
Addressing the Qualification Problem in FLUX

Yves Martin and Michael Thielscher

Dresden University of Technology

Abstract. The Qualification Problem arises for planning agents in real-
world environments, where unexpected circumstances may at any time
prevent the successful performance of an action. We present a logic pro-
gramming method to cope with the Qualification Problem in the action
programming language Flux, which builds on the Fluent Calculus as a
solution to the fundamental Frame Problem. Our system allows to plan
under the default assumption that actions succeed as they normally do,
and to reason about these assumptions in order to recover from unex-
pected action failures.

1 Introduction

Intelligent agents in open environments inevitably face the Qualification Prob-
lem: The executability of an action can never be predicted with absolute cer-
tainty; at any time, actions in the real-world may surprisingly fail [13]. Yet it
would be irrational, and even impossible in general, for a planning agent to fore-
see all conceivable reasons for an action to go wrong. Rather, a rational agent
needs to devise plans under the assumption that the world will behave as ex-
pected. On the other hand, being aware of these assumptions helps an agent to
explain and recover from unexpected failures encountered during the execution
of a plan.
For a long time, the main theoretical result on the Qualification Problem

had been a negative one: While a solution must involve the ability to assume
away, by default, so-called abnormal qualifications of actions [14], straightfor-
ward minimization of abnormality yields anomalous models [9]. This problem
being unsolved, previously developed action programming languages and plan-
ning systems, such as [8, 16, 12, 2], did not attempt to address the Qualification
Problem. The problem of anomalous models has, however, recently been solved
in a formal account of the Qualification Problem presented in [21]. This the-
ory builds on the Fluent Calculus as a predicate logic formalism for reasoning
about actions which is one of the standard solutions to the fundamental Frame
Problem [18].
In this paper, we integrate the theoretical account of the Qualification Prob-

lem into the action programming language Flux (the Fluent Calculus Executor)
[20]. Based on constraint logic programming, Flux allows to specify and reason
about actions with incomplete states, and thus to solve planning problems under
incomplete information. Its core consists of a logic programming account of the
Fluent Calculus solutions to the Frame and Ramification Problem [19, 17]. Ex-
tending Flux so as to cope with the Qualification Problem, our system allows

the user to specify default assumptions concerning the executability and effects
of actions. Plans are then generated under these assumptions, and the system is
able to reason about the assumptions made and to withdraw appropriate ones in
order to explain and recover from unexpected action failures. The language al-
lows to distinguish between strong qualifications (actions not being executable)
and weak ones (actions producing unexpected effects). Furthermore, it supports
the specification of preferences among the default assumptions, by which is aided
the search for reasonable explanations in case of unexpected action failure.
The paper is organized as follows. In Section 2, we recapitulate the theoretical

account of the Qualification Problem in the Fluent Calculus. In Section 3, we
show how to extend Flux to cope with the Qualification Problem. For a more
detailed discussion of this section the reader is referred to [11]. In Section 4 an
application is described and Section 5 gives a summary.

2 The Qualification Problem in the Fluent Calculus

2.1 Simple state update axioms

The simple Fluent Calculus [19] combines, in pure classical logic, the Situation
Calculus with a STRIPS-like solution to the representational and inferential
Frame Problem. The standard sorts action and sit (i.e., situations) are inher-
ited from the Situation Calculus [7] along with the standard functions S0 : sit

and Do : action × sit 7→ sit denoting, resp., the initial situation and the
successor situation after performing an action; furthermore, the standard pred-
icate Poss : action× sit denotes whether an action is possible in a situation.
To this the Fluent Calculus adds the sort state with sub-sort fluent along
with the pre-defined functions ∅ : state, ◦ : state × state 7→ state, and
State : sit 7→ state, denoting, resp., the empty state, the union of two states,
and the state of the world in a situation. Based on this signature, the Fluent
Calculus provides a rigorously logical account of the concept of a state being
characterized by the set of fluents that are true in the state. To this end, the
following foundational axioms stipulate that function ◦ behaves like set union
with ∅ as the empty set:1

z1 ◦ (z2 ◦ z3) = (z1 ◦ z2) ◦ z3 ¬Holds(f, ∅)

z1 ◦ z2 = z2 ◦ z1 Holds(f1, f) ⊃ f = f1

z ◦ z = z Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨ Holds(f, z2)

z ◦ ∅ = z (∀f) (Holds(f, z1)≡Holds(f, z2)) ⊃ z1 = z2

(∀Φ)(∃z)(∀f) (Holds(f, z)≡Φ(f))

where Φ is a second-order predicate variable of sort fluent and the macro
Holds means that a fluent is part of a state:

Holds(f, z)
def
= (∃z′) z = f ◦ z′ (1)

1 Free variables in formulas are assumed universally quantified. Variables of sorts
action, sit, fluent, and state shall be denoted by the letters a, s, f , and
z , resp. The function ◦ is written in infix notation.

