing action become
known to the agent, if the potential sensing effect of this action is previously
unknown. To reflect this, we have defined the knowledge update axiom in such
a way that a sensing action’s precondition ϕ of a potential sensing effect f will
be known in the successor situation if f is previously unknown.

Example (continued) The knowledge bag of the sensing action Look of D1

is KLook = { (DrOpn, FacingDr)}. Then as the state and knowledge update
axiom for Look we obtain, respectively, (∀s)State(Do(Look, s)) = State(s) and
axiom (9) mentioned earlier.

5 Query Translation

The query translation function ΠQ translates an Ak query into a fluent calculus
formula. The translation uses the recursive function τ that maps any Ak plan
into a formula in fluent calculus.

Definition 12 Let α, α1, α2 be Ak plans, a be an action, and ` be a fluent
literal. The plan translation function τ is a function such that for any fluent
calculus situation constant Si, where SFinal denotes the final situation reached
after executing the plan,7

τ([], Si)
def

= [Si = SFinal]

τ([a|α], Si)
def

= [Si+1 = Do(a, Si)] ∧ τ(α, Si+1)

τ([if ` then α1|α], Si)
def

=

[(Knows(`, Si) ⊃ τ(α1;α, Si)) ∧
(Knows(¬`, Si) ⊃ τ(α, Si))]

τ([if ` then α1 else α2|α], Si)
def

=

[(Knows(`, Si) ⊃ τ(α1;α, Si)) ∧
(Knows(¬`, Si) ⊃ τ(α2;α, Si))]

Given an Ak query of the form ‘` after α’,

ΠQ(` after α)
def

= τ(α, S0) ⊃ Knows(`, SFinal)

Example (continued) Query (5) is translated as follows:

τ([Look, if . . .], S0)

≡ S1 = Do(Look, S0) ∧
τ([if ¬DrOpn then [SendId]], S1)

≡ S1 = Do(Look, S0) ∧
[Knows(¬DrOpn, S1) ⊃ τ([SendId], S1)] ∧
[Knows(¬¬DrOpn, S1) ⊃ τ([], S1)]

≡ S1 = Do(Look, S0) ∧
[Knows(¬DrOpn, S1) ⊃ S2 = Do(SendId, S1) ∧

S2 = SFinal]
∧ [Knows(DrOpn, S1) ⊃ S1 = SFinal]

Let ∆ be the resulting formula, then the translated query is

∆ ⊃ Knows(DrOpn, SFinal)

7 Below, α1;α2 is a macro denoting the concatenation of two plans α1 and α2.

which can be shown to be a logical consequence of the fluent calculus axiomati-
zation Π(D1) for our running example domain.

The following main result of our work says that fluent calculus is sound and
complete wrt. the semantics of Ak.

Theorem 1 Given a consistent Ak domain description D, a plan α, and a
fluent literal `. Then

D |=Ak
` after α iff Π(D) |= ΠQ(` after α)

Proof (sketch) The 0-models coincide with the models for the translated up-
date axioms for non-sensing actions, and the epistemic state resulting from per-
forming a single sensing action coincides with the models for the successor knowl-
edge state determined by the translated knowledge update axioms. By induction,
this equivalence can be generalized to sequences of actions and complex plans.

Space restrictions do not permit us to give the complete proof of this theorem;
we refer to [5].

6 Query Answering in Ak using FLUX

The programming language FLUX is a recent implementation of fluent calcu-
lus based on Constraint Logic Programming [13]. Its distinguishing feature is
to support incomplete states, whereby negative and disjunctive information is
encoded by constraints. The kernel of FLUX, which includes a declarative con-
straint solver, has been formally verified against the foundational axioms of fluent
calculus [14]. We have extended this kernel by an implementation of our trans-
lation function, mapping an Ak domain descriptions into a FLUX program and
an Ak query into a FLUX query. As a result, FLUX provides a query answering
mechanism for the Action Description Language Ak. A complementary use of
the translation function can be to employ Ak as a high-level surface language
for specifying action domains in FLUX when this system is used as a high-level
programming method for cognitive agents that reason about their actions and
plan [13].

