
Inferring Implicit State Knowledge

and Plans with Sensing Actions

Michael Thielscher

Dresden University of Technology

Abstract. An effective method is presented for deriving state knowledge
in the presence of sensing actions. It is shown how conditional plans
can be inferred with the help of a generalized concept of plan skeletons
as search heuristics, which allow the planner to introduce conditional
branching points by need.

1 Introduction

The problem of modeling sensing actions has gained much attention in the re-
cent past as an important step for the development of extensive foundations for
Cognitive Robotics. Several solutions to the technical Frame Problem have been
generalized to reasoning about the knowledge of a robot and the effect of sensing,
e.g., in the Situation Calculus [20] and the Fluent Calculus [23]. Based on general
first-order logic, these approaches are sufficiently expressive to allow for mod-
eling actions with knowledge preconditions, sensing of non-atomic properties,
and deriving implicit knowledge. Moreover, to solve planning problems involv-
ing knowledge goals, the notion of conditional plans has been integrated [11, 23]
since it may be necessary to plan ahead different action sequences for different
outcomes of sensing [14].

The expressiveness of general theories for conditional planning, on the other
hand, raises the challenge to evolve inference algorithms that efficiently deal
with the modality of knowledge. Most existing planning methods are tailored to
restricted classes of planning problems, e.g., [9, 7, 2, 16, 11]. In particular, none
of these systems can solve planning problems where knowledge follows implicitly :
A well-known example is to determine acidity of a chemical solution by sensing
the color of a Litmus strip [18]. The only existing system with a general solution
to the Frame Problem for knowledge is [19] based on GOLOG [15]. However,
this Prolog implementation is not meant for planning with sensing as it does
not allow to search for suitable sensing actions. Rather, the user is supposed
to provide GOLOG programs where all necessary sensing actions have been
correctly planned. This restriction to plan verification applies to other existing
approaches as well, such as [10].

In this paper, we present the foundations for an effective, fully automatic rea-
soning system capable of solving planning problems which require conditional
plans and implicit knowledge and which may involve incomplete states, non-
deterministic actions, and knowledge preconditions as well as knowledge goals.



Based on the recent solution to the Frame Problem for knowledge in the Flu-
ent Calculus [23], our main technical result is a proof that, under reasonable
assumptions, knowledge can be identified with incomplete state specifications.
This theorem is applied to Flux (the Fluent Calculus Executor)—a recent logic
programming methodology for Cognitive Robotics [22] with similar motivations
as GOLOG [15] but where state update axioms [21] are used to solve the inferen-
tial Frame Problem [3] and where constraints are used for encoding incomplete
states.
Since conditional planning is a highly complex search problem, we also adapt

the heuristics of nondeterministic robot programs of GOLOG [15] and develop
a generalization which allows to search for plans in the presence of sensing.
Conditionals occurring in the plan skeleton are evaluated at planning time only if
the state knowledge suffices to do so; otherwise, a branching point is introduced,
leading to a conditional plan by need. Prior to presenting the results, we give a
brief introduction to the basic Fluent Calculus and Flux.

2 The Fluent Calculus for Knowledge and Sensing

2.1 State Update Axioms

The basic Fluent Calculus combines, in pure classical logic, the Situation Cal-
culus with a STRIPS-like solution to the representational and inferential Frame
Problem [21]. The standard sorts action and sit (i.e., situations) are inher-
ited from the Situation Calculus [13] along with the standard functions S0 : sit

and Do : action × sit 7→ sit denoting, resp., the initial situation and the
successor situation after performing an action; furthermore, the standard pred-
icate Poss : action× sit denotes whether an action is possible in a situation.
To this the Fluent Calculus adds the sort state with sub-sort fluent along
with the pre-defined functions ∅ : state; ◦ : state × state 7→ state; and
State : sit 7→ state; denoting, resp., the empty state, the union of two states,
and the state of the world in a situation. Based on this signature, the Fluent
Calculus provides a rigorously logical account of the concept of a state being
characterized by the set of fluents that are true in the state. The following foun-
dational axioms serve this purpose. They are a suitable subset of the Zermelo-
Fraenkel axioms, stipulating that function ◦ behaves like set union with ∅ as
the empty set:1

z1 ◦ (z2 ◦ z3) = (z1 ◦ z2) ◦ z3 ¬Holds(f, ∅)

z1 ◦ z2 = z2 ◦ z1 Holds(f1, f) ⊃ f = f1

z ◦ z = z Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨ Holds(f, z2)

z ◦ ∅ = z (∀f) (Holds(f, z1)≡Holds(f, z2)) ⊃ z1 = z2
(∀Φ)(∃z)(∀f) (Holds(f, z)≡Φ(f))

1 Free variables in formulas are assumed universally quantified. Variables of sorts
action, sit, fluent, and state shall be denoted by the letters a, s, f , and
z , resp. The function ◦ is written in infix notation.