The very last one of the axioms above stipulates the existence of a state for all
possible combinations of fluents. A second macro, which reduces to (1), is used
for fluents holding in situations:

Holds(f, s)
def
= Holds(f,State(s))

As an example, consider a blocks world axiomatization using the fluent

functions On(x, y), GluedToTable(x), and Has(r, x) denoting, resp., whether
block x is on y (which could either be another block or the constant Table),
whether block x is glued to the table, and whether robot r is in possession
of x. Suppose, that in the initial state it is known that blocks A and C are on
the table and B is on C ; that no block y is on top of block A or B ; and that
robot Robbie is in possession of glue:

Holds(On(A,Table), S0) ∧Holds(On(C,Table), S0) ∧Holds(On(B,C), S0)
∧ (∀y) (¬Holds(On(y,A), S0) ∧ ¬Holds(On(y,B), S0))
∧ Holds(Has(Robbie,Glue), S0)

(2)

Assuming uniqueness of names for all functions with range fluent, the macro
definitions and the foundational axioms imply that (2) is equivalent to,

(∃z) (State(S0) =On(A,Table) ◦On(C,Table)
◦On(B,C) ◦Has(Robbie,Glue) ◦ z

∧ (∀y) (¬Holds(On(y,A), z) ∧ ¬Holds(On(y,B), z))
∧ ¬Holds(On(A,Table), z) ∧ ¬Holds(On(C,Table), z)
∧ ¬Holds(On(B,C), z) ∧ ¬Holds(Has(Robbie,Glue), z))

(3)

The reader may notice that the constraints on sub-state z not only reflect the
negated statements in (2) but also the fact that the fluents On(A,Table) etc.
do not recur. This will allow to quickly infer the result of removing any of these
fluents from State(S0) as a negative effect.
The Frame Problem is solved in the Fluent Calculus using so-called state

update axioms, which specify the difference between the states before and after
an action. The axiomatic characterization of negative effects, i.e., facts that
become false, is given by this inductive abbreviation, which generalizes STRIPS-
style update [3] to incomplete states:

z′ = z − f
def
= [z′ ◦ f = z ∨ z′ = z] ∧ ¬Holds(f, z′)

z′ = z − (f1 ◦ . . . ◦ fn ◦ fn+1)
def
=

(∃z′′) (z′′ = z − (f1 ◦ . . . ◦ fn) ∧ z′ = z′′ − fn+1)

On this basis, the following is the general form of a state update axiom for a
(possibly nondeterministic) action A(~x) with a bounded number of (possibly
conditional) effects:

Poss(A(~x), s) ⊃ (∃~y1) (∆1 ∧ State(Do(A(~x), s)) = (State(s) ◦ ϑ+
1)− ϑ−1)

∨ . . . ∨
(∃~yn) (∆n ∧ State(Do(A(~x), s)) = (State(s) ◦ ϑ+

n)− ϑ−n)
(4)

where the sub-formulas ∆i(~x, ~yi,State(s)) specify the conditions on State(s)
under which A(~x) has the positive and negative effects ϑ+

i and ϑ−i , resp. Both
ϑ+

i and ϑ−i are state terms composed of fluents with variables among ~x, ~yi .
2

Consider, e.g., the action terms Move(r, u, v, w) and GlueToTable(r, x),
denoting the action of robot r moving block u away from v onto w, and gluing
block x to the table, resp. The direct effects of these two actions can be defined
by these state update axioms:

Poss(Move(r, u, v, w), s)⊃
State(Do(Move(r, u, v, w), s)) = (State(s) ◦On(u,w))−On(u, v)

Poss(GlueToTable(r, x), s)⊃
State(Do(GlueToTable(r, x), s)) = State(s) ◦GluedToTable(x)

(5)

Put in words, after moving u it is on w and no longer on v, and after glu-
ing x this block is glued to the table. Recall specification (2), and suppose,
for the sake of argument, that Poss(Move(Robbie, A,Table, B), S0). Let S1 =
Do(Move(Robbie, A,Table, B), S0). Then the state update axiom for Move in (5)
implies

State(S1) = (State(S0) ◦On(A,B))−On(A,Table)

Replacing State(S0) by an equal term according to (3) yields, after applying
the macro for negative effects and performing simplification,

(∃z)State(S1) = On(C,Table) ◦On(B,C) ◦ Has(Robbie,Glue) ◦ z ◦On(A,B)

We have now obtained from an incomplete initial specification a still partial
description of the successor state, which in particular includes the unaffected
fluents On(C,Table), On(B,C), and Has(Robbie,Glue). These fluents have
thus survived the computation of the effect of the action and so need not be
carried over by separate axioms now. Moreover, knowledge specified in (3) as
to which fluents do not hold in z applies to the new state, which includes z,
just as well. Thus, all unchanged fluent values have been concluded to persist
without applying extra inference steps.