Both the translation function as well as the FLUX kernel along with some
examples are available at www.cl.inf.tu-dresden.de/̃ ozan/ papers.html .

7 Discussion

In being correct with respect to full Ak except for queries including loops, fluent
calculus, as well as FLUX, is more expressive than most existing systems for
reasoning about actions and planning with sensing actions, such as [4, 1, 8, 3].
These approaches use restricted notions of incomplete states, which do not allow
for handling any kind of disjunctive information or reasoning about cases as
required, for example, if an action is described in Ak to have conditional effects
depending on whether some unknown fluent is true or false, but where a query

can be proved under both conditional effects [1]. A general solution to the frame
problem for knowledge is realized in the systems [6, 10], both of which are based
on GOLOG [7]. However, an important restriction of these systems compared to
the underlying situation calculus, is that they do not provide ways of actually
deriving whether something is known after a sequence of actions.

Future work will include to extend our translation to cover loops in Ak

queries. While a loop can be easily formalized by a second-order closure ax-
iom in fluent calculus, it remains an open question how the effect of a loop can
be actually inferred in a logic programming system like FLUX.8

References

1. C. Baral and T. Son. Approximate reasoning about actions in presence of sensing
and incomplete information. In J. Maluszynski, ed., Proc. of ILPS, 387–401, 1997.
MIT Press.

2. M. Gelfond and V. Lifschitz. Representing action and change by logic programs.
J. of Log. Prog., 17:301–321, 1993.

3. Giuseppe De Giacomo, Luca Iocchi, Daniele Nardi, and Riccardo Rosati. Planning
with sensing for a mobile robot. In Proc. of ECP, vol. 1348 of LNAI, 158–170.
Springer 1997.

4. K. Golden and D. Weld. Representing sensing actions: The middle ground revis-
ited. In L. C. Aiello, J. Doyle, and S. Shapiro, ed.s, Proc. of KR, 174–185, 1996.

5. O. Kahramanoğulları. A translation from the action description languageAk to the
fluent calculus. Master’s thesis, Department of Computer Science, Dresden Univer-
sity of Technology, 2002. URL: www.cl.inf.tu-dresden.de/̃ozan/papers.html.

6. G. Lakemeyer. On sensing and off-line interpreting GOLOG. In H. Levesque and
F. Pirri, ed.s, Logical Foundations for Cognitive Agents, 173–189. Springer, 1999.

7. H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic
programming language for dynamic domains. J. of Log. Prog., 31(1–3):59–83, 1997.

8. J. Lobo. COPLAS: A conditional planner with sensing actions. In Cognitive

Robotics, vol. FS–98–02 of AAAI Fall Symposia, 109–116. AAAI Press 1998.
9. J. Lobo, G. Mendez, and S. Taylor. Knowledge and the action description language

A. Theory and Practise of Log. Prog., 1(2):129–184, 2001.
10. R. Reiter. On knowledge-based programming with sensing in the situation calculus.

ACM Transactions on Computational Logic, 2(4):433–457, 2001.
11. E. Sandewall. Features and Fluents. The Representation of Knowledge about Dy-

namical Systems. Oxford University Press, 1994.
12. M. Thielscher. Representing the knowledge of a robot. In A. Cohn, F. Giunchiglia,

and B. Selman, ed.s, Proc. of KR, 109–120, 2000. Morgan Kaufmann.
13. M. Thielscher. Programming of reasoning and planning agents with FLUX. In

D. Fensel, D. McGuinness, and M.-A. Williams, ed.s, Proc. of KR, 435–446, 2002.
Morgan Kaufmann.

14. M. Thielscher. Reasoning about actions with CHRs and finite domain constraints.
In P. Stuckey, ed., Proc. of ICLP, vol. 2401 of LNCS, 70–84, 2002. Springer.

8 The concept of loops in GOLOG is too restricted to this end, because GOLOG
supports nondeterministic choice of actions but not the specification of actions that
have nondeterministic effects, as in Ak.