where Φ is a second-order predicate variable of sort fluent and the macro
Holds means that a fluent is contained in a state:

Holds(f, z)
def

= (∃z′) z = f ◦ z′ (1)

The very last one of the foundational axioms above stipulates the existence of
a state for all possible combinations of fluents. A second macro, which reduces
to (1), is used for fluents holding in situations:

Holds(f, s)
def

= Holds(f,State(s))

Consider, e.g., the fluent terms OnTable(x), Acidic(x), Carries(x), and
Red(y), denoting, resp., whether a chemical solution x is on the table, x is
acidic, the robot carries x, and Litmus strip y is red.2 The following incomplete
state specification says that initially there are three chemical solutions A, B ,
and C on the table, litmus paper P is not red, the robot carries nothing, and
either B or C is not acidic:

Holds(OnTable(A), S0) ∧Holds(OnTable(B), S0) ∧Holds(OnTable(C), S0)
∧¬Holds(Red(P ), S0) ∧ (∀x)¬Holds(Carries(x), S0)
∧ [¬Holds(Acidic(B), S0) ∨ ¬Holds(Acidic(C), S0)]

(2)

Assuming uniqueness of names for all fluents, the macro definitions and the
foundational axioms imply that (2) is equivalent to

(∃z) (State(S0) = OnTable(A) ◦OnTable(B) ◦OnTable(C) ◦ z
∧¬Holds(Red(P ), z) ∧ (∀x)¬Holds(Carries(x), z)
∧ [¬Holds(Acidic(B), z) ∨ ¬Holds(Acidic(C), z)]
∧¬Holds(OnTable(A), z) ∧ ¬Holds(OnTable(B), z)
∧¬Holds(OnTable(C), z) )

(3)

The reader may notice that the constraints on sub-state z not only reflect the
negated Holds statements of (2) but also the fact that neither of OnTable(A),
OnTable(B), or OnTable(C) re-occurs. This will allow to quickly infer the result
of removing any of these fluents from State(S0) as a negative effect.
The Frame Problem is solved in the Fluent Calculus using so-called state

update axioms, which specify the difference between the states before and after
an action. The axiomatic characterization of negative effects, i.e., facts that
become false, is given by this inductive abbreviation, which generalizes STRIPS-
style update [4] to incomplete states:

z′ = z − f
def

= [z′ ◦ f = z ∨ z′ = z] ∧ ¬Holds(f, z′)

z′ = z − (f1 ◦ . . . ◦ fn ◦ fn+1)
def

=

(∃z′′) (z′′ = z − (f1 ◦ . . . ◦ fn) ∧ z
′ = z′′ − fn+1)

2 This scenario, which will be used throughout the paper, is a variation of an example
first used in [18].



On this basis, the following is the general form of a state update axiom for a
(possibly nondeterministic) action A(~x) with a bounded number of (possibly
conditional) effects:

Poss(A(~x), s) ⊃ (∃~y1) (∆1 ∧ State(Do(A(~x), s)) = (State(s) ◦ ϑ
+
1 )− ϑ−1 )

∨ . . . ∨
(∃~yn) (∆n ∧ State(Do(A(~x), s)) = (State(s) ◦ ϑ

+
n )− ϑ−n )

where the sub-formulas ∆i(~x, ~yi,State(s)) specify the conditions on State(s)
under which A(~x) has the positive and negative effects ϑ+

i
and ϑ−

i
, resp. Both

ϑ+
i
and ϑ−

i
are state terms composed of fluents with variables among ~x, ~yi .

If n = 1 and ∆1≡True , then action A(~x) does not have conditional effects.
If n > 1 and the conditions ∆i are not mutually exclusive, then the action is
nondeterministic.

Consider, e.g., the action terms Take(x) and Test(x, y) denoting, resp.,
the robot taking x off the table and testing x by inserting Litmus paper y.
The effects of these two actions can be defined by these state update axioms:

Poss(Take(x), s)⊃
State(Do(Take(x), s)) = (State(s) ◦ Carries(x))−OnTable(x)

Poss(Test(x, y), s)⊃
[Holds(Acidic(x), s) ∧ State(Do(Test(x, y), s)) = State(s) ◦ Red(y) ] ∨
[¬Holds(Acidic(x), s) ∧ State(Do(Test(x, y), s)) = State(s) ]

(4)

Put in words, taking x has the effect that the robot carries x and x is no longer
on the table; and testing x with the help of Litmus paper y causes y to turn
red if the solution is acidic, otherwise nothing changes. The action preconditions
shall be defined by:

Poss(Take(x), s) ≡ Holds(OnTable(x), s)
Poss(Test(x, y), s) ≡ True

Recall formula (3). The state update axiom for Take(x) and the foundational
axioms imply

(∃z) (State(Do(Take(A), S0)) = OnTable(B) ◦OnTable(C) ◦ z ◦ Carries(A)
∧¬Holds(OnTable(A), z) )

Besides the positive effect Carries(A), the right hand side of the equation in-
cludes all fluents which are not affected by the action. Moreover, facts given
in (3) as to which fluents do not hold in z apply to the new state just as well
as it includes z. Thus all unchanged knowledge continues to hold without the
need to apply extra inference steps.