2.2 State Update Axioms with Ramifications

In the Fluent Calculus for ramifications, indirect effects are inferred by the suc-
cessive application of so-called causal relationships, which state under what con-
ditions an effect triggers another one [17]. A causal relationship is formally spec-
ified with the help of the expression Causes(ε, %, z, s) where ε (the triggering
effect) and % (the ramification, i.e., indirect effect) are possibly negated atomic
fluent formulas and z is a state and s a situation. The intuitive meaning is
that the change to ε causes the change to % in state z and situation s.
For example, let Ab(Movable(x),Glued) be a new fluent , denoting an

abnormality wrt. block x being movable due to the fact that x is glued to the

2 If the conditions ∆i are not mutually exclusive, then the action is nondeterministic.

table.3 The following state constraint relates this fluent in the obvious way to
the fluent GluedToTable(x):

Holds(Ab(Movable(x),Glued), s)≡Holds(GluedToTable(x), s) (6)

Two accompanying causal relationships specify the causal dependence that a
block x will become immovable if it gets glued to the table, and that this ab-
normal qualification will disappear if the block gets freed somehow:

Causes(GluedToTable(x),Ab(Movable(x),Glued), z, s)
Causes(¬GluedToTable(x),¬Ab(Movable(x),Glued), z, s)

(7)

On the basis of causal relationships, the Ramification Problem is solved by
causally propagating indirect effects: Starting from the direct effects of an action,
causal relationships are applied successively. The overall result of performing
the action is then a fixpoint of such a chain of indirect effects. Formally, in
state update axioms for ramifications the simple equations State(Do(A(~x), s)) =
(State(s) ◦ ϑ+

i)− ϑ−i as in (4) are replaced by sub-formulas of this form:

z = (State(s) ◦ ϑ+
i)− ϑ−i ⊃ Ramify(z, ϑ+

i , ϑ−i ,Do(A(~x), s))

where Ramify(z, e+, e−, s) means that State(s) is a fixpoint of iteratively ap-
plying causal relationships to state z and effects e+, e− in situation s. (We
refer to [21] for the formal definition of Ramify by a second-order axiom.)

2.3 Qualifications in the Fluent Calculus

The theoretical account of the Qualification Problem uses the binary function
Ab(x, y) whose range is the sort fluent. The first argument, x, denotes proper-
ties like Movable(u) or Functioning(Gripper-of (r)). The second argument, y,
indicates the cause for the abnormality. For convenience, we use the macros
Ab(x, z) and Ab(x, s) to represent that for some y, Ab(x, y) holds in state z
and situation s, respectively:

Ab(x, z)
def
= (∃y)Holds(Ab(x, y), z) Ab(x, s)

def
= Ab(x,State(s))

Instances of the generic ‘abnormality’ fluent are used to summarize the abnormal
qualifications of actions, that is, obstacles which are a priori unlikely to happen
and therefore need to be assumed away by default in order to jump to the
conclusion that the action is possible under normal circumstances. E.g., in the
light of abnormal qualifications, the preconditions for our example actions are
specified by,

Poss(Move(r, u, v, w), s)≡
u 6= w ∧ v 6= w ∧Holds(On(u, v), s)
∧ (∀y) (¬Holds(On(y, u), s) ∧ ¬Holds(On(y, w), s))
∧¬Ab(Movable(u), s) ∧ ¬Ab(Functioning(Gripper-of (r)), s)

(8)

3 The special fluent Ab will play a key role in our account for the Qualification
Problem later in this paper.

Poss(GlueToTable(r, x), s)≡
Holds(Has(r,Glue), s)∧Holds(On(x,Table), s)∧(∀y)¬Holds(On(y, x), s)
∧¬Ab(Movable(x), s) ∧ ¬Ab(Functioning(Gripper-of (r)), s)

(9)

As illustrated in the previous section, abnormal qualifications that have been
caused by the agent himself are accounted for by suitable causal relationships,
which is how the general problem of anomalous models is overcome; see [21].
To account for abnormal qualifications other than those caused by the agent,
instances of Ab are allowed to become true during any situation transition as
a side effect of the mere fact that the very transition takes place. So doing re-
quires additional causal relationships, which, as opposed to those shown in (7),
describe exogenously caused abnormalities. These are modeled using the predi-
cates ExogCaused(f, s) and ExogUncaused(f, s), indicating that in situation s
fluent f arises (resp. vanishes) due to an exogenous cause. The effect of exoge-
nous causes is specified by corresponding causal relationships.
Up to this point the treatment of qualifications did not affect the monotonic-

ity of the solution to the Frame and Ramification Problem. A nonmonotonic
component, however, is required to minimize abnormal qualifications whenever
they are not caused by an action that has been performed. This is achieved
by adding appropriate default rules in the sense of [15], by which the Fluent
Calculus gets embedded into a default theory. Formally, exogenous influence on
abnormalities is minimized by default rules of the following form:

