
J. LOGIC PROGRAMMING 1997:31(1–3):119–155 119

EXPLICIT AND IMPLICIT INDETERMINISM
REASONING ABOUT UNCERTAIN AND CONTRADICTORY
SPECIFICATIONS OF DYNAMIC SYSTEMS

SVEN-ERIK BORNSCHEUER AND MICHAEL THIELSCHER

. A high-level action semantics for specifying and reasoning about dynamic
systems is presented which supports both uncertain knowledge (taken as
explicit indeterminism) and contradictory information (taken as implicit
indeterminism). We start by developing an action description language
for intentionally representing nondeterministic actions in dynamic systems.
We then study the different possibilities of interpreting contradictory spec-
ifications of concurrent actions. We argue that the most reasonable inter-
pretation which allows for exploiting as much information as possible, is to
take such conflicts as implicit indeterminism. As the second major contri-
bution, we present a calculus for our resulting action semantics based on the
logic programming paradigm including negation-as-failure and equational
theories. Soundness and completeness of this encoding wrt. the notion
of entailment in our action language is proved by taking the completion
semantics for equational logic programs with negation. /

1. INTRODUCTION

Uncertainty is a general challenge which comes with different faces. If an agent
reasons about a given representation of a dynamic system, he or she might be
uncertain about the effects of particular actions; one possible reason for such an
uncertainty is the designer of this representation has intentionally specified these
actions so as to having nondeterministic effects. There are good reasons for doing
this: The designer might not know the exact causal relationship between the action
and the observed effects, or the action might be chaotic, etc. In the very first
part of this paper, we develop a high-level representation language and semantics
which allows for intentionally specifying actions with nondeterministic, randomized
effects.

Address correspondence to Wissensverarbeitung, Informatik, TU Dresden, 01062 Dresden
(Germany) and Intellektik, Informatik, TH Darmstadt, 64283 Darmstadt (Germany).

Received September 1995; accepted October 1996.

THE JOURNAL OF LOGIC PROGRAMMING

c© Elsevier Science Inc., 1997 0743-1066/97/$17.00

655 Avenue of the Americas, New York, NY 10010 PII S0743-1066(96)00124-0

120

Our language is based on the Action Description Language A [12], which is
appealing because of the simple, elegant and natural way in which the effects of
actions are described. A formal introduction to this language can be found in
Section, 2, and our extended language dealing with explicit indeterminism, which
we call AN , is then developed in Section 3.

Aside from being faced with explicitly represented indeterminism, a reasoning
agent might also be uncertain about a given specification when the latter turns out
to be contradictory. Intelligent beings are most often able to evaluate contradictory
information to an appropriate extent. For instance, imagine yourself asking two
passers-by for the shortest way to the train station. The first one answers: “Turn
right, and you will get there in five minutes,” while the second one answers: “Turn
right, and you will get there in ten minutes.” Reasoning about these answers, you
find out that they are contradictory; the provided information is inconsistent and,
hence, cannot be true. However, since both passers-by are in agreement about their
recommendation to turn right, you would assume this part of the information to
be sound; you are just left with uncertainty about the time it takes to reach the
station.

One should be aware of the difference between uncertain information explicitly
stated as such, like “you will arrive in five or in ten minutes,” and contradictory
information like the two answers above. Contradictory information cannot be true,
so it has to be interpreted appropriately if nonetheless some benefit is to be derived
from it. Of course, any such interpretation has to be carefully selected in view of the
application at hand. When machines are used to reason about complex domains,
it is highly likely that an inconsistency occurs in the corresponding formal spec-
ification; e.g., we know from Software Engineering that in general formalizations
of non-trivial scenarios are incorrect. Therefore, if a reasoning system detects an
inconsistency in the information that has been provided, this only confirms what
had to be assumed anyway. But it still remains to be decided how this system
should act in such a situation.

A typical problem in the context of reasoning about actions where contradictory
specifications are to be expected is the concurrent execution of actions. Most com-
plex dynamic systems include some kind of concurrency, which is why the ability
of describing simultaneous actions is of central interest in AI. For instance, to open
a door locked by an electric door opener an autonomous robot has to press a but-
ton and to push the door concurrently. Thus, knowing the effects of the separate
execution of these actions only is not sufficient to be able to open the door. Since
it is of course impractical to define the effects of the concurrent execution of each
possible combination of actions explicitly, it is necessary to infer these effects from
the various descriptions of the individual actions that are involved. In certain cases,
some of these descriptions may however propose contradictory effects. The crucial
question then is how to interpret such contradictions.

This question will be discussed in Section 4. To this end, we use a recent ex-
tension of the Action Description Language A which is called AC and supports
representing and reasoning about concurrent actions [5]. In Section 4.1, we discuss
different explicit methods which enable the designer of a representation to prevent
the aforementioned conflicts by providing more specific information regarding par-
ticular combinations of concurrently executed actions. We will argue that AC
uses the most expressive way and, hence, is most suitable as a basis for our further
discussions. The language AC is recapitulated in Section 4.2.

121

In Section 4.3, we then examine the various possibilities to interpret contra-
dictory inferences caused by combining action descriptions. Suggesting a different
point of view than the one implicitly underlying AC , we present a new language
called ANCC . Thereby we combine our aforementioned development regarding
explicit indeterminism, the language AN , with AC , and we define a new way
of successfully reasoning about inconsistent specifications of concurrently executed
actions.1 The crucial idea is to interpret any such contradiction as implicit indeter-
minism. To this end, we consider uncertain the pieces of information which cause
the contradiction, while all effects on which the involved action descriptions agree
are assumed to occur as specified. In so doing, our language enables us to still infer
reasonable information from contradictory descriptions, whereas these inferences
are neither possible in A nor in AC .

As the second major contribution of this paper, in Section 5 we present a
sound and complete translation from domains specified in our high-level action
language ANCC into logic programs. Our translation follows an approach origi-
nally introduced in [17], which is based on the reification of entire state descriptions
by formally treating them as terms. In contrast to situation calculus [28, 30], where
situation terms are abstract objects, the former approach employs state terms con-
sisting of an explicit collection of those fluents which hold in the situation being
represented. Executing actions is then modeled by manipulating these collections
of fluents, which is why we call the underlying method fluent calculus (or FC , for
short).2 An equational logic program suitable for encoding ANCC , consequently
named FCNCC , is developed in Section 5.1. In Section 5.2, we analyze the seman-
tics of this program given by its completion, and in Section 5.3 we prove soundness
and completeness wrt. the high-level action semantics given by ANCC . Finally,
in Section 5.4 we discuss an adequate computation mechanism for our program,
namely, SLDENF-resolution [34, 39], which is based on SLD-resolution but with
the standard unification procedure replaced by a special equality unification algo-
rithm (E) and negation-as-failure used to treat negative subgoals (NF).

2. DESCRIBING SIMPLE ACTION SCENARIOS

To begin with, we briefly review the concepts underlying the Action Description
language A as defined in [12].

Definition 2.1. A domain description D consists of two disjoint and non-empty
sets of symbols FD and AD called fluent names and unit actions, respectively.
A fluent literal is a fluent name or its negation, the latter of which is denoted
by f .

Furthermore, D consists of a set VD of value propositions (v-propositions,
for short), which are expressions of the form

` after [a1, . . . , am] (2.1)

where a1, . . . , am (m ≥ 0) are unit actions and ` is a fluent literal.

1 AN denotes an “action formalism supporting nondeterministic (N) actions based on the
Action Description Language (A),” and ANCC is as AN but in addition supports concurrent
actions (C) and conflict solving (C).

2 We are grateful to Stuart Russell for suggesting this name.

122

Finally, D includes a set ED of effect propositions (e-propositions, for short),
which are expressions of the form

a causes ` if c1, . . . , cn (2.2)

where a is a unit action and ` as well as c1, . . . , cn (n ≥ 0) are fluent literals.

A v-proposition (2.1) should be read as: If the sequence of unit actions [a1, . . . , am]
were performed in the initial state then ` would hold in the resulting state. In case
m = 0 , (2.1) is usually written initially ` . An e-proposition (2.2) should be
read as: Executing unit action a causes ` to hold in the resulting state provided
the conditions c1, . . . , cn hold in the current state. In case n = 0 , (2.2) is usually
written a causes ` .

Example 2.1. We model the Yale Shooting domain [15] using the fluent names
FD1

= {loaded , alive} denoting the state of a gun and a turkey, respectively. The
effects of the unit actions AD1

= {load ,wait , shoot} are specified by these three
e-propositions:

load causes loaded

shoot causes loaded

shoot causes alive if loaded

(2.3)

In words, loading the gun causes it to be loaded, shooting with the gun causes it to
become unloaded and also shoots the turkey provided the gun was loaded. Waiting
is assumed to have no effects at all. On this basis, the following two v-propositions
encode the Stanford Murder Mystery instance [3] of the Yale Shooting domain:

initially alive

alive after [wait , shoot]
(2.4)

In words, the turkey is alive at the beginning but not after executing wait followed
by shoot .

Given a domain description D , a state σ is simply a subset of the set of fluent
names FD . For any f ∈ FD , if f ∈ σ then f is said to hold in σ , otherwise f
holds. E.g., both alive and loaded hold in the state σ = {alive} .

The given effect propositions implicitly determine the causal behavior of the
dynamic system being modeled:

Definition 2.2. Let D be a domain description in A . Furthermore, let a ∈ AD
be a unit action, ` ∈ FD ∪ {f | f ∈ FD} a fluent literal, and σ ⊆ FD a
state. Then we say that a causes ` in σ iff ED contains an e-proposition
a causes ` if c1, . . . , cn such that each of c1, . . . , cn holds in σ . Let

Bf (a, σ) := {f ∈ FD | a causes f in σ}
Bf (a, σ) := {f ∈ FD | a causes f in σ} (2.5)

and let Φ be a mapping from pairs consisting of a unit action and a state into
the set of states, that is, Φ : A× 2FD 7→ 2FD . Then Φ is a transition function
for D iff, for each a ∈ A and σ ⊆ FD ,

1. Bf (a, σ) ∩Bf (a, σ) = {} and

123

2. Φ(a, σ) = (σ \Bf (a, σ)) ∪Bf (a, σ) .

In words, Bf (a, σ) contains all fluent names that some e-proposition claims
to become true when executing a in σ , while Bf (a, σ) contains all fluent names
that become false. Apart from considering new truth values for these affected fluent
names, the general assumption of persistence is applied to all remaining fluents. In
case Bf (a, σ) and Bf (a, σ) share one or more elements, no transition function
exists and the entire domain is considered inconsistent.

Example 2.1 (continued). Given the e-propositions in (2.3), we have, for instance,
Bf (load , {alive}) = {loaded} and Bf (load , {alive}) = {} , hence Φ(load , {alive}) =
{alive, loaded} . The following definition provides a complete description of the
transition function Φ for the Yale Shooting scenario following Definition 2.2:

Φ(wait , σ) = σ

Φ(load , σ) = σ ∪ {loaded}

Φ(shoot , σ) =

{
σ \ {loaded , alive}, if loaded ∈ σ
σ, otherwise.

(2.6)

Based on the concept of transition, the semantics for A provides a notion of
entailment given a domain specification:

Definition 2.3. Let D be a domain description in A . A structure M is a pair
(σ0,Φ) where σ0 ⊆ FD —called the initial state—and Φ : A × 2FD 7→ 2FD .
Let M [a1,...,am] be an abbreviation for Φ(am,Φ(am−1, . . . ,Φ(a1, σ0) . . .)) , then
a v-proposition f after [a1, . . . , am] is true in structure M iff f holds in the
state M [a1,...,am] .

A structure M = (σ0,Φ) is then called a model of D iff Φ is a transition
function for D and every v-proposition in VD is true in M . A v-proposition ν
is entailed by D iff ν is true in every model of D .