2.2 FLUX

The programming language Flux is a recent implementation of the Fluent Cal-
culus based on Constraint Logic Programming [22]. Its distinguishing feature is
to support incomplete states, which are modeled by open lists of the form

Z0 = [F1,...,Fm | Z]

(encoding the state description Z0 = F1 ◦ . . . ◦ Fm ◦ Z), along with constraints

not_holds(F, Z)

not_holds_all([X1,...,Xk], F, Z)

encoding, resp., the negative statements (∃~y)¬Holds(F, Z) (where ~y are the
variables occurring in F) and (∃~y)(∀X1, . . . , Xk)¬Holds(F, Z) (where ~y are the
variables occurring in F except X1, . . . , Xk). These two constraints are used to
bypass the problem of ‘negation-as-failure’ with incomplete states. In order to
process these constraints, so-called declarative Constraint Handling Rules [5]
have been defined and proved correct under the foundational axioms of the Flu-
ent Calculus. In addition, the core of Flux contains definitions for holds(F,Z),
by which is encoded macro (1), and update(Z1,ThetaP,ThetaN,Z2), which
encodes the state equation Z2 = (Z1 ◦ ThetaP) − ThetaN. The following, for
instance, is the Flux encoding of our state update axioms (4) (ignoring precon-
ditions) and the initial specification (2):

state_update(Z1, take(X), Z2) :-

update(Z1, [carries(X)], [on_table(X)], Z2).

state_update(Z1, test(X,Y), Z2) :-

holds(acidic(X), Z1), update(Z1, [red(Y)], [], Z2) ;

not_holds(acidic(X), Z1), update(Z1, [], [], Z2).

init(Z0) :-

holds(on_table(a), Z0),

holds(on_table(b), Z0), holds(on_table(c), Z0),

not_holds(red(p), Z0), not_holds_all([X], carries(X), Z0),

(not_holds(acidic(b), Z0) ; not_holds(acidic(c), Z0)),

duplicate_free(Z0).

where the constraint duplicate_free(Z) means that list Z does not contain
multiple occurrences. Suppose, e.g., that Litmus paper P is red after testing
solution B , then it follows that B must have been acidic but not C :

?- init(Z0), state_update(Z0, test(b,p), Z1), holds(red(p), Z1).

Z0 = [on_table(a),on_table(b),on_table(c),acidic(b) | _Z]

Constraints:

not_holds(acidic(a), _Z)

...



2.3 Knowledge Update Axioms

To represent knowledge in the Fluent Calculus and to reason about sensing
actions, the predicate KState : sit × state has been introduced in [23]. An
instance KState(s, z) means that according to the knowledge of the planning
robot, z is a possible state in situation s. A fluent is then known to hold (resp.
not hold) in a situation just in case it is true (resp. false) in all possible states;
and it is known whether a fluent holds just in case it is known to hold or known
not to hold:

Knows(f, s)
def

= (∀z) (KState(s, z)⊃Holds(f, z))

Knows(¬f, s)
def

= (∀z) (KState(s, z)⊃¬Holds(f, z))

Kwhether(f, s)
def

= Knows(f, s) ∨Knows(¬f, s)

(5)

These macros generalize to the knowledge of arbitrary non-atomic formulas in a
natural way. A foundational axiom stipulates correctness of state knowledge:

KState(s,State(s))

The Frame Problem for knowledge is solved by axioms that determine the
relation between the possible states before and after an action. More formally,
the effect of an action A(~x), be it sensing or not, on the knowledge is specified
by a knowledge update axiom,

Poss(A(~x), s)⊃
(∀z) (KState(Do(A(~x), s), z)≡ (∃z′)(KState(s, z′) ∧ Ψ(z, z′, s)) )

(6)

In case of non-sensing actions, formula Ψ defines what the robot knows of the
effects of the action. In case of sensing actions, formula Ψ restricts the possible
states in such a way that the sensed property becomes known. In particular, let
the generic action term Sense(f) denote sensing whether a fluent f holds,
then:

Poss(Sense(f), s)⊃
KState(Do(Sense(f), s), z) ≡
KState(s, z) ∧ [Holds(f, z)≡Holds(f, s)]

(7)

That is to say, among the states possible in s only those are still possible after
sensing which agree with the actual state of the world as far as the sensed fluent
is concerned. A crucial immediate consequence is that sensing always causes the
truth value of a property to be known [23].3