: ¬ExogCaused(Ab(x,Exog), s)

¬ExogCaused(Ab(x,Exog), s)

: ¬ExogUncaused(Ab(x,Exog), s)

¬ExogUncaused(Ab(x,Exog), s)
(10)

An accompanying default assumption concerns abnormalities of any kind in the
initial situation. Their minimization is carried out by defaults of the following
form:

: ¬Holds(Ab(x, y), S0)

¬Holds(Ab(x, y), S0)
(11)

If, e.g., the observations suggest no abnormalities initially, then the under-
lying default theory has a unique extension (in the sense of [15]), which in-
cludes (∀x)¬Ab(x, S0). (Recall that ¬Ab(x, s) means ¬Holds(Ab(x, y), s) for
any y.) Hence, (8) implies that Move(Robbie, A,Table, B) is possible in S0

given initial state (2). If this action nonetheless fails, that is, if the observation
¬Poss(Move(Robbie, A,Table, B), S0) is added, then the default theory admits
different extensions. These are obtained by applying all defaults except for one
instance of (11) with either {x/Movable(A)} or {x/Functioning(Gripper-of (
Robbie))}. As will be shown in Section 3.5 below, this approach can also be used
to account for so-called weak qualifications, that is, unexpected effects of ac-
tions. Furthermore, by appealing to prioritized default logic [1], one can specify
qualitative knowledge of the relative likelihood of the various explanations for
abnormal qualifications (cf. Section 3.4 below). The accompanying concept of
preferred extensions helps selecting the most reasonable explanations in case of
unexpected action.

3 Addressing the Qualification Problem in FLUX

3.1 Basic FLUX

Our system is implemented in the Eclipse-Prolog system with constraints. It is
an extension of the programming language Fluent Calculus Executor (Flux),
a recent implementation of the Fluent Calculus based on Constraint Logic Pro-
gramming [20]. The distinguishing feature of Flux is to support incomplete
states, which are modeled by open lists of the form

Z0 = [F1,...,Fm | Z]

(encoding the state description Z0 = F1 ◦ . . . ◦ Fm ◦ Z), along with constraints

not_holds(F, Z)

not_holds_all([X1,...,Xk], F, Z)

encoding, resp., the negative statements (∃~y)¬Holds(F, Z) (where ~y are the
variables occurring in F) and (∃~y)(∀X1, . . . , Xk)¬Holds(F, Z) (where ~y are the
variables occurring in F except X1, . . . , Xk). These two constraints are used to
bypass the problem of “negation as failure” for incomplete states. In order to pro-
cess these constraints, so-called declarative Constraint Handling Rules [4] have
been defined and proved correct under the foundational axioms of the Fluent
Calculus. In addition, the core of Flux contains definitions for holds(F,Z) ,
by which is encoded macro (1), and update(Z1,ThetaP,ThetaN,Z2) , which
encodes the state equation Z2 = (Z1 ◦ ThetaP) − ThetaN . The following is an
encoding in Flux of the precondition (8) and state update axiom (5) with
ramifications of the action Move ,

poss(move(R, U, V, W), Z) :-

is_robot(R), is_block(U), is_block(V), is_block(W), U\=W, V\=W,

not_holds_all(Y, on(Y, U), Z), holds(on(U, V), Z),

not_holds_all(Y, on(Y, W), Z),

not_holds_all(Y, ab(mov(U), Y), Z),

not_holds_all(Y, ab(func(grip(R)), Y), Z).

state_update(Z1, move(R,U,V,W), Z2, S, H) :-

update(Z1, [on(U,W)], [on(U,V)], Z3),

ramify(Z3, [on(U,W)], [on(U,V)], Z2, S, H)).

where the variable H stands for the history list as defined below.

3.2 Overview

Our system implements the defaults of the underlying default theory without the
need of any special theorem prover. Rather, a modified version of the planning
algorithm together with the internal Eclipse-Prolog inference mechanisms is used
to construct the extensions of the underlying default theory, which entail the

possible explanations for unexpected action failures. This also means that if a
plan can be executed without any exceptions to the normal execution of actions
then no additional computations are needed. In this case, the implementation will
behave like any other system without an approach to the Qualification Problem.
In this work, we have used a search process with an associated level in or-

der to find the most likely explanations first. In terms of the underlying default
theory (with priorities among defaults) this means to search for the least pre-
ferred default that does not apply. The system also replaces previously consid-
ered explanations in case a default is no longer preferred in context of a formerly
established explanation. Of course, the replacement is only performed if it is
consistent with the executed action sequence.
In the following we sketch the course of the program and give references to

the next subsections:

1. Definition of the Task

1.1 Define the initial state. This operation includes the verification that
the state is consistent wrt. the state constraints.