Example 2.1 (continued). Let Φ be as in (2.6). Then both the two structures M1 =
({alive},Φ) and M2 = ({alive, loaded},Φ) are models of the first v-proposition

in (2.4). Since M
[wait ,shoot]
1 = {alive} , our second v-proposition in (2.4) is not

true in M1 , whereas M
[wait ,shoot]
2 = {} shows that M2 is a model for our en-

tire example domain. As a matter of fact, M2 is the only model. Therefore,

since M
[]
2 = {alive, loaded} , our domain description entails, among others, the

v-proposition initially loaded . The latter can be taken as a solution to the
Stanford Murder Mystery.

3. NONDETERMINISTIC ACTIONS: THE LANGUAGE AN

A basic assumption underlying A is that the effects of an action are always com-
pletely known and deterministic. As argued in the introduction, however, one
cannot adhere to this idealistic view of the real world in general since it is im-

124

possible to refine descriptions of the world until the effects of an arbitrary action
can always be fully determined. The ability of humans to handle uncertainty, in-
determinism, or surprising effects etc. very flexibly contrasts with the necessity
of completely determining the effects of actions. This insight has recently led to
several proposals for integrating nondeterministic actions into existing frameworks,
e.g. [7, 33, 23, 21, 4, 26]. In this section we extend the action description language
A so that indeterminism can be explicitly represented; we denote the resulting
dialect by AN .

To begin with, expressing nondeterministic actions requires an extended notion
of effect propositions:

Definition 3.1. Let FD be a set of fluents and AD a set of unit actions. An effect
proposition is either of the form

a causes e if c1, . . . , cn

(in what follows called strict e-proposition), or of the form

a alternatively causes e1, . . . , em if c1, . . . , cn (3.1)

(in what follows called alternative e-proposition), where a ∈ AD and e, e1, . . . , em
as well as c1, . . . , cn are fluent literals (m,n ≥ 0).

Example 3.1. We marginally extend the Russian Turkey scenario as formalized
in [33] and take this as the running example of this section. To this end, the set
of unit actions used in Example 2.1 is augmented by an action called spin . The
intended meaning is that spinning causes the gun to become randomly loaded or
unloaded regardless of its state before, and if it becomes unloaded then the person
operating it becomes nervous.3 The latter is represented by the additional fluent
name nervous . The effects of the new unit action can be specified in AN using
these two alternative e-propositions:

spin alternatively causes loaded

spin alternatively causes loaded ,nervous
(3.2)

The intended meaning of a set of alternative e-proposition is as follows: If a is
a unit action and σ a state then let

a alternatively causes E1 if C1

a alternatively causes E2 if C2

...

 (3.3)

be the (not necessarily finite) set of all alternative e-propositions describing a such
that C1, C2, . . . simultaneously hold in σ , where each of E1, C1, E2, C2, . . . is a
finite (possibly empty) sequence of fluent literals. Now, if a is executed in σ then
nondeterministically one E ∈ {E1, E2, . . .} becomes true in the resulting state

3 For sake of simplicity, we assume the gun’s cylinder consist of two chambers, exactly one
of which contains a bullet. Furthermore, executing the action load should be interpreted as
manually selecting the chamber that is loaded.

125

(that is, all fluent literals e1, . . . , em = E hold in this state).4 For instance, if
spin is executed in the state {alive, loaded} then, following (3.2), either loaded or
else both loaded and nervous will be true afterwards. The two possible resulting
states are therefore {alive, loaded} and {alive,nervous} .

Recall that a set of e-propositions in the language A determines a unique tran-
sition function Φ . Now, however, the possibility of alternative effects forces a
redefinition of this notion. At first glance one might suggest for allowing the ex-
istence of several different transition functions, each of which models one of the
various alternative effects of an action. Any particular model (σ0,Φ) would then
have to select among these possibilities. E.g., given the e-propositions (3.2), Φ
could be designed such that either Φ(spin, σ) = σ ∪ {loaded} or Φ(spin, σ) =
(σ \ {loaded}) ∪ {nervous} , separately for each σ . However, if Φ is one of these
transition functions in a particular model then the result of spinning the gun will be
fixed forever regarding a particular state; e.g., it would be impossible to find a model
where initially loaded , loaded after [spin] , and loaded after [spin, spin] are
simultaneously true. This is of course unintended.

For this reason, we adapt a standard concept for dealing with multiple possible
successor states by dropping the idea of Φ being a function and instead using the
notion of Φ as a relation between a pair of states and a unit action name such that
(σ, a, σ′) ∈ Φ whenever the application of a to σ might yield σ′ . The following
formal notion of transition in AN reflects this intuition:

Definition 3.2. Let D be a domain description in AN and let Φ ⊆ 2FD×AD×2FD

be a relation. Then Φ is a transition relation for D iff the following condition
is satisfied for each state σ ⊆ FD and each unit action a ∈ AD :

Let

Πσ
a = { a alternatively causes E if C ∈ ED |

each fluent literal in C holds in σ }
be the set of all alternative e-propositions in ED with unit action name a and
which are applicable in σ . Then,

1. In case Πσ
a = {} : We say that a causes a fluent literal e in σ iff ED

contains a strict e-proposition a causes e if c1, . . . , cn such that each of
c1, . . . , cn holds in σ . Define

Bf (a, σ) := {f ∈ FD | a causes f in σ}
Bf (a, σ) := {f ∈ FD | a causes f in σ}

then Bf (a, σ) ∩ Bf (a, σ) must be empty,5 and we have (σ, a, σ′) ∈ Φ iff
σ′ = (σ \Bf (a, σ)) ∪Bf (a, σ) .

2. In case Πσ
a 6= {} : For each λ = a alternatively causes E if C in Πσ

a

we say that a causes a fluent literal e wrt. λ in σ iff e occurs in E
or ED contains a strict e-proposition a causes e if c1, . . . , cn such that

4 Hence, an alternative e-proposition (3.1) with m = 0 expresses the possibility that the exe-
cution of a has no effects at all aside from what is suggested by all applicable strict e-propositions.

5 Otherwise no transition relation for D exists.

126

each of c1, . . . , cn holds in σ . Define

Bf (a, λ, σ) := {f ∈ FD | a causes f wrt. λ in σ}
Bf (a, λ, σ) := {f ∈ FD | a causes f wrt. λ in σ}

then Bf (a, λ, σ)∩Bf (a, λ, σ) must be empty for each λ ∈ Πσ
a ,6 and we have

(σ, a, σ′) ∈ Φ iff there exists some λ ∈ Πσ
a such that σ′ = (σ \Bf (a, λ, σ))∪

Bf (a, λ, σ) .

In words, a possible successor state is constructed by accounting for each strict
e-proposition; by selecting one e-proposition λ ∈ Πσ

a among the applicable alter-
natives; and by applying the persistence assumption to all remaining fluents.

Example 3.1 (continued). Recall our Russian Turkey scenario. Let λ1 and λ2
denote the first and second, respectively, e-proposition in (3.2). Then we have
Πσ

spin = {λ1, λ2} for each state σ . From

Bf (spin, λ1, σ) = {loaded}
Bf (spin, λ1, σ) = {}

and

Bf (spin, λ2, σ) = {nervous}
Bf (spin, λ2, σ) = {loaded}

it follows that (σ, spin, σ′) ∈ Φ iff σ′ = σ ∪ {loaded} or σ′ = (σ \ {loaded}) ∪
{nervous} , for each σ . The following definition provides a complete description
of the transition relation Φ for the e-propositions (2.2) and (3.2) following Defini-
tion 3.2:

(σ, spin, σ′) ∈ Φ iff σ′ = σ ∪ {loaded} or σ′ = (σ \ {loaded}) ∪ {nervous}
(σ,wait , σ′) ∈ Φ iff σ′ = σ

(σ, load , σ′) ∈ Φ iff σ′ = σ ∪ {loaded}

(σ, shoot , σ′) ∈ Φ iff σ′ =

{
σ \ {loaded , alive}, if loaded ∈ σ
σ, otherwise.

(3.4)

Having defined the notion of transition, we now concentrate on defining the
concept of a model in AN . The purpose of models is, in general, to provide a
possible view of the real world according to given knowledge. In A , where no
indeterministic and randomized effects are allowed, models differ only in their ini-
tial state once a transition function is fixed. Now, however, any model needs to
additionally state which particular effect occurs whenever alternatives exist. An
additional component for each model, namely, a function ϕ , shall serve this pur-
pose. More precisely, ϕ maps action sequences [a1, . . . , an] to states, stating that
the actual outcome of applying [a1, . . . , an] to the initial state in the model at
hand would be ϕ([a1, . . . , an]) . For instance, if the initial state is known to be
{alive} and we are interested in the consequences of executing the sequence of
unit actions [load , spin, shoot] then the set of models of this domain can be di-

6 If not then, as before, no transition relation for D exists.

127

{alive} {alive, loaded}

{alive, loaded}

{alive,nervous}

{ }

{alive,nervous}

- �
��
�*

-

HH
HHj -

load spin shoot

FIGURE 3.1. Two possible developments in the Russian Turkey scenario given the

initial state {alive} . On the basis of the additional observation that the turkey is alive

after loading, spinning and shooting, we can exclude the upper branch and, thus, safely

conclude that the gun was unloaded after [load , spin] .

vided into two classes: Either the gun remains loaded after spinning, or it becomes
unloaded. This is formally captured by requiring that each model satisfy either
ϕ([load , spin]) = {alive, loaded} or else ϕ([load , spin]) = {alive,nervous} . Sup-
pose that in addition we observe that the turkey is as lively as before after loading,
spinning, and shooting then no model of the former class can explain this. Thus,
it is reasonable to conclude that the gun was necessarily unloaded and the hunter
became nervous after [load , spin] . This is illustrated in Figure 3.1. Note that we
would be unable to obtain this conclusion without ‘recording,’ by using ϕ , the ac-
tual outcome of the nondeterministic action, spin . The formal definition of models
for domain descriptions in AN is as follows:

Definition 3.3. Let D be a domain description in AN . A structure is a triple
(σ0,Φ, ϕ) where σ0 ⊆ FD , Φ ⊆ 2FD × AD × 2FD and ϕ : A∗D 7→ 2FD such
that7

1. ϕ([]) = σ0 and

2. (ϕ([a1, . . . , an]) , an+1 , ϕ([a1, . . . , an, an+1])) ∈ Φ for each sequence of unit
actions a1, . . . , an, an+1 (n ≥ 0).

A v-proposition ` after [a1, . . . , an] (n ≥ 0) is true in a structure (σ0,Φ, ϕ) iff
` holds in ϕ([a1, . . . , an]) . The structure is a model of D iff Φ is a transition
relation for D and all v-propositions in VD are true. A v-proposition ν is
entailed by D iff ν is true in every model of D .

In words, the third component of a structure, viz. ϕ , both respects the transition
relation Φ and is now used to validate the given v-propositions. We call a domain
description in AN consistent if it has a model.

Example 3.1 (continued). A structure (σ0,Φ, ϕ) is a model of (2.2) and (3.2) along

7 By A∗D we denote the set of all finite lists, including the empty one, whose elements are

chosen from AD .

128

with the two v-propositions

initially alive

alive after [load , spin, shoot]
(3.5)

iff transition relation Φ is as in (3.4), ϕ satisfies clauses 1 and 2 of Definition 3.3,
and alive ∈ σ0 = ϕ([]) as well as alive ∈ ϕ([load , spin, shoot]) . Let (σ0,Φ, ϕ) be
any of these models, then loaded ∈ ϕ([load , spin]) ; hence, loaded after [load , spin]
is entailed (c.f. Figure 3.1).