Based on knowledge update axioms, the inferential Frame Problem for knowl-
edge is solved with the help of a simple inference schema. Suppose given an axiom
which summarizes all that is known of a situation s, that is, KState(s, z)≡Φ(z).
Suppose further, for the sake of argument, that Poss(A(~x), s), then (6) entails

KState(Do(A(~x), s), z)≡ (∃z′) (Φ(z′) ∧ Ψ(z, z′, s)) (8)

3 While for the sake of abstraction axiom (7) specifies an ideal sensor for qualitative
fluents, nondeterministic knowledge update axioms can be used to model sensor noise
when sensing quantitative fluents.



which provides a specification of what is known in the successor situation.
In accordance with the classical notion of planning by deduction, conditional

plans in the Fluent Calculus are first-order citizens, composed of the primitive
actions of a domain and using the standard functions ε (empty action), a1; a2

(sequential composition), and If (f, a1, a2) (conditional branching). Precondi-
tions, state update, and knowledge update for these action functions are de-
fined by foundational axioms [23]. Here is an example of a situation representing
a conditional plan:

S = Do(If (Red(P ),Take(C),Take(B)),
Do(Sense(Red(P )),Do(Test(B,P ), S0)))

(9)

Applied to our example initial specification, (2), this plan can be proved to
achieve the goal of getting a chemical solution which is known not to be acidic:

(∃x) (Knows(Carries(x), S) ∧Knows(¬Acidic(x), S))

3 Identifying Knowledge with Incomplete States

While the explicit notion of possible states leads to an extensive framework for
reasoning about knowledge and sensing, automated deduction becomes consid-
erably more intricate by the introduction of the modality-like KState predicate.
In this section, we develop the foundations for an inference method which avoids
separate update of knowledge and states. To this end, we show how knowledge
updates are implicitly obtained by progressing an incomplete state through state
update axioms.
Our approach rests on two assumptions. First, the planning robot needs to

know the given initial specification Φ(State(S0)), and this is all it knows of S0 ,
that is, KState(S0, z)≡Φ(z). Second, the robot must have accurate knowledge
of its own actions:

Definition 1. A set of axioms Σ represents accurate effect knowledge if for each
non-sensing action function A, Σ contains a unique state update axiom

Poss(A(~x), s)⊃ΓA{z/State(Do(A(~x), s)), z
′/State(s))} (10)

(where ΓA(~x, z, z
′) is a first-order formula with free variables among ~x, z, z′ and

without a sub-term of sort sit) and a unique knowledge update axiom which is
equivalent to

Poss(A(~x), s)⊃
(∀z) (KState(Do(A(~x), s), z)≡

(∃z′)(KState(s, z′) ∧ ΓA(~x, z, z
′)) )

(11)

Put in words, the possible states after a non-sensing action are those which would
be the result of actually performing the action in one of the previously possible
states.



Accurate knowledge of effects suffices to ensure that the possible states after
a non-sensing action can be obtained by progressing a given state specification
through the state update axiom for that action. The effect of sensing, on the
other hand, cannot be obtained in the same fashion. To see why, let S be a
situation and consider the knowledge specification

KState(S, z) ≡ [Holds(Red(P ), z)≡Holds(Acidic(A), z)] (12)

(which may have been inferred as the result of a Test(A,P ) action). Sup-
pose that Poss(Sense(Red(P )), S), then the knowledge update axiom (7) for
Sense(Red(P )) yields two models for KState(Do(Sense(Red(P )), S), z), the
first of which satisfies

KState(Do(Sense(Red(P )), S), z) ≡
Holds(Red(P ), z) ∧Holds(Acidic(A), z)

(for all z) whereas the other one satisfies

KState(Do(Sense(Red(P )), S), z) ≡
¬Holds(Red(P ), z) ∧ ¬Holds(Acidic(A), z)

(again for all z). The first model represents the case where Red(P ) actually
holds in S while the second model represents the case where Red(P ) actu-
ally does not hold in S . Due to the existence of these two models there can
be no unique specification of the form KState(Do(Sense(Red(P )), S), z)≡Φ(z)
entailed by (12) and (7). Hence, the effect of a sensing action cannot be obtained
by straightforward progression.
In order to account for different models for KState caused by sensing, we

introduce the notion of a sensing history ς as a finite, possibly empty list of
0’s and 1’s. A history is meant to describe the outcome of each sensing action
in a sequence of actions. For the sake of simplicity, we assume that the only
sensing action is the generic Sense(f) with knowledge update axiom (7) and
state update axiom State(Do(Sense(f), s)) = State(s).
For the formal definition of progression we also need the notion of an action

sequence σ as a finite, possibly empty list of ground action terms. An action
sequence corresponds naturally to a situation, which we denote by Sσ :

S[ ]
def

= S0 and S[A(~t ) |σ]
def

= Do(A(~t ), Sσ)