1.2 Define the goal state.
2. The Planning Algorithm

2.1 Find a plan. State updates are computed with ramifications (cf. Section
2.2). An agent has no influence on exogenously caused abnormalities and
cannot yet have caused any abnormal qualification in the initial situation.
Therefore, all defaults on the absence of exogenous causes are assumed
to apply during the planning process. Iterative deepening is applied as
search strategy. Furthermore, the program uses some heuristics to cut
down the search space.

2.2 Double-check the computed plan. Planning with incomplete state
information requires to verify an established plan against both, not
achieving the goal and not being executable.

3. Plan Execution

3.1 Execute the computed plan step by step. The execution of each
action is monitored. If no action fails and all the actions achieve their
intended effects then the goal state will be reached and the program
terminates. Otherwise, the program proceeds with step 4.

4. Explanation of and Recovery from Action Failures

4.1 Search for an explanation for the unexpected observation. If
an action surprisingly fails or does not produce all the intended effects
then an abnormal qualification must have occurred. This means that
at least one default of the underlying default theory can no longer be
applied. For the intended applications of the program it is in most cases
sufficient to search for atomic explanations, i.e., where the application
of exactly one default is blocked during the construction of each of the
possible extensions. Furthermore, we assume that there is always at most
one explanation at each level. Using the built-in inference mechanisms
of the Eclipse-Prolog system, each extension of the underlying default
theory is considered where one instance of a default rule is blocked. If

the non-application of such a default rule entails the observation then an
explanation has been found and the search process stops (cf. Section 3.3).

4.2 Find the explanation with the highest priority first. Using a
search process with levels, the search will find only explanations with
a priority higher or equal to the current level of the search algorithm
(cf. Section 3.4). Only if there is no such very likely explanation that
accounts for the observation then the program searches with the next
lower level and thus considers less likely explanations.

4.3 Determine the current state and replan. The search process of the
program can deliver a strong or a weak qualification (cf. Section 3.5) as
an explanation. In both cases, this new information is integrated into
the current state, which becomes the initial state of the new planning
problem. Then the planning algorithm is used to find a new plan despite
the encountered abnormality. Hence, the program proceeds with step 2.

An important concept in the approach to the Qualification Problem in Flux is
the notion of a history list. Such a list contains all the abnormalities that have
occurred so far during the execution of the program. Each entry in the list has
three parts. The first part describes the abnormality predicate with the prop-
erty and the cause. In the second part the situation, in which the abnormality
occurred, is stated. The third part denotes the possible observation which lead
to the occurrence of the abnormality. In addition to these entries, the history
list contains the current level of the search process. The history list is modeled
by an open list with a tail variable.

3.3 Constructions of Extensions

In this section we show how extensions of the underlying default theory are
constructed for strong qualifications of actions. The inference process is similar
for weak qualifications.
Effects with an exogenous cause are implemented by causal relationships of

the following form:

causes(_, ab(mov(X), exog), Z, S, H) :- block(X),

X\= table, exogcaused(ab(mov(X), exog), S, H).

causes(_, -(ab(mov(X), exog)), Z, S, H) :- block(X),

X\=table, exoguncaused(-(ab(mov(X), exog)), S, H).

Please note that the indirect effects Ab(Movable(x),Exog) in these clauses are
not conditioned on any direct effect. Consequently, these positive or negative
indirect effects occur as a side effect of every transition whenever the predicates
ExogCaused(Ab(x,Exog), s, h) or ExogUncaused(Ab(x,Exog), s, h) hold, where
the variables s and h stand for the considered situation and history list, re-
spectively. Indirect effects wrt. the abnormality Ab(Functioning(Gripper-of (r)),
Exog) are similarly encoded.

Predicate ExogCaused and predicate ExogUncaused are specified in a sim-
ilar way in our program. For brevity we present only the important details of
the definition for ExogCaused .

exogcaused(AB, S, H) :- ...

top(H, H2),

length1(H2,0),

holds(h(AB, S), H)))).

The clause uses the auxiliary predicates Top(h1, h2) and Length1 (h, n) . The
predicate Top takes the present history list and yields the currently considered
abnormality predicate, if any. The predicate Length1 delivers the length of a list.
The definition of the clause ensures that exactly one abnormality is considered
as an explanation at any stage of the search process.
Extensions are constructed during state updates with ramifications. For each

action all possible extensions of the underlying default theory are tried until the
established extension accounts for the observation. This is achieved by block-
ing the application of each default one after the other. The ExogCaused or the
ExogUncaused predicate is assumed to hold and the specific default is blocked
by means of adding the corresponding abnormality as indirect effect to the cur-
rent state. The addition is performed by the clauses for causal relationships
together with the clauses for state update axioms with ramifications. The pred-
icates ExogCaused and ExogUncaused ensure that only one default is blocked
at a time, and the Eclipse-Prolog SLDNF-resolution with backtracking yields all
the extensions. The possible defaults for the initial situation are computed in the
same way. To this end, the special constant “ ε ” (read “no-op”) is introduced.
It denotes the empty action without any positive or negative direct effects. This
action is always possible and is only executed as the very first action.
As illustration, consider the initial state as specified in (2) together with the

following definitions for blocks and robots:

is_robot(robbie). is_block(table). is_block(a).

is_block(b). is_block(c).