Like A , our extended language AN supports reasoning about so-called coun-
terfactual action sequences due to the fact that the model component ϕ is defined
for any sequence of unit actions. To illustrate this, let us consider the following
extension of Example 3.1, motivated by a scene in a Pierre Richard movie [31].8 An
additional fluent name, broken , which describes the state of a vase. Furthermore,
the action shoot is replaced by the unit actions shoot-at-pierre and shoot-at-vase ,
respectively, along with these four e-propositions:

shoot-at-pierre causes loaded

shoot-at-pierre causes alive if loaded

shoot-at-vase causes loaded

shoot-at-vase causes broken if loaded

(3.6)

Now, suppose given the v-propositions

initially alive

initially broken

broken after [spin, shoot-at-vase]

(3.7)

According to the e-propositions in (3.6), any model (σ0,Φ, ϕ) must satisfy loaded ∈
ϕ([spin]) since otherwise the vase could not have been destroyed. Thus, it is
plausible to conclude that had we shot at Pierre instead then he would not have
survived this. Definition 3.3 supports this conclusion formally: The reader is invited
to verify that the domain consisting of e-propositions (3.2) and (3.6) plus the above
v-propositions, (3.7), entails

alive after [spin, shoot-at-pierre] (3.8)

Since the two action sequences used respectively in this v-proposition and in (3.7)
are incompatible, this example requires reasoning about counterfactuals.

4. CONCURRENT ACTIONS AND SOLVING CONFLICTS

Since the problems we address in this section become more apparent in the context
of the simultaneous execution of actions, we first discuss different ways of inter-
preting domain descriptions involving concurrency. To illustrate our exposition, we
use the terms of A (and, later on, AC); nevertheless, the differences we identify
provide a classification of other languages describing concurrent actions as well.

8 The scene is as follows: Pierre Richard pretends to intend to commit suicide with a, as
he believes, toy gun. To prove to his fellows that it was just a joke, he aims at a vase and
pulls the trigger. The vase shatters, and Pierre faints—he obviously drew a conclusion about a
counterfactual action sequence.

129

4.1. Explicit Information about Concurrent Execution

Suppose a rather complex description of a part of the world has to be constructed,
where arbitrary unit actions may be executed concurrently. Because of the combi-
natorial explosion it is obviously impractical to describe the effects of all possible
combinations of unit actions. It is therefore necessary to infer the effects of com-
pound actions from the descriptions given separately for the various sub-actions
involved. Combining these action descriptions may however yield a contradiction
among their effects.9 In terms of the Action Description Language A this amounts
to having

⋃
aBf (a, σ)∩

⋃
aBf (a, σ) = {} (c.f. Definition 2.2), where

⋃
a a contains

all unit actions to be executed concurrently.
There are several ways of dealing with and inferring the effects of a compound

action from descriptions of the involved unit actions which propose contradictory
effects. Languages describing concurrent actions can therefore be classified ac-
cording to the explicit and implicit methods, respectively, they use to draw these
conclusions.

Explicit methods provide further information as to additional effects of certain
compound actions; they are also used to state the difference between the actual
effects of a concurrent execution of several actions and the effects of these unit ac-
tions when executed alone. In terms of the Action Description Language, additional
e-propositions may

1. add a fluent to Bf or Bf : obviously, the set Bf∩Bf will remain nonempty
in case of a conflict, hence no conflicts will be solved;

2. remove a fluent from Bf or Bf : this allows the removal of predicted con-
flicts, but not the introduction of effects not mentioned by the unit action
descriptions (the approach in [24] uses this method by ‘cancelling’ effects in
specific cases);

3. add or remove a fluent from Bf or Bf : this enables one to arbitrarily
modify Bf and Bf (used, for instance, in AC , our language ANCC , and
in State Event Logic [14]).10

Since an extension of A to concurrent actions, called AC , has recently been
introduced [5], which uses the latter, most powerful method for stating differing
effects of actions as regards their concurrent execution, we use this approach to
illustrate our following discussion and adopt it when extending our language AN
to concurrency.

4.2. The Language AC
We briefly review the concepts underlying the language AC as defined in [5] by
pointing out the corresponding extensions of A . In either e- or v-propositions of

9 This problem might of course occur even without concurrency involved, viz. if several de-
scriptions, i.e., e-propositions, of the same unit action are used to infer the effects of this single
action. If this inference yields a contradiction, the semantics of A and AN , for instance, define
the whole domain description to be inconsistent as it does not admit a proper notion of transition.

10 To be precise, neither AC nor ANCC allows for simply removing an element from one
of these two sets via an additional e-proposition. Rather, new, more specific e-propositions may

shift a fluent name from Bf to Bf or vice versa, which, however, enables one to model any

effect obtained by mere removal.

130

a domain description, actions are now non-empty, finite subsets of the given set of
unit actions AD , with the intended meaning that all of the elements are executed
concurrently. These actions are also called compound actions to distinguish them
from the unit actions.

Example 4.1. Suppose you can open a door by running into it if at the same
time you activate the electric door opener; otherwise, you will hurt yourself by
running into the door. A dog sleeping beside the door will wake up when the
door opener is activated. You can close the door by pulling it. To formalize this
scenario in AC , we take the two sets AD3 = {activate , pull , run into } and FD3 =
{open , sleeps , hurt } . Suppose that the initial state be partially described by the
v-proposition initially sleeps . The effects of the actions can be specified by
these five e-propositions:

{activate } causes sleeps

{run into } causes hurt if open

{pull } causes open

{activate , run into } causes open

{activate , run into } causes hurt if hurt

(4.1)

Informally, the last e-proposition is needed to limit the application of the second
one; this way of restricting applicability of (less specific) e-propositions is called
overruling an e-proposition. Let D3 denote the domain description given by these
propositions.

The concept of overruling more general action descriptions by more specific ones
is formalized by this modification of Definition 2.2:11 If a is a compound action,
` a fluent literal and σ a state, then we say that a causes ` in σ iff there is an
action b such that a causes ` by b in σ . We say that a causes ` by b in σ iff

1. b ⊆ a ;

2. there is an e-proposition b causes ` if c1, . . . , cn such that each of c1, . . . , cn
holds in σ ; and

3. there is no action c such that b ⊂ c and a causes ` by c in σ .

If conditions 1 and 2 but not condition 3 hold then the e-proposition in clause 2 is
said to be overruled .

Now, if, based on this extended notion, Bf (a, σ) and Bf (a, σ) are defined
accordingly (c.f. Definition 2.2 but with a being any compound action) and share
elements then the corresponding transition function Φ is taken to be undefined for
the argument (a, σ) ; otherwise, Φ(a, σ) = (σ \Bf (a, σ)) ∪Bf (a, σ) , as before.

Example 4.1 (continued). The transition function determined by the e-propositions
in our domain description D3 , viz. (4.1), is defined as follows. Let σ be an

11 The following description differs slightly from the definition given in [5], which is circular;
we assume that ours is what the authors actually intended.

131

arbitrary state then

Φ({}, σ) = σ

Φ({run into }, σ) = σ, if open ∈ σ
Φ({run into }, σ) = σ ∪ {hurt }, if open 6∈ σ
Φ({pull }, σ) = σ \ {open }
Φ({activate }, σ) = σ \ {sleeps }
Φ({activate , pull }, σ) = σ \ {sleeps , open }
Φ({run into , pull }, σ) = σ \ {open }, if open ∈ σ
Φ({run into , pull }, σ) = σ ∪ {hurt }, if open 6∈ σ
Φ({activate , run into }, σ) = (σ \ {sleeps }) ∪ {open }
Φ({activate , run into , pull }, σ) is undefined

Function value Φ(a, σ) being undefined for a = {activate , run into , pull } and
each state σ is due to Bf (a, σ) ∩Bf (a, σ) = {open } .

Now, following an appropriate adaptation of Definition 2.3 to domain descrip-
tions in AC , D3 admits four models, each of which satisfies VD3

= {initially
sleeps } , viz.

({sleeps },Φ) ({open , sleeps },Φ)
({sleeps , hurt },Φ) ({open , sleeps , hurt },Φ)

(4.2)

If, for instance, the v-proposition hurt after {run into } is added to D3 then the
only remaining model is ({open , sleeps },Φ) since for all other structures in (4.2)
we find that hurt ∈ Φ({run into }, σ0) . Hence, for example, the v-proposition
initially open is entailed by this extended domain.

Note that our example domain can be modeled only by allowing both for addition
and for removal of elements to and from Bf or Bf (c.f. Section 4.1):

Example 4.1 (continued). Let σ be some state in our example domain. The e-
proposition {activate , run into } causes open adds fluent name open to the set
Bf ({activate , run into }, σ) ,12 while the e-proposition {activate , run into } causes

hurt if hurt removes fluent name hurt from Bf ({activate , run into }, σ) by
overruling the e-proposition {run into } causes hurt if open .

4.3. Implicit Indeterminism: Interpreting Contradictions

After having introduced our basic concept for (explicitly) representing indetermin-
ism in Section 3 and after having adopted an adequate formalism for representing
concurrent actions, we are now able to discuss and propose a solution to the prob-
lem of contradictory specifications of dynamic systems. Suppose the effects are not
defined explicitly for all possible compound actions. In this case, as argued above,
it may happen that certain actions are claimed to have contradictory effects.

From the point of view underlying AC , this indicates that these actions are

12 Note that fluent name open is not mentioned by either of the ‘unit’ action descriptions

{activate } causes sleeps and {run into } causes hurt if open .

132

not executable in the world. A typical example employed to justify this way of
interpreting contradictions is the following: The door is open after it has been
opened, and the door is not open after it has been closed; since a door cannot
be open and not open at the same time, it is impossible to simultaneously open
and close the door. An implicit assumption of this argument is that e-propositions
do not describe concrete actions but assign (action-) names to the achievement
of effects: “to open” means to do something that results in the door being open,
likewise “to close” means to do something that results in the door being closed.
Then, of course, it is impossible to have both simultaneously.

In contrast, our idea is that e-propositions describe concrete actions, and that all
actions (that is, in the end, the mere decision to execute an action) can in principle
be performed concurrently in any situation, sometimes, maybe, without being suc-
cessful in achieving the intended effect. From this point of view, the occurrence of
actions which are proposed to have contradictory effects when executed simultane-
ously only indicates that the descriptions of their effects are incorrect. As argued in
the introduction, in many applications it is not desirable that an intelligent agent
stops reasoning as soon as he/she detects an error in the description of the scenario
he/she is acting in (which happens when the agent uses the semantics of AC and
observes a compound action—or is asked about the effects of it—which is defined
to be impossible in the semantics).

To illustrate this, recall our example domain description D3 . The e-propositions
describing the effects of the elements of {activate , pull , run into } claim both open
and open . In such cases, depending on the chosen interpretation and the extent
of certainty required, one has to regard as unreliable

1. the whole domain description (as in State-Event Logic [14]),

2. the whole situation,

3. all effects of the conflicting actions, or

4. the contradictory effects of the conflicting actions.

It is the latter, weakest condition which we propose in this paper. This follows the
idea of still believing in every part of the information which does not cause the
contradiction.

Example 4.1 (continued). It is of course conceivable that the door opener is acti-
vated, the door is pulled, and somebody runs into it at the same moment. The
domain description D3 proposes both open and open to be an effect of the
corresponding compound action, viz. {activate , pull , run into } . Hence, D3 is in-
complete with respect to the world it describes. In fact, without further information
we cannot say whether the door will be closed after executing this action. How-
ever, it is reasonable to assume the dog will not sleep afterwards since we know that
{activate } causes sleeps and there is no proposition contradicting this. Using the
semantics of AC it cannot be inferred that sleeps after {activate , pull , run into }
since no successor state Φ({activate , pull , run into }, σ) exists (for any state σ).

In general, whenever a local inconsistency occurs, this causes the entire set of
simultaneously executed actions to be contradictory. As an extreme case, imagine

133

an agent in Germany switching off a light and, concurrently, two agents in China
executing the above action. Again, by AC it cannot be inferred that the light is
switched off in Germany because the description used proposes contradictory states
of a door somewhere in China. Yet it seems rational to draw as many conclusions
as reasonably possible about the resulting state instead of declaring it to be totally
undefined. Preventing global inconsistency in case of local conflicts is our underlying
intention here.