We are now in a position to define, inductively, a progression operator P(σ, ς, z),
by which an initial state specification Φ(State(S0)) is progressed through an
action sequence σ wrt. a sensing history ς , resulting in a formula specifying z:

P([ ], ς, z)
def

= Φ(z) if ς = [ ] (13)

P([A(~t ) |σ], ς, z)
def

= (∃z′) (P(σ, ς, z′) ∧ ΓA(~t, z, z
′))

if A non-sensing with state update (10)
(14)

P([Sense(f) |σ], ς, z)
def

= P(σ, ς ′, z) ∧ ¬Holds(f, Sσ) if ς = [0 | ς ′]
P(σ, ς ′, z) ∧Holds(f, Sσ) if ς = [1 | ς ′]

(15)



In case the length of the history ς does not equal the number of sensing actions
in σ, we define P(σ, ς, z) as False . As the main result, progression provides a
provably correct inference method for knowledge update.4

Theorem2. Consider the initial state and knowledge Σ0 = {Φ(State(S0)),
KState(S0, z)≡Φ(z)} and let Σ be the foundational axioms plus a set of do-
main axioms representing accurate effect knowledge. Let σ be an action sequence
such that Σ ∪ Σ0 |= POSS (σ). Then for any model M of Σ0 ∪ Σ and any
valuation ν ,

M, ν |= KState(Sσ, z) iff M, ν |= P(σ, ς, z) for some ς

Proof (sketch). The proof is by induction on σ. The base case σ = [ ] follows
by (13) and Σ0 . The induction step for σ = [A(~t ) |σ

′] with A(~t ) being a non-
sensing action follows by (14) and knowledge update axiom (11). The induction
step for σ = [Sense(f) |σ′] follows by (15) and knowledge update axiom (7).

This theorem serves as the formal justification for the Flux encoding of
knowledge and sensing. The generic sensing action Sense(f) is encoded by a
state update axiom which carries as additional argument the result of sensing,
where the sensing value is either 0 or 1:

state_update(Z, sense(F), Z, SV) :-

not_holds(F, Z), SV=0 ; holds(F, Z), SV=1.

The definition of progression is a direct encoding of (13)–(15):

p([], [], Z) :- init(Z).

p([A|S], H2, Z2) :- p(S, H1, Z1),

( state_update(Z1, A, Z2), H2=H1 ;

state_update(Z1, A, Z2, SV), H2=[SV|H1] ).

The Flux definitions for Knows(f, s), Knows(¬f, s), and Kwhether(f, s) then
follow from Theorem 2.

Corollary 3. Let φ be a fluent term. Under the assumptions of Theorem 2,

1. Σ0 ∪Σ |= Knows(φ, Sσ) iff there is no model M of Σ0 ∪Σ, no valuation
ν , and no history ς such that M, ν |= P(σ, ς, z) ∧ ¬Holds(φ, z).

2. Σ0∪Σ |= Knows(¬φ, Sσ) iff there is no model M of Σ0∪Σ, no valuation
ν , and no history ς such that M, ν |= P(σ, ς, z) ∧Holds(φ, z).

3. Σ0∪Σ |= Kwhether(φ, Sσ) iff there is no model M of Σ0∪Σ, no valuation
ν , and no history ς such that M, ν |= P(σ, ς, z1)∧Holds(φ, z1)∧P(σ, ς, z2)∧
¬Holds(φ, z2).

Proof (sketch). Follows from Theorem 2 and macro (5).

4 Below, POSS(σ) means that σ is possible in S0 , that is, POSS([ ])
def

= True and

POSS([A(~t ) |σ])
def

= POSS(σ) ∧ Poss(A(~t ), Sσ).



Hence:

knows(F, S) :- is_fluent(F), \+ ( p(S, _, Z), not_holds(F, Z) ).

knows(-(F), S) :- is_fluent(F), \+ ( p(S, _, Z), holds(F, Z) ).

kwhether(F, S) :- is_fluent(F), \+ ( p(S, H, Z1), holds(F, Z1),

p(S, H, Z2), not_holds(F, Z2) ).

where is_fluent shall be true if the argument constitutes a fluent term of
the language. Recall, for instance, the example initial state of Section 2. Whether
solution A is acidic is still unknown after testing it but will be known after
further sensing the color of the Litmus strip—though it cannot be predicted
that it is acidic (nor, of course, that it is not):

?- \+ kwhether(acidic(a), [test(a,p)]),

kwhether(acidic(a), [sense(red(p)),test(a,p)]),

\+ knows(acidic(a), [sense(red(p)),test(a,p)]).

yes

The range of Theorem 2 includes nondeterministic actions. The latter may in
particular cause loss of knowledge [17]; e.g.,

state_update(Z1, dilute(X), Z2) :-

Z2 = Z1 ; update(Z1, [], [acidic(X)], Z2).