The query Init(z0, h),Res(ε, z0, S0, z1, s1, h) , \+Poss(Move(Robbie, A,Table,
B), z1) admits two computed answer substitutions, where the predicate Init

denotes the initial state and the predicate Res denotes the execution of exactly
one action:

{z1/[Ab(Movable(A),Exog),On(A,Table),On(B,C),On(C,Table),
Has(Robbie,Glue) | z], h/[H(Ab(Movable(A),Exog), S0) |h1]}

{z1/[Ab(Functioning(Gripper-of (Robbie)),Exog),On(A,Table),On(B,C),
On(C,Table),Has(Robbie,Glue) | z],

h/[H(Ab(Functioning(Gripper-of (Robbie)),Exog), S0) |h1]}

These substitutions are computed by applying all defaults except for one instance
of (11) with {x/Movable(A)} for the first substitution and {x/Functioning(

Gripper-of (Robbie))} for the second one. This way, our program determines the
two extensions in this example as described at the end of Section 2.3.
Extensions are constructed using the inference mechanism of the Eclipse-

Prolog system, i.e., an implementation of the SLDNF-resolution. This resolution
scheme is sound. For the soundness proof it should be referred to Lloyd [10].
In our implementation extensions are constructed using the 9-ary predicate

RunDefault . We present a schematic version of its encoding:

rundefault([], Z, Z, S, S, SW, H1, H2, R) :-

\+ poss(R, Z), ...

rundefault([F|L], Z0, Z, S, SF, SW, H1, H2, R) :-

append([A], [E], F), !, ...

res(A, Z0, S, Z1, S1, H1), ...

current(S1, H1, HH), (HH=[]; HH=[h(_,_,o(M,_))], \+ poss(M, Z1)),

...

rundefault(L, Z2, Z, S1, SF, SW, H1, H2, R).

The predicate RunDefault has a recursive definition. The recursion is performed
on its first argument. This argument represents the executed sequence of actions
as a list. The last argument of RunDefault stores the current observation. It is
the action that failed unexpectedly for the reason of a strong abnormal qualifica-
tion. Thus, for the predicate to terminate successfully the computed explanation
must account for the observation after having performed the complete sequence
of actions. Of course, all other observations recorded in the history list must also
be taken into account during the search. To this end, the auxiliary predicate
Current(s, h1, h2) is used. It checks for the current situation of the search pro-
cess, whether an unexpected action failure has occurred in this situation during
the execution of the plan. If this is the case then the predicate Current delivers
the corresponding action. Otherwise, the empty list is returned.

3.4 Selection of the Preferred Extension

Extensions are constructed in accordance with the underlying set-prioritized
default logic, which is an extension of the prioritized default logic and can be
used to define preferences between defaults [1, 21]. The preference relations in
the program are defined with or without context-dependency. The first case
defines a set-preference ordering among defaults so that any two instances of
a default concerning the same object are compared to an instance of another
default concerning the object. If there is no context of a previous explanation
then the second case gives a definition of general preference between defaults.
As illustration, consider the implementation for the running example together
with the following preference relations:

level([12,11,10,9]).

preference(ab(mov(_), _), nc, 9).

preference(ab(func(grip(_)), _), nc, 10).

preference(ab(mov(_), _), ab(func(grip(_)), _), 11).

That is, without context the explanation Ab(Functioning(Gripper-of (x)), y) is
more likely than the explanation Ab(Movable(x), y) . In contrast, the explana-
tion Ab(Movable(x), y) is preferred over the assumption of two explanations of
the form Ab(Functioning(Gripper-of (x)), y) .
The preference relations are taken into account when using the predicates

ExogCaused and ExogUncaused . The following shows the part of the clause
without context information for the predicate ExogCaused :

exogcaused(AB, S, H) :- ...

preference(AB, nc, P),

member(l(D), H), !, P>=D,

top(H, H2), ...

The priority of the currently considered explanation is obtained. Afterwards,
the current level of the search is obtained from the history list. Further on, the
computed priority of the considered explanation is compared to this level. If the
priority is at least as high as the current level then the procedure continues as
described in Section 3.3.
The change to the next lower level in the search is encoded as:

..., level(LEVEL), member(LE, LEVEL), changed(LE, H, H3),

rundefault(L2, ZN, ZF, s0, SV, SW, H3, HF, W), ...