We therefore weaken the basic assumption which says that Φ(a, σ) is unde-
fined whenever the corresponding sets Bf (a, σ) and Bf (a, σ) share one or more
elements, and instead we adopt the concept of nondeterminism developed in the
preceding section. Informally speaking, if there are conflicts, that is, if the corre-
sponding intersection Bf (a, σ) ∩ Bf (a, σ) is not empty, then each combination of
truth values of the controversial fluent names determines a possible successor state.

The following definition of the language ANCC makes these ideas manifest.
Syntactically, domain descriptions in our new language are specified using a com-
bination of AN and AC ; that is, we take the syntax of AN and extend it by
allowing to formalize compound actions. With the next definitions, we provide a
formal concept of transition determined by a set of e-propositions following the
above proposal. To ease readability, the overall definition is split into three parts:

Definition 4.1. Let D be a domain description in ANCC , and let a ⊆ AD be
some action and σ ⊆ FD some state. Furthermore, for each b ⊆ a let

Πσ
b = { b alternatively causes E if C ∈ ED |

each fluent literal in C holds in σ } (4.3)

be the set of all alternative e-propositions in ED for action b and which are
applicable in σ . Let then b1, . . . , bm be a (possibly empty) ordered sequence of
all actions bi ⊆ a which satisfy Πσ

bi
6= {} . A selection for a wrt. σ , written

Λσa , is a sequence of alternative e-propositions λb1 , . . . , λbm such that λbi ∈ Πσ
bi

for each 1 ≤ i ≤ m .

In words, a selection for an action a consists in exactly one applicable alternative
e-proposition λb , provided there exists any, for each sub-action b ⊆ a .

Definition 4.2. Let D be a domain description, and let a ⊆ AD be some action,
σ ⊆ FD some state, and e ∈ FD∪{f | f ∈ FD} some fluent literal. Furthermore,
let Λσa = λb1 , . . . , λbm be a selection for a wrt. σ . Then we say that a causes
e wrt. Λσa in σ if there is an action b ⊆ AD such that a causes e by b
(wrt. Λσa in σ). We say that a causes e by b wrt. Λσa in σ iff

1. b ⊆ a ;

2. at least one of these two conditions is satisfied:

(a) ED contains a strict e-proposition b causes e if c1, . . . , cn such that
each of c1, . . . , cn holds in σ , or

(b) Πσ
b 6= {} and e occurs in E , where λb = b alternatively causes E

if C ∈ Πσ
b is selected via Λσa ; and

3. there is no action c such that b ⊂ c and a causes e by c wrt. Λσa in σ .

134

We then define

Bf (a,Λσa , σ) := { f ∈ FD | a causes f wrt. Λσa in σ }
Bf (a,Λσa , σ) := { f ∈ FD | a causes f wrt. Λσa in σ }

In words, a fluent literal is caused if it is among the strict or selected alternative
effects, provided the corresponding e-proposition is not overruled.

Definition 4.3. Let D be a domain description in ANCC , and let Φ ⊆ 2FD×2AD×
2FD be a relation. Then Φ is a transition relation for D if for each two states
σ, σ′ ⊆ FD and each action a ⊆ AD we have (σ, a, σ′) ∈ Φ iff the following
holds: There exists a selection Λσa for a wrt. σ and a set B ↙

f (a,Λσa , σ) ⊆
Bf (a,Λσa , σ) ∩Bf (a,Λσa , σ) such that

σ′ = (σ \Bf (a,Λσa , σ)) ∪ (Bf (a,Λσa , σ) \B↙
f (a,Λσa , σ)) (4.4)

To summarize, a possible successor state is obtained by first making a random
selection among the applicable alternative e-propositions, separately for each com-
pound action b ⊆ a . Afterwards, we proceed as in AC except in case conflicts
occur, where we take any truth value distribution B ↙

f (a,Λσa , σ) among the dis-

puted fluent names, i.e., Bf (a,Λσa , σ)∩Bf (a,Λσa , σ) , when computing a possible σ′

via (4.4).
Based on this concept of transition, the notion of model and entailment in ANCC

are adopted from our language AN (c.f. Definition 3.3):

Definition 4.4. Let D be a domain description in ANCC . A structure is a triple
(σ0,Φ, ϕ) where σ0 ⊆ FD , Φ ⊆ 2FD × 2AD × 2FD and ϕ : (2AD)∗ 7→ 2FD such
that13

1. ϕ([]) = σ0 and

2. (ϕ([a1, . . . , an]) , an+1 , ϕ([a1, . . . , an, an+1])) ∈ Φ for each sequence of ac-
tions a1, . . . , an, an+1 (n ≥ 0).

A v-proposition ` after [a1, . . . , an] (n ≥ 0) is true in a structure (σ0,Φ, ϕ) iff
` holds in ϕ([a1, . . . , an]) . The structure is a model of D iff Φ is a transition
relation for D and all v-propositions in VD are true. A v-proposition ν is
entailed by D iff ν is true in every model of D .

Example 4.1 (continued). If our domain description D3 is augmented by either the
v-proposition open after {activate , pull , run into } or the opposite proposition
open after {activate , pull , run into } then both extended domains have models
(with different functions ϕ) according to the semantics of ANCC . On the other
hand, if D3 is augmented by sleeps after {activate , pull , run into } then there
is no model wrt. ANCC . Consequently, we can conclude, as intended, that our
domain entails sleeps after {activate , pull , run into } .

13 The set (2AD)∗ contains all finite lists whose elements are finite, non-empty subsets of
AD .

135

The reader might have noticed that ANCC does not distinguish between in-
tentionally expressed nondeterminism of actions and our interpretation of inconsis-
tently specified actions. For instance, D3 could be augmented by the e-propositions
{activate } causes bark and {activate } causes bark for describing that the dog
possibly starts or stops barking when the door opener is activated. The two al-
ternative e-propositions {activate } alternatively causes bark and {activate }
alternatively causes bark together serve the identical purpose. In fact, for
someone reasoning about a domain description it makes no difference whether the
designer of this domain description was aware of the uncertainty of the described
effects or not.

5. TRANSLATING ANCC INTO FCNCC

In the second part of this paper, we show how domain descriptions and the notions
of transition and entailment in our new language ANCC may be encoded as logic
programs. While in the preceding sections the sets of elements underlying a domain
description were of arbitrary, possibly infinite size, we need to restrict ourselves
to finite sets of fluent names, unit actions, and e- and v-propositions in order
to obtain a finite logic program. The approach we follow here is based on the
reification of whole state descriptions by treating them as single terms [17]. To
this end, each fluent that holds in a state is formally represented by a term (a so-
called fluent term), and to constitute a state representation these fluent terms are
connected by a special binary function symbol, denoted ◦ . For instance, the term
(open ◦ sleeps) ◦ hurt describes the state wrt. Example 4.1 where the door is open,
the dog is sleeping, and the protagonist has hurt himself. Intuitively, the order in
which the various fluent terms are connected is irrelevant as regards the state to be
represented. Hence our connection function has some special properties, which are
formalized using the following equational theory [17]:

∀X,Y, Z. (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z) (associativity)
∀X,Y. X ◦ Y = Y ◦ X (commutativity)
∀X. X ◦ ∅ = X (unit element)

where the constant ∅ denotes a unit element for ◦ , which corresponds to an
empty collection of fluent terms. These three axioms (AC1, for short) are used as
the underlying equational theory for our logic program.14 Therefore, the special
function symbol ◦ will be referred to as the AC1-function, and a term consisting
of subterms that are connected by this function will be referred to as an AC1-
term. In what follows, we use the equality predicate “ =AC1 ” in program clauses
to illustrate that equality should always be related to the axioms above. Due to the
law of associativity, we can omit parenthesis on the level of ◦ in any AC1-term.

On the basis of representing a state by a collection of fluent terms, the execution
of actions is modeled through manipulation of such collections. For this reason the
underlying approach is named fluent calculus. Aside from being closely related, in
its basic form, to the Linear Connection Method [6] and reasoning about actions
based on Linear Logic [13, 27], the fluent calculus has recently been shown to

14 While it suffices to consider these axioms in view of a suitable resolution procedure (see
Section 5.4), the standard axioms of equality plus axioms allowing to derive inequalities are
additionally required when discussing an adequate semantics for our program (see Section 5.2).

136

successfully deal both with the ramification [41] as well as with the qualification
problem [38, 40], and with reasoning about continuous change [16].

In the following subsection, 5.1, we describe how to construct a fluent calculus-
based logic program corresponding to a domain description in ANCC . In Sec-
tion 5.2, we discuss the semantics of the resulting program by applying the stan-
dard completion procedure [9] augmented by a special treatment of the underlying
equational theory [19, 34]. In Section 5.3, we then prove soundness and complete-
ness of the equational logic program (by taking the extended completion semantics)
wrt. the semantics of ANCC . Finally, in Section 5.4 we discuss the applicability
of a special resolution variant, namely, SLDENF-resolution [34, 39], to our logic
program. We assume that the reader be familiar with the basic concepts of normal
logic programs (i.e., logic programs augmented by negation-as-failure) as described,
e.g, in the textbook [25]. We use a Prolog-like syntax in denoting constants and
predicates by lower case letters and variables by upper case letters. Moreover, free
variables are assumed to be universally quantified and, as usual, the term [h|t]
denotes a list with head h and tail t .

5.1. The Equational Logic Program

Let D be a domain description in ANCC based on fluent names FD . For a proper
representation of negative fluent literals, we introduce a unary function whose ap-
plication to a term representing a fluent name indicates the negation of the latter.
We will denote this function illustratively by a bar on top of its argument, like nega-
tion has been denoted in the action description languages. Formally, we employ a
function τ mapping sequences of fluent literals to AC1-terms as follows:

τ(`1, . . . , `n) := `1 ◦ . . . ◦ `n
where `i ∈ FD ∪ {f | f ∈ FD} (1 ≤ i ≤ n), and in case n = 0 the function value
of τ is the unit element ∅ of ◦ .

A state σ = {f1, . . . , fm} over a fixed set of fluent names FD ⊇ {f1, . . . , fm} is
represented by an AC1-term as follows:

γD({f1, . . . , fm}) := f1 ◦ . . . ◦ fm ◦ fm+1 ◦ . . . ◦ fn (5.1)

where {f1, . . . , fn} = FD .
Finally, we also employ our AC1-function to represent compound actions, viz.

by simply connecting the unit action names, which, too, are taken as terms to that
end:

µ({a1, . . . , ak}) := a1 ◦ . . . ◦ ak (5.2)

where {a1, . . . , ak} ⊆ AD .
We are now prepared for translating domain descriptions D in ANCC into a set

of logic program clauses. To begin with, we introduce, for each fluent name f ∈ FD ,
a separate unit clause to relate f to its counterpart f :

FLUENTD := { complement (τ(f, f)). | f ∈ FD } (5.3)

Let ED be a given set of e-propositions. Then for each strict e-proposition we
use an instance of the ternary predicate eprop stating the action name, the effect,

137

and the conditions:

EPROPD := { eprop (µ(a), τ(`), τ(c1, . . . , cn)). |
a causes ` if c1, . . . , cn ∈ ED }

(5.4)

Analogously, alternative e-propositions describing possible effects of nondetermin-
istic actions are encoded using the ternary predicate alteprop :

ALTEPROPD := { alteprop (µ(a), τ(e1, . . . , em), τ(c1, . . . , cn)). |
a alternatively causes e1, . . . , em if c1, . . . , cn ∈ ED }

(5.5)

Example 5.1. Let D4 denote the amalgamation of the two domains described in
Example 3.1 and Example 4.1, respectively. We then have, say, τD4(sleeps , open) =
sleeps ◦ open , γD4

({alive, sleeps , open }) = alive ◦ sleeps ◦ open ◦ loaded ◦nervous ◦
hurt , and µD4

({activate , run into }) = activate ◦ run into . The program clauses
FLUENTD4

∪ EPROPD4
∪ ALTEPROPD4

are as follows:

complement (loaded ◦ loaded) .

complement (alive ◦ alive) .
complement (nervous ◦ nervous) .

complement (sleeps ◦ sleeps) .

complement (hurt ◦ hurt) .
complement (open ◦ open) .

eprop (load , loaded , ∅) .
eprop (shoot , loaded , ∅) .
eprop (shoot , alive, loaded) .
alteprop (spin, loaded , ∅) .
alteprop (spin, loaded ◦ nervous, ∅) .

eprop (activate , sleeps , ∅) .
eprop (run into , hurt , open) .
eprop (pull , open , ∅) .
eprop (activate ◦ run into , open , ∅) .
eprop (activate ◦ run into , hurt , hurt) .