?- kwhether(acidic(a), [dilute(a),sense(red(p)),test(a,p)]).

no

4 Conditional Plans and Plan Skeletons

The reified conditional plans of the Fluent Calculus are encoded in Flux as
possibly nested lists of actions, in the order of execution; e.g.,

[test(b,p), sense(red(p)), if(red(p),[take(c)],[take(b)])]

represents conditional plan (9) from above. A planning problem with incom-
plete states and sensing actions is the problem of finding a conditional plan
which can be proved to be executable and to achieve the goal under any cir-
cumstances. Therefore, if a conditional action is inserted into a plan, then each
branch must be searched individually. To this end, we introduce the auxiliary
actions Commit(f) and Commit(¬f), which, formally, do not affect the world
state but the knowledge:

KState(Do(Commit(f), s), z) ≡ KState(s, z) ∧Holds(f, z)
KState(Do(Commit(¬f), s), z) ≡ KState(s, z) ∧ ¬Holds(f, z)

In terms of Flux:

state_update(Z, commit(F), Z) :- \+ F = -(_), holds(F, Z).

state_update(Z, commit(-(F)), Z) :- not_holds(F, Z).



In principle, the Flux clauses we arrived at can readily be used by a simple
forward-chaining search algorithm. Enumerating the set of plans, including all
possible sensing actions, a solution will eventually be found if only the problem
is solvable. However, planning with incomplete states usually involves a consid-
erable search space, and the possibility to generate conditional plans only en-
larges it. The concept of nondeterministic robot programs has been introduced
in GOLOG as a powerful heuristics for planning, where only those plans are
searched which match a given skeleton [15]. This avoids considering obviously
useless actions such as ineffectual sensing. In the following, we generalize this
concept to incomplete states and state knowledge. Our major extension concerns
conditionals, which we resolve at planning time only if the state knowledge suf-
fices to do so; otherwise, a branching point is introduced, leading to a conditional
plan by need.
Similar to GOLOG we use a macro do(δ, σ, p) where δ is a robot program

(represented as sequence of commands), σ a sequence of actions (possibly in-
cluding the auxiliary Commit ), and p is a (possibly conditional) plan. The
intended reading is that executing δ in situation Sσ may result in the exe-
cutable plan p. The crucial extension to GOLOG is this new definition of a
conditional:

do(if f then δ1 else δ2, σ, p)
def

= (∃p1, p2) (Kwhether(f, Sσ)∧
do(δ1, [Commit(f) |σ], p1)∧
do(δ2, [Commit(¬f) |σ], p2)∧
p = [If (f, p1, p2)]

(16)

The other standard macros of GOLOG are straightforwardly adapted to the
Fluent Calculus. We just mention those which will be used in our example below,
namely, primitive actions, testing, and nondeterministic choice of sub-programs
(denoted by δ1#δ2) and of arguments (denoted by (πx)δ).

do([ ], σ, p)
def

= p = [ ]

do([a | δ], σ, p)
def

= (∃p′) (Poss(a, Sσ)∧

do(δ, [a |σ], p′) ∧ p = [a | p′] )

do([{¬}Knows(f)? | δ], σ, p)
def

= Knows({¬}f, σ) ∧ do(δ, σ, p)

do([{¬}Kwhether(f)? | δ], σ, p)
def

= {¬}Kwhether(f, σ) ∧ do(δ, σ, p)

do([δ1#δ2 | δ], σ, p)
def

= do(δ1 + δ, σ, p) ∨ do(δ1 + δ, σ, p)

do((πx)δ, σ, p)
def

= (∃x) do(δ, σ, p)

where δ + δ′ denotes concatenation of two programs. The encoding in Flux is
straightforward; we just mention the clause which encodes the conditional:

do([if(F,E1,E2)|L], S, P) :-

is_fluent(F),

append(E1, L, L1), append(E2, L, L2),



( knows(F, S), !, do(L1, S, P) ;

knows(-(F), S), !, do(L2, S, P) ;

kwhether(F, S), do(L1, [commit(F)|S], P1),

do(L2, [commit(-(F))|S], P2),

P = [if(F,P1,P2)] ).

That is to say, if the condition can be decided in advance, then the corre-
sponding branch is chosen; otherwise, a conditional plan is generated and both
branches are searched. Regarding the latter case, notice that it is checked (us-
ing kwhether) that it will be possible to evaluate the condition at execution
time (c.f. (16)); if not, then the clause fails as the resulting plan would not be
executable.
The empty robot program terminates successfully with the empty plan if the

planning goal is satisfied:

do([], S, []) :- goal(S).

As an example, consider the following recursive robot program, which can
be used to find among any selection of chemical solutions a non-acidic one with
a sufficient supply of Litmus paper:

proc(find_non_acidic, [pi(x,[(knows(on_table(x)))?,

(not knows(acidic(x)))?,

[]#[test_acidity(x)],

if(acidic(x), [find_non_acidic],

[take(x)])])]).

proc(test_acidity(X), [(not kwhether(acidic(X)))?,

pi(y,[test(X,y),sense(red(y))])]).