The auxiliary predicate ChangeD sets the current level in the history list. If the
predicate RunDefault fails then the Eclipse-Prolog system backtracks and the
predicate Member chooses the next lower level for the search process.
For example, consider the query Init(z0, h), Level(level), Member(le, level),

ChangeD(le, h, h1), Res(ε, z0, S0, z1, s1, h1), \+Poss(Move(Robbie, A,Table, B),
z1) , where the initial state is specified as in (2) and the preferences are de-
fined as above. All preferred extensions of the underlying default theory entail
Ab(Functioning(Gripper-of (Robbie)), S0) . In accordance with the preferred ex-
tension the query yields the computed answer substitution:

{z1/[Ab(Functioning(Gripper-of (Robbie)),Exog),On(A,Table),
On(B,C),On(C,Table),Has(Robbie,Glue) | z],

h/[le(10), H(Ab(Functioning(Gripper-of (Robbie)),Exog), S0) |h1]}

3.5 Weak Qualifications

Weak qualifications, that is, failure to produce expected effects, are denoted and
minimized in the same way as strong qualifications. Causal relationships and
preference relations for weak qualifications are implemented as illustrated by
the following clauses:

causes(_, ab(trans(X), exog), Z, S, H) :- block(X),

X\= table, exogcaused(ab(trans(X), exog), S, H).

preference(ab(trans(_), _), nc, 11).

The weak qualification Ab(Transportable(x), y) means that block x is slip-
pery and will slip out of the gripper when transported over long distances. The
construction of extension for default theories, which contain defaults with ab-
normality predicates regarding weak qualifications of actions, is performed in a
similar fashion as described in Section 3.3. The information given in Section 3.4
regarding the preferred extension also holds for weak qualifications.
Fluents denoting weak qualifications strengthen the antecedents of state up-

date axioms. This is in contrast to strong qualifications where abnormality pred-
icates occur in action precondition axioms. Thus, a suitable state update axiom
with a possible weak qualification for the action Move(r, u, v, w) is encoded as:

state_update(Z1, move(R,U,V,W), Z2, S, H) :-

(not_holds_all(Y, ab(trans(U), Y), Z1), !,

update(Z1, [on(U,W)], [on(U,V)], Z3),

ramify(Z3, [on(U,W)], [on(U,V)], Z2, S, H));

(holds(ab(trans(U), Y), Z1),

(V\=table,

update(Z1, [on(U,table)], [on(U,V)], Z3),

ramify(Z3, [on(U,table)], [on(U,V)], Z2, S, H);

V==table, ramify(Z1, [], [], Z2, S, H))).

For this state update axiom let us consider the query Init(z0, h),Res(ε, z0, S0,
z1, s1, h), Res(Move(Robbie, B,C,A), z1, s1, z2, s2, h),NotHolds(On(B,A), z2) ,
where the initial state is specified as in (2). This query yields the computed
answer substitution:

{z2/[On(B,Table),Ab(Transportable(B),Exog),On(A,Table),On(C,Table),
Has(Robbie,Glue) |z], h/[H(Ab(Transportable(B),Exog), S0) |h1]}

Thus, the program concluded that the weak qualification Ab(Transportable(B),
Exog) occurred, and that block B can be found somewhere on the table.

4 Experiments

Our program has been tested with a LEGO r© MINDSTORMTM robot in
a delivery scenario. The main component of such a robot is a programmable
brick. It is referred to as RCX (Robotic Command Explorer) and has as its core
a Hitachi H8 microcontroller. Our robot has a light sensor and a pushbutton
sensor and two motors attached to the input ports and output ports of the
RCX, respectively. An infrared port is used for the communication between the
computer and the RCX while a user program is running on the RCX. Such
programs only realize simple behaviours like following a line.
All high level control is performed by the Eclipse-Prolog system. This in-

cludes the planning process and the monitoring of the executions of actions by
means of exogenous events. In case of an unexpected action failure, the system
searches for explanations. The robot only executes primitive actions. Addition-
ally, it observes the occurrence of exogenous events and reports them to the

Eclipse-Prolog system. The communication between the system and the robot is
achieved through message exchange using a module from the Legolog system [6].
The robot is supposed to deliver objects from one office to another, where a

cardboard with bright markers as offices and black lines as tracks denotes the
floor plan. The robot has solved the task in our example scenario if there are
no more requests in the current state and the robot has returned to its initial
position. Two kinds of abnormalities with an appropriate preference relations
between them have been defined for this scenario.
For this example domain our program was able to find explanations for un-

expected action failures and to recover from them. In the scenario the system
concluded that the robot had missed a marker long before the observance of
an exception. In the search process all previously executed actions and related
observations were taken into consideration to generate the most likely explana-
tion first. With the established explanations the program was able to infer the
robot’s current position and to find a new plan to solve the task.