In order to encode the general concept of transition underlying ANCC , we use a
ternary predicate action (i, a, h) stating that executing action a in state i possibly
yields state h . Following Definitions 4.1–4.3, a possible successor state is obtained
by taking into account all applicable, strict e-propositions and a selection consisting
of exactly one element of each set of applicable alternative e-propositions describing
an identical subset of a . This is reflected in the following definition of the action
predicate:

action (I,A,H)← selection (A,S, I) ,
¬impossible (H, I,A, S) ,
¬unfounded (H, I,A, S) ,
¬inconsistent (H) .

(5.6)

138

The intended meaning of this clause is the following: Let i be a term representing
a state (c.f. (5.1)) and a be a term representing a (compound) action (c.f. (5.2)),15

then:

1. Let s be a term of the form (b1, e1, c1)◦. . .◦(bm, em, cm) where each subterm
(bj , ej , cj) (1 ≤ j ≤ m) is a triple representing an alternative e-proposition
bj alternatively causes ej if cj . An instance selection (a, s, i) is then
intended to be true if s represents a selection for a wrt. state i (c.f. Defi-
nition 4.1). To this end, we introduce the following program clause:

selection (A,S, I)← ¬overrepresented (A,S, I) ,
¬underrepresented (A,S, I) .

(5.7)

In words, the middle argument of selection contains a representation of not
more than and also at least one element of each set of applicable alternative
e-propositions. The predicates overrepresented and underrepresented are
defined as follows:

overrepresented (A,X ◦R, I) ← X 6=AC1 ∅ ,
¬underrepresented (A,R, I) .

underrepresented (A ◦B,S,C ◦ J) ← alteprop (A,E,C) ,
¬represented (A,S) .

represented (A, (A,E,C) ◦R) .

(5.8)

In words, underrepresented (a ◦ b, s, i) is true if there exists an applicable
(wrt. state i)16 alternative e-proposition for sub-action a but s does not
include a triple representing an alternative for this particular action—and
overrepresented (a, s, i) is true if s contains more than these triples.

2. An instance impossible (h, i, a, s) is intended to be true if h , which is in-
tended to represent a possible successor state of i wrt. action a , contains
a fluent literal whose negation (but not the literal itself) is claimed by some
non-overruled e-proposition (either a strict one, or an alternative one that
has been selected via s).17Accordingly, the definition of impossible is the
following:

impossible (F ◦H, I,A, S)← overruled (F, I, ∅, A, S) ,
complement (F ◦G) ,
¬overruled (G, I, ∅, A, S) .

(5.9)

An instance overruled (h, i, b, a, s) is intended to be true if h contains a
fluent literal whose negation is claimed by a (strict or selected) e-proposition

15 For the sake of readability, in the following description we sometimes identify a term t
which represents a state (or a sequence of fluent literals or a compound action, respectively) with

the state γ−1
D (t) itself (or with τ−1(t) or µ−1(t) , respectively).

16 Note that applicability means the conditions c of the e-proposition are true in i , which is
guaranteed if the terms c ◦ J and i are unifiable under the AC1 theory (see Lemma 5.1, below).

17 Notice that in case both a fluent literal and its negation are claimed to be true by two
or more non-overruled e-propositions (strict or selected), either of them may hold in a resulting
state. This encodes our way of solving conflicts, as formalized in Definition 4.3.

139

for some action c such that c ⊃ b and c ⊆ a . The clauses defining
overruled follow Definition 4.3:

overruled (F ◦H,C ◦ J,A,A ◦B ◦D,S)
← eprop (A ◦B,G,C) ,
B 6=AC1 ∅ ,
complement (F ◦G) ,
¬overruled (G,C ◦ J,A ◦B,A ◦B ◦D,S) .

overruled (F ◦H,C ◦ J,A,A ◦B ◦D, (A ◦B,G ◦ E,C) ◦R)
← B 6=AC1 ∅ ,

complement (F ◦G) ,
¬overruled (G,C ◦ J,A ◦B,A ◦B ◦D, (A ◦B,G ◦ E,C) ◦R) .

(5.10)

In words, the particular effect F of an action A is overruled by an eprop
(first clause) or an alteprop that has been selected (second clause) postu-
lating the effect G = F of an action A ◦B ⊃ A if this e-proposition is not
overruled itself.

3. An instance unfounded (h, i, a, s) is intended to be true if h contains a
fluent literal whose negation holds in i but there is no (strict or selected
via s) e-proposition for action a wrt. state i that induces this change. The
definition of this predicate is as follows:

unfounded (F ◦H,G ◦ I,A, S)← complement (F ◦G) ,
¬overruled (G,G ◦ I, ∅, A, S) .

(5.11)

In words, a change from fluent literal G = F to F is unfounded if there
is no (strict or selected) e-proposition that overrules the assumption that G
continues to be true.

4. An instance inconsistent (h) is intended to be true if AC1-term h does not
represent a state (c.f. (5.1)), that is, if h contains some fluent term twice or
more, or it contains a fluent name along with its negation, or there is some
fluent name f ∈ FD such that neither f nor f occur as subterm. These
three criteria are encoded by the following clauses:

inconsistent (G ◦G ◦H)← G 6=AC1 ∅ .
inconsistent (F ◦G) ← complement (F) .
inconsistent (H) ← complement (F ◦G) ,

F 6=AC1 ∅ , G 6=AC1 ∅ ,
¬holds (F,H) , ¬holds (G,H) .

holds (F,H ◦ F) .

(5.12)

Having encoded the transition relation, we now show how to model the appli-
cation of an action sequence [a1, . . . , am] to some initial state. Since the resulting
state is model-dependent and, in particular, determined by the associated func-
tion ϕ (c.f. Definition 4.4), we need to find a way to encode the latter within the
model generation process. To this end, we first introduce the notion of an action

140

[]

[{spin}]

[{spin}, {shoot-at-pierre}] [{spin}, {shoot-at-vase}]

[]

[({spin}, X1)]

[({spin}, X1), ({shoot-at-pierre}, X2)] [({spin}, X1), ({shoot-at-vase}, X3)]

X1

X2 X3

(a)

(b)

FIGURE 5.1. (a) An action tree describing two directions of development, which forms

a minimal basis for domains with v-propositions {(3.7), (3.8)} , and (b) the same tree

augmented by variables to record the outcomes in a concrete model.

tree serving as a (minimal) basis for the set of v-propositions underlying the domain
description at hand:

Definition 5.1. Let D be a domain description in ANCC with action names AD
and v-propositions VD . An action tree is a tree B whose nodes are finite lists
over 2AD such that

1. the root of B is [] , and

2. if [a1, . . . , am, am+1] is a node in B then its predecessor is [a1, . . . , am]
(m ≥ 0).

An action tree B is called basis for D iff for each v-proposition ` after

[a1, . . . , am] in VD the sequence [a1, . . . , am] is a node in B . Moreover, the
minimal basis for D is the basis with a minimal number of nodes.

As an example, suppose given the v-propositions {(3.7), (3.8)} , then Figure 5.1(a)
depicts the minimal basis for the corresponding domain. Notice that for any finite
set of v-propositions a unique minimal basis exists and is finite.

The purpose of a minimal basis is to indicate which arguments of the model com-
ponent ϕ are of interest—regarding the underlying v-propositions—when searching
for models. Now, to record the actual values of ϕ in a particular model, we assign
variables, which are intended to be substituted by states, to the edges of the basis
as follows. Let BD be the minimal basis for D containing β + 1 nodes (β ≥ 0).
Furthermore, let X1, . . . , Xβ be pairwise different variables assigned one-to-one
to the edges of the tree, then each node [a1, . . . , am, am+1] in BD (m ≥ 0) is
replaced by the sequence of pairs [(a1, Xα), . . . , (am, Xδ), (am+1, Xi)] where

1. the predecessor is replaced by [(a1, Xα), . . . , (am, Xδ)] , and

141

2. the edge from the predecessor to the node itself is labeled with Xi .

A possible labeling of our example tree is depicted in Figure 5.1(b).
In order to encode in our logic program the notion of models for domain descrip-

tions in ANCC , we first introduce the ternary predicate result . Its intended mean-
ing is that result (γD(σ0), [(µ(a1), h1), . . . , (µ(am), hm)], γD(M [a1,...,am])) is true iff
the application of [a1, . . . , am] to initial state σ0 yields the state M [a1,...,am] in a
model which satisfies ϕ([a1, . . . , ai]) = γ−1D (hi) for each 1 ≤ i ≤ m . It is required
that each hi represent a possible successor state of applying ai to the preceding
state, according to the underlying transition relation. The clauses defining result
thus are as follows:

result (I, [], I) .
result (I, [(A,H)|P], G) ← action (I, A,H) ,

result (H,P,G) .
(5.13)

In words, M [] is σ0 , and in case m > 0 , M [a1,...,am] is obtained by computing a
successor state H = γ−1D (h1) of executing a1 in σ0 and by applying the remaining
sequence [a2, . . . , am] to this state.

Finally, to encode the v-propositions VD = {`i after [ai1, . . . , aimi] | 1 ≤ i ≤ n} ,
we use the following clause defining the predicate model . The construction of this
clause is grounded on a given minimal basis BD augmented by variables for the
domain under consideration:

model (I,X1, . . . , Xβ)
← ¬inconsistent (I) ,

result (I, [(µ(a11), Xα1), . . . , (µ(a1m1), Xδ1)], τ(`1) ◦G1) ,
...

result (I, [(µ(an1), Xαn
), . . . , (µ(anmn

), Xδn)], τ(`n) ◦Gn) .

(5.14)

where X1, . . . , Xβ are the variables assigned to BD and, for each 1 ≤ i ≤ n ,
the variables Xαi

, . . . , Xδi are chosen according to the corresponding node (for
the action sequence [ai1, . . . , aimi

]) in the labeled basis BD . Hence the intended
meaning is that model (i, h1, . . . , hβ) is true if i represents a consistent initial
state such that all v-propositions in VD are satisfied under the assumption that
h1, . . . , hβ are the states resulting from executing the respective action sequence.

Example 5.1 (continued). Given the four v-propositions

alive after [{load}]
alive after [{load}, {spin}, {shoot}]
initially sleeps

hurt after [{activate , run into }]

(5.15)

these are encoded by the following program clause if we take the suitably labeled
basis shown in Figure 5.2:

model (I,X1, X2, X3, X4)
← ¬inconsistent (I) ,

result (I, [(load , X1)], alive ◦G1) ,
result (I, [(load , X1), (spin, X2), (shoot , X3)], alive ◦G2) ,
result (I, [], sleeps ◦G3) ,

result (I, [(activate ◦ run into , X4)], hurt ◦G4) .

(5.16)

142

[]

[({load}, X1)]

[({load}, X1), ({spin}, X2)]

[({load}, X1), ({spin}, X2), ({shoot}, X3)]

[({activate , run into }, X4)]

X2

X3

X1 X4

FIGURE 5.2. A suitable labeled action tree for the v-propositions in (5.15).

To summarize, a domain description D in ANCC is translated into the set of
clauses PD = FLUENTD∪EPROPD∪ALTEPROPD∪{(5.6)–(5.14)} . The result-
ing equational logic program we denote by (PD,AC1) , and the class of resulting
equational logic programs shall be denoted by FCNCC . The reader might have
noticed that the major part of this program, clauses (5.6)–(5.13), is domain inde-
pendent and constitutes an intuitive and direct translation of Definitions 4.1–4.4.