Put in words, to find a non-acidic solution, pick one which is not known to be
acidic. It may be necessary to test the solution. (The first item in the body of
the auxiliary procedure test_acidity avoids redundant testing.) If the selected
solution is acidic, try to find another one, else grab it.
Consider, now, the goal to get a non-acidic solution,

goal(S) :- knows(carries(X), S), knows(-(acidic(X)), S).

With suitable domain clauses defining is_fluent and the action preconditions,
the program will generate the following plan given the example initial specifica-
tion of Section 2:

?- do([find_non_acidic], [], P)

P = [test(b,p), sense(red(p)), if(red(p),[take(c)],[take(b)])]

The reader may notice that it suffices to test solution B ; if it turns out to be
acidic, then C must be non-acidic.5 It is worth stressing that even with the
5 A second solution to the planning problem is of course to test solution C and to

branch upon the result accordingly.



given plan skeleton, it is necessary to find the right sensing action. In particular,
the system has to backtrack over the attempt to test solution A (which renders
unusable the only available Litmus paper)!

5 Related Work

A distinguishing feature of our system is its expressiveness in comparison to most
existing systems for planning with knowledge and sensing. In [9] an implemen-
tation is described for which a semantics is given based on the general Situation
Calculus solution to the Frame Problem for knowledge of [20]. However, the im-
plementation is based on the notion of an incomplete state as a triple of true,
false, and unknown propositional fluents. The same representation is used in the
logic programming systems [2, 16], which are both given semantics by a three-
valued variant [2] of the Action Description Language [6]. This restricted notion
of incomplete states does not allow for handling any kind of disjunctive informa-
tion. As a consequence, none of the aforementioned systems can solve planning
problems that require to derive implicit knowledge (as in the Litmus scenario)
or reasoning by cases. The latter is necessary whenever an action has conditional
effects depending on whether some unknown fluent is true or false, but where
both conditional effects suffice to achieve the goal [2]. Similar restrictions apply
to the approach of [7], based on Description Logic.
The only existing systems with a general solution to the Frame Problem

for knowledge is [19]. However, this Prolog implementation cannot be used for
planning with sensing as it does not allow to search for suitable sensing actions.
Rather, the user is supposed to provide GOLOG programs where all necessary
sensing actions have been correctly planned. Likewise restricted to plan verifi-
cation is the approach [10], which is based on a special epistemic propositional
logic. In contrast, our system is designed for solving planning problems as it
allows to backtrack over sensing actions that lead to a dead end.
The semantics of our logic program is given by previous work on integrating a

solution to the Frame Problem for knowledge into the Fluent Calculus [23]. This
axiomatization technique is related to the Situation Calculus-based formalization
of [20]. The basic idea there is to represent state knowledge by a binary situation-
situation relation K(s, s′), meaning that as far as the robot knows in situation s
it could as well be in situation s′ . Hence, every given fact about any such s′ is
considered possible by the robot. Having readily available the explicit notion of
a state in the Fluent Calculus, our formalization avoids this indirect encoding
of state knowledge, which is intuitively less appealing because it seems that a
robot should always know exactly which situation it is in—after all, situations
in the Situation Calculus are merely sequences of actions that have been or will
be taken by the robot [13]. In view of the computational challenge raised by
the Frame Problem for knowledge, a crucial advantage of our approach is also
the simple inference scheme (8) provided by the concept of knowledge update
axioms.
A conceptually different semantical approach has been proposed in [17] as an



extension of the Action Description Language which is more powerful than the
abovementioned [2]. Incomplete knowledge is formalized by a so-called epistemic
state, which is a set of possible sets of possible states. Intuitively, an epistemic
state corresponds to the set of models for our KState predicate. We therefore
suspect that our logic program can be shown to provide a sound and complete
proof procedure for this semantics, too, but the formal details have yet to be
worked out.

6 Discussion

We have developed the formal foundations for an effective inference method for
state knowledge in the presence of incomplete states, nondeterministic actions,
and sensing. Conditional plans are computed by reasoning about knowledge
based on progression and with the help of a generalized concept of nondetermin-
istic robot programs as search heuristics. The resulting extension of the high-level
programming language Flux exhibits a clear distinction between nondeterminis-
tic actions and nondeterminism in the heuristics. The latter needs to be resolved
at planning time, possibly by introducing a branching point into a plan. Nonde-
terminism in state update axioms, on the other hand, is respected when verifying
knowledge preconditions or proving that the plan is correct under any outcome.
We have successfully applied Flux to the high-level control of a simple Lego

robot [12] as well as a Pioneer-2, both of which perform delivery tasks and need
to generate conditional plans which include sensing whether doors are closed.
Future work will be to extend the progression operator to actions with ram-

ifications and to concurrency, in order to provide the formal justification for
inferring knowledge in more complex domains. Furthermore, off-line planning in
Flux should be interleaved with on-line execution of sensing actions, following
the argument of [8] that pure off-line planning can often be inefficient in the
presence of sensing. Finally, while sensor noise has been ignored in all our appli-
cations thus far, the concept of knowledge update axioms can be readily applied
to model nondeterministic outcomes, and hence to account for noise [1]. We cur-
rently pursue the axiomatization and implementation of sensor noise within our
approach along this line.