5 Summary

We have presented an extension of the action programming language Flux which
copes with the Qualification Problem. Our approach builds on the theoretical
work of [21], where the Fluent Calculus has been embedded into a default theory
to account for abnormal qualifications of actions. Our system allows to generate
plans under the assumption that actions succeed as they normally do, and to
reason about these assumptions in order to recover from unexpected action fail-
ures. Furthermore, it supports the specification of preferences among the default
assumptions, by which is aided the search for reasonable explanations in case of
unexpected action failure. While action programming languages have been ex-
tended by execution monitoring in the past, e.g., [5], our system is the first which
is based on a formal approach to the Qualification Problem. It thus provides a
declarative approach to troubleshooting. The crucial advantage of our approach
is that explaining unexpected action failures is carried out on the basis of the
same action specifications and reasoning techniques which are used for planning.

References

1. Gerhard Brewka. Adding priorities and specificity to default logic. In C. MacNish,
D. Pearce, and L. M. Pereira, editors, Proc. of the European Workshop on Logics
in AI (JELIA), volume 838 of LNAI, pages 247–260, York, UK, September 1994.
Springer.

2. Patrick Doherty, Joakim Gustafsson, Lars Karlsson, and Jonas Kvarnström. Tem-
poral action logics (TAL): Language specification and tutorial. Electronic Trans-
actions on Artificial Intelligence, 2(3–4):273–306, 1998. http://www.ep.liu.se/

ea/cis/1998/015/.
3. Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application

of theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

4. Thom Frühwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, 37(1–3):95–138, 1998.

5. Giuseppe De Giacomo, Ray Reiter, and Mikhail Soutchanski. Execution monitor-
ing of high-level robot programs. In Cohn, Schubert, and Shapiro, editors, Proc.
of the International Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 453–464, Trento, Italy, June 1998.

6. Hector Levesque and Maurice Pagnucco. Legolog: Inexpensive experiments in cog-
nitive robotics. In Cognitive Robotics Workshop at ECAI, pages 104–109, Berlin,
Germany, August 2000.

7. Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for a calculus of sit-
uations. Electronic Transactions on Artificial Intelligence, 3(1–2):159–178, 1998.
http://www.ep.liu.se/ea/cis/1998/018/.

8. Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard
B. Scherl. GOLOG: A logic programming language for dynamic domains. Journal
of Logic Programming, 31(1–3):59–83, 1997.

9. Vladimir Lifschitz. Formal theories of action (preliminary report). In J. McDer-
mott, editor, Proc. of IJCAI, pages 966–972, Milan, Italy, August 1987. Morgan
Kaufmann.

10. John W. Lloyd. Foundations of Logic Programming. Series Symbolic Computa-
tion. Springer, second, extended edition, 1987.

11. Yves Martin. Solving the Qualification Problem in FLUX. Master’s thesis, TU
Dresden, Germany, March 2001. http://www.cl.inf.tu-dresden.de/˜yves.

12. Norman McCain and Hudson Turner. Satisfiability planning with causal theories.
In A. G. Cohn, L. K. Schubert, and S. C. Shapiro, editors, Proc. of the Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR),
pages 212–223, Trento, Italy, June 1998. Morgan Kaufmann.

13. John McCarthy. Epistemological problems of artificial intelligence. In Proc. of
IJCAI, pages 1038–1044, Cambridge, MA, 1977. MIT Press.

14. John McCarthy. Applications of circumscription to formalizing common-sense
knowledge. Artificial Intelligence, 28:89–116, 1986.

15. Ray Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
16. Murray Shanahan. Event calculus planning revisited. In Proc. of the European

Conference on Planning (ECP), volume 1348 of LNAI, pages 390–402. Springer,
1997.

17. Michael Thielscher. Ramification and causality. Artificial Intelligence, 89(1–
2):317–364, 1997.

18. Michael Thielscher. Introduction to the Fluent Calculus. Electronic Transac-
tions on Artificial Intelligence, 2(3–4):179–192, 1998. http://www.ep.liu.se/ea/
cis/1998/014/.

19. Michael Thielscher. From Situation Calculus to Fluent Calculus: State update
axioms as a solution to the inferential frame problem. Artificial Intelligence, 111(1–
2):277–299, 1999.

20. Michael Thielscher. The fluent calculus: A specification language for robots with
sensors in nondeterministic, concurrent, and ramifying environments. Technical
Report CL-2000-01, Artificial Intelligence Institute, Department of Computer Sci-
ence, Dresden University of Technology, 2000.

21. Michael Thielscher. The qualification problem: A solution to the problem of
anomalous models. Artificial Intelligence, 2001.