5.2. The Completion Semantics

The equational logic program developed in the previous subsection contains nega-
tive literals in the bodies of some clauses. These negative literals are intended to be
treated by the (nonmonotonic) negation-as-failure principle. An adequate seman-
tics for such programs, which is based on classical first-order logic, is obtained by
applying an extension of Clark’s completion procedure [9] to the program. The idea
is to consider the set of program clauses which define a predicate p as a complete
description of the positive information regarding p :

Definition 5.2. Let p(t1, . . . , tn) ← L1, . . . , Lm be a program clause, and let Y
denote a sequence of all variables which occur in this clause. Furthermore,
let X1, . . . , Xn be pairwise different variables not in Y . Then the rectified
form of this clause is the formula p(X1, . . . , Xn) ← ∃Y (X1 = t1 ∧ . . . ∧ Xn =
tn ∧ L1 ∧ . . . ∧ Lm) . Let p be an arbitrary predicate symbol and

p(X1, . . . , Xn) ← D1

...
p(X1, . . . , Xn) ← Dk

be all clauses in a program P defining p in rectified form (k ≥ 0). The
completed definition of p in P is the formula

∀X1, . . . , Xn (p(X1, . . . , Xn) ↔ D1 ∨ . . . ∨Dk)

(In case k = 0 this reduces to ∀(¬p(X1, . . . , Xn))). The completion P ∗ of P
is the conjunction of the completed definitions of all predicate symbols occurring
in the underlying alphabet except for the equality predicate “ = .”

143

Given a domain description D in ANCC , the entire completion of the correspond-
ing program clauses PD , written P ∗D , is shown in the appendix.

Aside from completing the program clauses, a logic program with an underlying
equational theory requires a special kind of completion for the equality predicate
since axioms are needed which allow for proving inequalities in order to derive neg-
ative information. In case of standard completion [9], some axiom schemata are
added to the completed formula which allow for proving inequality of two terms
whenever these are not syntactically unifiable. The concept of unification complete-
ness [19, 34] generalizes these axiom schemata for arbitrary equational theories.

Prior to stating the formal definition, we need to introduce some notions and no-
tation related to unification theory, taken from the survey article [2]. The standard
axioms of equality are

X = X (reflexivity)
X = Y → Y = X (symmetry)
X = Y ∧ Y = Z → X = Z (transitivity)
Xi = Y → f(X1, . . . , Xi, . . . , Xn) = f(X1, . . . , Y, . . . , Xn) (substitutivity I)
Xi = Y → [p(X1, . . . , Xi, . . . , Xn)↔ p(X1, . . . , Y, . . . , Xn)] (substitutivity II)

for each n -place function symbol f and predicate p , and for each 1 ≤ i ≤ n . If
E is an equational theory then two terms s, t are called E-equal if the formula
s = t is a logical consequence of E plus the standard equality axioms. Two terms
s, t are said to be E-unifiable if there exists a substitution θ such that sθ and
tθ are E-equal; in which case θ is called an E-unifier for s, t . A complete set of
E-unifiers cUE(s, t) for two terms s, t is a set of E-unifiers for s, t such that each
E-unifier for s, t is subsumed by at least one element in cUE(s, t) . As in [34], given
a substitution θ = {X1 7→ t1, . . . , Xn 7→ tn} we use eqn(θ) to denote the formula
X1 = t1 ∧ . . . ∧Xn = tn .

Definition 5.3. Let E be an equational theory. A consistent set of first-order
formulas E∗ is called unification complete wrt. E if it consists of the axioms
in E , the standard equality axioms, and a number of equational formulas, i.e.,
formulas with “ = ” as the only predicate, such that for any two terms s and t
with variables X the following holds:

1. If s and t are not E-unifiable then E∗ |= ¬∃X. s = t .

2. If s and t are E-unifiable then for each complete set of E-unifiers cUE(s, t)

E∗ |= ∀X

 s = t →
∨

θ∈cUE(s,t)

∃Y . eqn(θ)

 (5.17)

where Y denotes the variables which occur in eqn(θ) but not in X .

In [18], we have proved the existence of a unification complete theory AC1∗ for
the equational theory AC1 used in FCNCC . Since we do not intend to compute
with AC1∗ , we are only interested in the properties of this theory as given by
Definition 5.3; its actual design is irrelevant for our analysis. Given a domain de-
scription D in ANCC , we take the formulas P ∗D∪AC1∗ as the logic programming
semantics for the corresponding program (PD,AC1) .

144

5.3. Soundness and Completeness of the Translation

Based on the completion semantics, we now prove soundness and completeness of
our equational logic program wrt. the entailment relation defined for ANCC . We
start with a number of lemmas concerning specific parts of our program.

Lemma 5.1. Let D be a domain description in ANCC with fluent names FD .
Furthermore, let c1, . . . , cm be a sequence of fluent literals (m ≥ 0) and σ ⊆ FD
be a state. Then each of c1, . . . , cm holds in σ iff τ(c1, . . . , cm)◦V and γD(σ)
are AC1-unifiable (where V is an arbitrary variable).

Analogously, let AD be the underlying set of unit actions and a, b ⊆ AD two
actions then b ⊆ a iff µ(b) ◦ V and µ(a) are AC1-unifiable.

Proof. In case m = 0 , ∅◦V and γD(σ) are always AC1-unifiable using the sub-
stitution {V 7→ γD(σ)} . Otherwise, associativity and commutativity of ◦ imply
that the two terms are AC1-unifiable iff each subterm τ(ci) occurs in γD(σ) , the
latter of which contains exactly the fluent literals that hold in σ . The second claim
follows analogously. 2

Notice that moreover unification completeness of AC1∗ ensures

AC1∗ |= ∀V. τ(c1, . . . , cm) ◦ V 6= γD(σ)

whenever some ci (1 ≤ i ≤ m) does not hold in σ (c.f. clause 1 in Definition 5.3).
In what follows, a notation like (5.3∗) refers to the completed definition(s), listed

in the appendix, of the clause(s) in (5.3).

Lemma 5.2. Let D be a domain description in ANCC . Furthermore, let σ ⊆ FD
be a state and a ⊆ AD an action. If b′1, . . . , b

′
n are actions and e′1, . . . , e

′
n and

c′1, . . . , c
′
n both are sequences of fluent literals (n ≥ 0) then

P ∗D ∪AC1∗ |=
selection (µ(a), (µ(b′1), τ(e′1), τ(c′1)) ◦ . . . ◦ (µ(b′n), τ(e′n), τ(c′n)), γD(σ))

iff the following holds:
For each b ⊆ a let Πσ

b be the set of all alternative e-propositions in ED
for action b whose conditions hold in σ . Then there exists a selection Λσa =
λb1 , . . . , λbm for a wrt. σ such that m = n and such that there is a one-to-one
correspondence between the triples (µ(b′1), τ(e′1), τ(c′1)), . . . , (µ(b′n), τ(e′n), τ(c′n))
and the elements of Λσa —where (µ(b′i), τ(e′i), τ(c′i)) corresponding to λbj =
bj alternatively causes E if C means that b′i = bj , e′i = E , and c′i = C .

Proof. Let s = (µ(b1), τ(e′1), τ(c′1)) ◦ . . . ◦ (µ(bn), τ(e′n), τ(c′n)) . From (5.8∗) and
(5.5∗) in conjunction with Lemma 5.1 it follows that underrepresented (µ(a), s, γD(i))
is entailed iff there exists some b ⊆ a such that Πσ

b 6= {} but no subterm
(µ(b), t1, t2) occurs in s . Accordingly, following (5.8∗), overrepresented (µ(a), s,
γD(i)) is entailed iff s includes any other subterms aside from exactly one sub-
term of the form (µ(b), t1, t2) for each b ⊆ a with Πσ

b 6= {} . Thus, for each
(µ(b′i), τ(e′i), τ(c′i)) in s we can find some bj ∈ {b1, . . . , bm} and, hence, some λbj
in Λσa such that b′i = bj —and vice versa. Moreover, (5.8∗) in conjunction with
(5.5∗) ensures that e′i = E and c′i = C . The claim then follows from (5.7∗) ∈ P ∗D .

2

The following lemma describes the connection between the program clauses defin-
ing the predicate overruled and Definition 4.2:

145

Lemma 5.3. Let D be a domain description in ANCC . Furthermore, let e1, . . . , en
be a sequence of fluent literals (n ≥ 1), σ a state, a, b actions such that b ⊆ a ,
and s a term representing a selection Λσa for a wrt. σ . Then

P ∗D ∪AC1∗ |= ¬overruled (τ(e1, . . . , en), γD(σ), b, a, s) (5.18)

iff there is no ei (1 ≤ i ≤ n) such that a causes ei by some c wrt. Λσa such
that c ⊃ b and c ⊆ a .

Proof. From b ⊆ a we know |b| ≤ |a| . The proof is by induction on m = |a|−|b| .
In case m = 0 (that is, a = b), no such c can possibly exist. Correspondingly,
the literal B 6=AC1 ∅ in both disjuncts of (5.10∗) guarantees (5.18) to hold.

In case m > 0 , from (5.10∗) in conjunction with (5.3∗) and (5.4∗) and Lemma 5.1
we know that

P ∗D ∪AC1∗ |= overruled (τ(e1, . . . , en), γD(σ), b, a, s) (5.19)

iff some ei (1 ≤ i ≤ n) and some action c (with b ⊂ c ⊆ a) exist such that
clause 2 of Definition 4.2 holds for fluent literal ei and such that

P ∗D ∪AC1∗ |= ¬overruled (τ(ei), γD(σ), c, a, s) (5.20)

Since |b| < |c| ≤ |a| , we have 0 ≤ |a| − |c| < m . Hence the induction hypothesis is
applicable and ensures (5.20) be true iff a does not cause ei by some c′ wrt. Λσa
such that c ⊂ c′ ⊆ a . Thus, according to Definition 4.2, we know that (5.19) is
true iff a causes some ei by some c wrt. Λσa such that c ⊃ b . Hence the latter
(i.e., a causing some ei) being false is equivalent to (5.18) being true. 2

Finally, we prove the correctness of our definition of consistency as regards AC1-
terms that are intended to represent states:

Lemma 5.4. Let D be a domain description with fluents FD and i an AC1-term
then

P ∗D ∪AC1∗ |= ¬inconsistent (i)

iff for each fluent name f ∈ FD ,

1. either f or else f occurs in i , and

2. i does not contain any fluent term more than once.

Proof. In conjunction with Lemma 5.1, the first disjunct in (5.12∗) ensures that
no fluent term occurs twice or more in i , the second disjunct ensures that i does
not contain a fluent name along with its negation, and the third disjunct ensures
that each fluent name is represented affirmatively or negatively. 2

The following theorem concerning transition of states forms the basis of our
soundness and completeness result:

Theorem 5.1. Let D be a domain description in ANCC . If Φ is a transition
relation for ED then for each state σ ⊆ FD , action a ⊆ AD , and each term h

P ∗D ∪AC1∗ |= action (γD(σ), µ(a), h) (5.21)

iff (σ, a, σ′) ∈ Φ where h represents state σ′ .