References

1. F. Bacchus, J. Halpern, and H. Levesque. Reasoning about noisy sensors and
effectors in the situation calculus. Artif. Intell., 111(1–2):171–208, 1999.

2. C. Baral and T. C. Son. Approximate reasoning about actions in presence of
sensing and incomplete information. In J. Maluszynski, ed., Proc. of ILPS, p.
387–401, Port Jefferson, 1997.

3. W. Bibel. Let’s plan it deductively! Artif. Intell., 103(1–2):183–208, 1998.
4. R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artif. Intell., 2:189–208, 1971.
5. T. Frühwirth. Theory and practice of constraint handling rules. J. of Logic Pro-

gramming, 37(1–3):95–138, 1998.



6. M. Gelfond and V. Lifschitz. Representing action and change by logic programs.
J. of Logic Programming, 17:301–321, 1993.

7. G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Planning with sensing for a
mobile robot. In Proc. of the European Conf. on Planning, vol. 1348 of LNAI, p.
158–170. Springer, 1997.

8. G. De Giacomo and H. Levesque. An incremental interpreter for high-level pro-
grams with sensing. In H. Levesque and F. Pirri, ed.’s, Logical Foundations for

Cognitive Agents, p. 86–102. Springer, 1999.
9. K. Golden and D. Weld. Representing sensing actions: The middle ground revis-

ited. In L. C. Aiello, J. Doyle, and S. Shapiro, ed.’s, Proc. of KR, p. 174–185,
Cambridge, 1996.

10. A. Herzig, J. Lang, D. Longin, and T. Polascek. A logic for planning under partial
observability. In H. Kautz and B. Porter, ed.’s, Proc. of AAAI, p. 768–773, 2000.

11. G. Lakemeyer. On sensing and off-line interpreting GOLOG. In H. Levesque
and F. Pirri, ed.’s, Logical Foundations for Cognitive Agents, p. 173–189. Springer,
1999.

12. H. Levesque and M. Pagnucco. Legolog: Inexpensive experiments in cognitive
robotics. In Cognitive Robotics Workshop at ECAI, p. 104–109, Berlin, 2000.

13. H. Levesque, F. Pirri, and R. Reiter. Foundations for a calculus of situa-
tions. Electronic Transactions on Artif. Intell., 3((1–2)):159–178, 1998. http://

www.ep.liu.se/ea/cis/1998/018/.
14. H. Levesque. What is planning in the presence of sensing? In B. Clancey and D.

Weld, ed.’s, Proc. of AAAI, p. 1139–1146, Portland, 1996.
15. H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic

programming language for dynamic domains. J. of Logic Programming, 31(1–
3):59–83, 1997.

16. J. Lobo. COPLAS: A conditional planner with sensing actions. In Cognitive

Robotics, vol. FS–98–02 of AAAI Fall Symposia, p. 109–116. AAAI Press 1998.
17. J. Lobo, G. Mendez, and S. Taylor. Adding knowledge to the action description

language A . In B. Kuipers and B. Webber, ed.’s, Proc. of AAAI, p. 454–459,
Providence, 1997.

18. R. Moore. A formal theory of knowledge and action. In J. R. Hobbs and R. C.
Moore, ed.’s, Formal Theories of the Commonsense World, p. 319–358. Ablex,
1985.

19. R. Reiter. On knowledge-based programming with sensing in the situation calculus.
In Cognitive Robotics Workshop at ECAI, p. 55–61, Berlin, 2000.

20. R. Scherl and H. Levesque. The frame problem and knowledge-producing actions.
In Proc. of AAAI, p. 689–695, Washington, 1993.

21. M. Thielscher. From Situation Calculus to Fluent Calculus: State update axioms
as a solution to the inferential frame problem. Artif. Intell., 111(1–2):277–299,
1999.

22. M. Thielscher. The fluent calculus: A specification language for robots with
sensors in nondeterministic, concurrent, and ramifying environments. Technical
Report CL-2000-01, Dresden University of Technology, 2000. http://www.cl.

inf.tu-dresden.de/˜mit/publications/reports/CL-2000-01.pdf
23. M. Thielscher. Representing the knowledge of a robot. In A. Cohn, F. Giunchiglia,

and B. Selman, ed.’s, Proc. of KR, p. 109–120, Breckenridge, 2000.