Proof. From Lemma 5.4 and from (5.6∗) ∈ P ∗D and Lemma 5.2 it follows that
(5.21) holds iff h represents a state, there exists some term s which represents a

146

selection Λσa for a wrt. σ , and

P ∗D ∪AC1∗ |= ¬unfounded (h, γD(σ), µ(a), s) ∧ ¬impossible (h, γD(σ), µ(a), s)

holds. Following (5.11∗), (5.9∗) and Lemma 5.3 this in turn holds iff

1. for each fluent literal ` which is true in σ but false in σ′ there is some
applicable (strict or selected in s) e-proposition postulating ` , and

2. there is no fluent literal ` that holds in σ′ such that a causes ` in σ but
not a causes ` in σ .18

According to Definition 4.3, this is equivalent to (σ, a, σ′) ∈ Φ . 2

Based on this theorem, we can prove soundness and completeness of our equa-
tional logic program wrt. the semantics of ANCC as given by Definition 4.4. More
precisely, we will prove that a v-proposition ` after [a1, . . . , am] is entailed iff no
model can be found—according to (5.14∗)—which contradicts this v-proposition.
To this end, recall Definition 5.1, where we have introduced the concept of an
action tree to encode the model component ϕ . In order to test entailment of a
v-proposition using the literal result (i, [(a1, X1), . . . , (am, Xm)], τ(`) ◦G) , we have
to take into account the underlying labeled basis which has been used to construct
clause (5.14). Let k be maximal in {0, . . . ,m} such that [a1, . . . , ak] occurs in this
tree then we use the k variables Xα, . . . , Xδ assigned to the actions in this node
plus pairwise different, new variables X ′1, . . . , X

′
m−k for the tail [ak+1, . . . , am] of

the action sequence under consideration. As before, X1, . . . , Xβ denotes the entire
ordered sequence of variables assigned to the underlying basis:

Theorem 5.2. Let D be a domain description in ANCC . Furthermore, let ν =
` after [a1, . . . , am] be a v-proposition. Then ν is entailed by D iff

P ∗D ∪AC1∗ |= ¬∃I, X̃ (model (I,X1, . . . , Xβ) ∧
result (I, [(µ(a1), Xα), . . . , (µ(ak), Xδ),

(µ(ak+1), X ′1), . . . , (µ(am), X ′m−k)], τ(`) ◦G))

where X̃ = X1, . . . , Xβ , X
′
1, . . . , X

′
m−k .

Proof. Let Φ be a transition relation for D . From Lemma 5.4, (5.14∗), (5.13)∗

and repeated application of Theorem 5.1 it follows that model (i, h1, . . . , hβ) is
entailed iff the structure (σ0,Φ, ϕ) satisfies every v-proposition in D , that is,
if it is model for D—where i represents state σ0 and h1, . . . , hβ correspond
to ϕ in the following sense: For each j ∈ {1, . . . , β} , if, in the underlying labeled
basis, Xj has been assigned to the edge ending in the node [a′1, . . . , a

′
l] then

hj = γD(ϕ([a′1, . . . , a
′
l])) . The claim then follows from (5.13∗) and the fact that ν is

entailed iff there is no model (σ0,Φ, ϕ) for D in which ` holds in ϕ([a1, . . . , am]) .
2

5.4. SLDENF-Resolution

Our equational logic programs FCNCC are based on a special equational theory,
viz. AC1, and they also contain negation in the body of some program clauses. In

18 Notice again that if a causes both ` and ` then the corresponding fluent name belongs

to B↙
f

(a, σ) , that is, either value may be true in σ′ .

147

the preceding subsection, we have taken the completion of these programs as an
adequate semantics if negative literals are to be treated by negation-as-failure. An
adequate computation mechanism for programs including equality and (nonmono-
tonic) negation is SLDENF-resolution, which is based on SLD-resolution (see, e.g.,
[25]) but with the standard unification procedure replaced by an E-unification
algorithm and negation-as-failure used to treat negative subgoals. A formal intro-
duction to this resolution principle can be found in [34, 39]. In [34], soundness of
SLDENF-resolution wrt. the completion semantics (including the use of unification
complete theories) has been proved for arbitrary equational logic programs with
negation. That is, if P is a set of normal program clauses, E an equational the-
ory, and ←L1, . . . , Ln a query for which there exists an SLDENF-refutation with
computed answer substitution θ , then

P ∗ ∪ E∗ |= ∀ (L1 ∧ . . . ∧ Ln)θ

Combining this result with Theorem 5.2 proves that SLDENF-resolution can be
applied as a sound proof procedure for the entailment relation defined in ANCC .

As regards completeness of SLDENF-resolution, it is common knowledge that
completeness cannot be guaranteed even for the special case of programs with
negation and the empty equational theory [9, 1]. The classical completeness re-
sult for SLDNF-resolution is restricted to so-called hierarchical and allowed pro-
grams [9, 1]. In a hierarchical program, any SLDNF-derivation is necessarily finite,
and the allowedness criterion prevents so-called floundering : Since by definition of
SLD(E)NF-resolution negative subgoals can be selected only if they are ground, a
derivation might end up with only non-ground negative subgoals. In such cases,
the proof procedure does not come to a conclusion.

In [39], the aforementioned classical result has been lifted to logic programs
with equational theories. It has been shown that this is possible only in case the
underlying equational theory E meets two restrictions: It should be finitary (that
is, for each two terms s and t there exists a finite complete set of E-unifiers)
to ensure finiteness of derivations in hierarchical programs, and it should also be
regular (that is, for each equation s = t ∈ E the set of variables occurring in s
equals the set of variables occurring in t) to avoid the problem of floundering in
allowed programs. See [39] for a more detailed discussion and formal proof.

The equational theory used in this paper, AC1, is known to be both finitary [35]
and, obviously, regular. Nonetheless the result presented in [39] cannot be applied
since the program developed in Section 5.1 is neither hierarchical nor allowed. We
therefore have to perform a more detailed and specific analysis.

Although the programs FCNCC are not hierarchical, it can be shown that all
SLDENF-derivations we are interested in to decide entailment wrt. ANCC are
necessarily finite: Since no mutual recursion involving two or more program clauses
occurs, the only crucial clauses are direct recursive ones, that is, where the predicate
in the head also occurs in the body.

There are three clauses of this kind, shown in (5.10) and (5.13), respectively. As
regards the two definitions of overruled in (5.10), it is easy to see that each recursive
call increases the size (viz. the number of subterms) of the third argument, A .
Moreover, the body of the first (resp. second) clause can only be satisfied if there
exists a strict e-proposition (resp. a selected alternative e-proposition) for an action
which includes A . Since there is only a limited number of such propositions in a
concrete domain, the recursive calls eventually stop, provided a fair selection rule

148

is used.
Analogously, the number of recursive calls of result , c.f. (5.13), is limited by the

size of the second argument, provided the latter is (partially) instantiated. This is
indeed the case in both clause (5.14) and the query used to decide entailment of an
additional v-proposition (c.f. Theorem 5.2).

While it is easy to show finiteness of derivations, we cannot in general prove
non-floundering. As a matter of fact, whenever we try to decide entailment of a
v-proposition ` after [a1, . . . , am] by creating the clause

satisfiable ← model (I, X̃) ,

result (I, [(µ(a1), X1), . . . , (µ(am), Xm)], τ(`) ◦G) .
(5.22)

(see Theorem 5.2) and using the query ← ¬satisfiable then the derivation floun-

ders after clause (5.14) has been applied—to solve the subgoal model (I, X̃) —since
¬inconsistent (I) cannot be selected as I is a variable. Analogously, whenever
clause (5.13) has been applied such that a subgoal of the form action (I, A,H)
occurs then this can only be resolved using clause (5.6). This, however, requires
I and H be fully instantiated if the derivation is not to flounder.19 Moreover,
whenever a suitable collection S of alternative e-propositions is to be selected via
clause (5.7) then this additionally requires S to be instantiated.

There are two ways of solving this problem. First, one could define an ex-
tension of the SLDENF-resolution principle that supports a proper treatment of
non-ground, negative subgoals, such as the concept of constructive negation, which
is a well-known technique to avoid floundering in case of non-equational logic pro-
grams [8, 29]. This, however, requires a new formal definition of an extended
calculus, and then soundness and completeness have to be proved again.

Here we follow a simpler and more straightforward way. It is possible to rewrite
some program clauses such that the crucial variables become instantiated early
enough during the derivation to prevent floundering. To this end, we add a clause
that provides all possible collections of size |FD| consisting of fluent literals, where
FD denotes the underlying set of fluent names of domain D :

sterm (I)← I =AC1 H1 ◦ . . . ◦H|FD| ,
complement (H1 ◦ J1) ,

...
complement (H|FD| ◦ J|FD|) .

where H1, J1, . . . ,H|FD|, J|FD| are pairwise distinct variables.
The new predicate sterm can then be used to instantiate the crucial arguments

in advance. The following clause is a modification of (5.13):

result (I, [], I) .
result (I, [(A,H)|P], G)← sterm (H) ,

action (I, A,H) ,
result (H,P,G) .

19 The variable A always becomes instantiated when deciding entailment since action se-
quences in v-propositions are fixed.

149

and this clause can be used instead of (5.14):

model (I,X1, . . . , Xβ)
← sterm (I) ,
¬inconsistent (I) ,
result (I, [(µ(a11), Xα1

), . . . , (µ(a1m1
), Xδ1)], τ(`1) ◦G1) ,

...
result (I, [(µ(an1), Xαn

), . . . , (µ(anmn
), Xδn)], τ(`n) ◦Gn) .

Finally, to avoid floundering after clause (5.7) has been applied, by the following
clause we provide all suitable instances for a variable which represents a selection,
that is, which contains a collection of triples each of which represents an alternative
e-proposition:

eterm (∅) .
eterm ((A,E,C) ◦ S) ← alteprop (A,E,C) ,

eterm (S) ,
S 6=AC1 (A,E,C) ◦R .

Clause (5.7) is then modified as follows:

selection (A,S, I)← eterm (S) ,
¬overrepresented (A,S, I) ,
¬underrepresented (A,S, I) .

To summarize, employing the modified equational logic program avoids the prob-
lem of floundering derivations. Moreover, all derivations which occur when deciding
entailment of a v-proposition via the query ← ¬satisfiable in conjunction with
the corresponding clause (5.22) are guaranteed to terminate. Hence SLDENF-
resolution can now be applied as a sound and complete calculus for the equational
logic program encoding domains specified in ANCC . In addition, finiteness of
derivations shows that we have obtained a decision procedure for entailment in our
high-level action semantics.

6. SUMMARY

We have presented formalisms for intentionally specifying actions so as to have
nondeterministic effects, and for extracting as much as possible consistent and
reasonable information from contradictory representations of dynamic systems by
interpreting them so as to be implicitly nondeterministic. Our resulting language
ANCC allows the representation of nondeterministic concurrent actions in dynamic
systems and the resolution of conflicts.

We have furthermore developed a sound and complete encoding of domain spec-
ifications in ANCC in terms of equational logic programming and, in so doing,
have provided an instrument for automated reasoning about these domains. Gen-
erally, the translation of high-level languages like ANCC into different approaches
designed for reasoning about dynamic systems, actions, and change allows to com-
pare the expressiveness and limitations of these approaches in a precise and uniform
way. As argued in, e.g., [12, 32, 33, 36, 37], doing this is in favorable contrast to the
traditional way of justifying new approaches with reference to a few standard exam-
ples such as the blocksworld or the Yale Shooting scenario and its enhancements.

150

To this end, translations of A and some of its extensions, for instance, into a num-
ber of existing action calculi have recently been used for the purpose of comparison
and to study their range of applicability (see, e.g., [12, 11, 20, 5, 23, 10, 22]). The
extension defined in this paper, ANCC , may therefore be employed as a formal,
high-level action semantics for action calculi which successfully deal with domains
involving explicit and implicit indeterminism as well as concurrency.

Our formalisms are based on the Action Description Language A . Two recent
extensions of A , namely, first-order-fluents [11] and indirect effects [23], are not
subsumed by our approach. On the other hand, the fluent calculus, which we
have used here, has already been extended to successfully cope both with non-
propositional fluents and with the ramification problem [41]. Hence we have good
reasons to assume that the logic program presented in this paper can be extended
to form an adequate encoding of a high-level action semantics including ANCC
and indirect effects.

Acknowledgments

The authors want to thank two anonymous reviewers for their exceptionally detailed
comments and helpful suggestions. The first author acknowledges support from
the German Research Community (DFG) within project MPS under grant no.
Ho 1294/3-3.

A. THE COMPLETED EQUATIONAL LOGIC PROGRAM

Let D be a domain description in ANCC , and let (PD,AC1) be the corresponding
equational logic program. The completion P ∗D of PD consists of the following first-
order formulas.

Let FD be the underlying set of fluent names then

∀X (complement (X) ↔
∨
f∈FD

X = f ◦ f) (5.3∗)

completes FLUENTD .
Let { ai causes ei if Ci | 1 ≤ i ≤ k } be the set of all strict e-propositions

in ED (k ≥ 0) then

∀A,E,C (eprop (A,E,C) ↔
∨k

i=1
(A = µ(ai) ∧
E = τ(ei) ∧
C = τ(Ci)))

(5.4∗)

completes EPROPD .
Let { ai alternatively causes Ei if Ci | 1 ≤ i ≤ k } be the set of all alterna-

tive e-propositions in ED (k ≥ 0) then

∀A,E,C (alteprop (A,E,C) ↔
∨k

i=1
(A = µ(ai) ∧
E = τ(Ei) ∧
C = τ(Ci)))

(5.5∗)

completes ALTEPROPD .

151

The completion of clause (5.6) and (5.7) is as follows:

∀I, A,H (action (I,A,H) ↔ ∃S (selection (A,S, I) ∧
¬impossible (H, I,A, S) ∧
¬unfounded (H, I,A, S) ∧
¬inconsistent (H)))

(5.6∗)

∀A,S, I (selection (A,S, I) ↔ ¬overrepresented (A,S, I) ∧
¬underrepresented (A,S, I))

(5.7∗)

The three clauses shown in (5.8) are completed by

∀A, I, S (overrepresented (A,S, I) ↔
∃R,X (X 6= ∅ ∧

S = X ◦R ∧
¬underrepresented (A,S, I)))

∀S,X, Y (underrepresented (X,S, Y) ↔
∃A,B,C,E, J (X = A ◦B ∧

Y = C ◦ J ∧
alteprop (A,E,C) ∧
¬represented (A,S)))

∀A,S (represented (A,S) ↔ ∃C,E,R. S = (A,E,C) ◦R)

(5.8∗)

The completion of impossible is

∀A, I, S,X (impossible (X, I,A, S) ↔
∃F,G,H (X = F ◦H ∧

overruled (F, I, ∅, A, S) ∧
complement (F ◦G) ∧
¬overruled (G, I, ∅, A, S)))

(5.9∗)

and the completion of the two clauses for overruled is the formula

∀A,S,X, Y, Z (overruled (X,Y,A,Z, S) ↔
∃B,C,D, F,G,H, J (X = F ◦H ∧

Y = C ◦ J ∧
Z = A ◦B ◦D ∧
eprop (A ◦B,G,C) ∧
B 6= ∅ ∧
complement (F ◦G) ∧
¬overruled (G,C ◦ J,A ◦B,A ◦B ◦D,S)))

∨
∃B,C,D,E, F,G,H, J,R (X = F ◦H ∧

Y = C ◦ J ∧
Z = A ◦B ◦D ∧
S = (A ◦B,G ◦ E,C) ◦R ∧
B 6= ∅ ∧
complement (F ◦G) ∧
¬overruled (G,C ◦ J,A ◦B,A ◦B ◦D,S)))

(5.10∗)

152

Completing (5.11) yields

∀A,S,X, Y (unfounded (X,Y,A, S) ↔
∃F,G,H, I (X = F ◦H ∧

Y = G ◦ I ∧
complement (F ◦G) ∧
¬overruled (G,G ◦ I, ∅, A, S)))

(5.11∗)

The four clauses used to express consistency are completed as follows:

∀I (inconsistent (I) ↔ ∃G,H (I = G ◦G ◦H ∧ G 6= ∅)
∨
∃F,G (I = F ◦G ∧

complement (F))
∨
∃F,G (complement (F ◦G) ∧

F 6= ∅ ∧ G 6= ∅ ∧
¬holds (F, I) ∧ ¬holds (G, I)))

∀F, I (holds (F, I) ↔ ∃H. I = H ◦ F)

(5.12∗)

Clause (5.13) is completed by

∀I,G, L (result (I, L,G) ↔ (L = [] ∧ I = G)
∨
∃A,H,P (L = [(A,H)|P] ∧

action (I, A,H) ∧
result (H,P,G)))

(5.13∗)

Finally, let { `i after [ai1, . . . , aimi
] | 1 ≤ i ≤ n } be the set of all v-propositions

in VD (n ≥ 0) then

∀I,X1, . . . , Xβ (model (I,X1, . . . , Xβ) ↔
¬inconsistent (I) ∧∧n

i=1
result (I, [(µ(ai1), Xαi), . . . , (µ(aimi), Xδi)], τ(`i) ◦Gi))

(5.14∗)

completes (5.14).

REFERENCES

1. K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
chapter 2, pp. 89–148. Morgan Kaufmann, 1987.

2. F. Baader and J. H. Siekmann. Unification theory. In D. M. Gabbay, C. J. Hogger,
and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming. Oxford University Press, 1993.

3. A. B. Baker. A simple solution to the Yale Shooting problem. In R. Brachman, H. J.
Levesque, and R. Reiter, editors, Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning (KR), pp. 11–20, Toronto,
Kanada, 1989. Morgan Kaufmann.

4. C. Baral. Reasoning about actions: Non-deterministic effects, constraints and qual-
ification. In C. S. Mellish, editor, Proceedings of the International Joint Conference

153

on Artificial Intelligence (IJCAI), pp. 2017–2023, Montreal, Canada, Aug. 1995.
Morgan Kaufmann.

5. C. Baral and M. Gelfond. Representing concurrent actions in extended logic pro-
gramming. In R. Bajcsy, editor, Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pp. 866–871, Chambéry, France, Aug. 1993.
Morgan Kaufmann.

6. W. Bibel. A deductive solution for plan generation. New Generation Computing,
4:115–132, 1986.

7. S. Brüning, S. Hölldobler, J. Schneeberger, U. Sigmund, and M. Thielscher. Dis-
junction in resource-oriented deductive planning. In D. Miller, editor, Proceedings
of the International Logic Programming Symposium (ILPS), page 670, Vancouver,
Canada, Oct. 1993. MIT Press. (Poster presentation).

8. D. Chan. Constructive negation based on the completed database. In R. Kowal-
ski and K. Bowen, editors, Proceedings of the International Joint Conference and
Symposium on Logic Programming (IJCSLP), pp. 111–125. MIT Press, 1988.

9. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pp. 293–322. Plenum Press, 1978.

10. M. Denecker and D. de Schreye. Representing incomplete knowledge in abductive
logic programming. Journal of Logic and Computation, 5(5):553–577, 1995.

11. P. M. Dung. Representing actions in logic programming and its applications in
database updates. In D. S. Warren, editor, Proceedings of the International Con-
ference on Logic Programming (ICLP), pp. 222–238, Budapest, Hungary, June
1993. MIT Press.

12. M. Gelfond and V. Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 17:301–321, 1993.

13. J.-Y. Girard. Linear Logic. Journal of Theoretical Computer Science, 50(1):1–102,
1987.

14. G. Große. Propositional State-Event Logic. In C. MacNish, D. Peirce, and L. M.
Peireira, editors, Proceedings of the European Workshop on Logics in AI (JELIA),
volume 838, pp. 316–331, York, UK, 1994, Springer.

15. S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection. Arti-
ficial Intelligence Journal, 33(3):379–412, 1987.

16. C. S. Herrmann and M. Thielscher. Reasoning about continuous processes. In
B. Clancey and D. Weld, editors, Proceedings of the AAAI National Conference on
Artificial Intelligence, pp. 639–644, Portland, OR, Aug. 1996. MIT Press.

17. S. Hölldobler and J. Schneeberger. A new deductive approach to planning. New
Generation Computing, 8:225–244, 1990.

18. S. Hölldobler and M. Thielscher. Computing change and specificity with equational
logic programs. Annals of Mathematics and Artificial Intelligence, 14(1):99–133,
1995.

19. J. Jaffar, J.-L. Lassez, and M. J. Maher. A theory of complete logic programs with
equality. Journal of Logic Programming, 1(3):211–223, 1984.

20. G. N. Kartha. Soundness and completeness theorems for three formalizations of
actions. In R. Bajcsy, editor, Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pp. 724–729, Chambéry, France, Aug. 1993. Morgan
Kaufmann.

21. G. N. Kartha. Two counterexamples related to Baker’s approach to the frame
problem. Artificial Intelligence Journal, 69(1–2):379–391, 1994.

154

22. G. N. Kartha. On the range of applicability of Baker’s approach to the frame
problem. In B. Clancey and D. Weld, editors, Proceedings of the AAAI National
Conference on Artificial Intelligence, pp. 664–669, Portland, OR, Aug. 1996. MIT
Press.

23. G. N. Kartha and V. Lifschitz. Actions with indirect effects. In J. Doyle, E. Sande-
wall, and P. Torasso, editors, Proceedings of the International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR), pp. 341–350, Bonn, Ger-
many, May 1994. Morgan Kaufmann.

24. F. Lin and Y. Shoham. Concurrent actions in the situation calculus. In Proceedings
of the AAAI National Conference on Artificial Intelligence, pp. 590–595, San Jose,
CA, 1992. MIT Press.

25. J. W. Lloyd. Foundations of Logic Programming. Series Symbolic Computation.
Springer, second, extended edition, 1987.

26. W. Lukaszewicz and E. Madalińska-Bugaj. Reasoning about action and change
using Dijkstra’s semantics for programming languages: Preliminary report. In
C. S. Mellish, editor, Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), pp. 1950–1955, Montreal, Canada, Aug. 1995. Morgan
Kaufmann.

27. M. Masseron, C. Tollu, and J. Vauzielles. Generating plans in linear logic I. Actions
as proofs. Journal of Theoretical Computer Science, 113:349–370, 1993.

28. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, 4:463–502, 1969.

29. T. C. Przymusinski. On constructive negation in logic programming. In E. L. Lusk
and R. A. Overbeek, editors, Proceedings of the North American Conference on
Logic Programming (NACLP), Cleveland, OH, 1989. (Insertion).

30. R. Reiter. The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz, editor, Artifi-
cial Intelligence and Mathematical Theory of Computation, pp. 359–380. Academic
Press, 1991.

31. P. Richard etal. À gauche en sortant de l’ascenseur. Renn Productions, 1988.

32. E. Sandewall. The range of applicability of nonmonotonic logics for the inertia
problem. In R. Bajcsy, editor, Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pp. 738–743, Chambéry, France, Aug. 1993.
Morgan Kaufmann.

33. E. Sandewall. Features and Fluents. The Representation of Knowledge about Dy-
namical Systems. Oxford University Press, 1994.

34. J. C. Shepherdson. SLDNF-resolution with equality. Journal of Automated Rea-
soning, 8:297–306, 1992.

35. M. E. Stickel. A complete unification algorithm for associative-commutative func-
tions. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 71–76, Tbilisi, USSR, 1975.

36. M. Thielscher. An analysis of systematic approaches to reasoning about actions
and change. In P. Jorrand and V. Sgurev, editors, International Conference on
Artificial Intelligence: Methodology, Systems, Applications (AIMSA), pp. 195–204,
Sofia, Bulgaria, Sept. 1994. World Scientific.

37. M. Thielscher. The logic of dynamic systems. In C. S. Mellish, editor, Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1956–
1962, Montreal, Canada, Aug. 1995. Morgan Kaufmann.

155

38. M. Thielscher. Causality and the qualification problem. In L. C. Aiello, J. Doyle,
and S. Shapiro, editors, Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR), pp. 51–62, Cambridge, MA,
Nov. 1996. Morgan Kaufmann.

39. M. Thielscher. On the completeness of SLDENF-resolution. Journal of Automated
Reasoning, 17(2):199-214 (1996).

40. M. Thielscher. Qualification and Causality. Technical Report TR-96-026, Interna-
tional Computer Science Institute (ICSI), Berkeley, CA, July 1996.

41. M. Thielscher. Ramification and causality. Artificial Intelligence Journal, 89(1–2):
317–364 (1997).

