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Abstract

We provide a solution to the ramification problem that integrates findings of different axiomatic
approaches to ramification from the last ten to fifteen years. For the first time, we present a
solution that: (1) is independent of a particular time structure, (2) is formulated in classical
first-order logic, (3) treats cycles – a notoriously difficult aspect – properly, and (4) is assessed
against a state-transition semantics via a formal correctness proof.

This is achieved as follows: We introduce indirect effect laws that enable us to specify rami-
fications that are triggered by activation of a formula rather than just an atomic effect. We
characterise the intended models of these indirect effect laws by a state-transition semantics.
Afterwards, we show how to compile a class of indirect effect laws into first-order effect axioms
that then solve the ramification and frame problems. We finally prove the resulting effect axioms
sound and complete with respect to the semantics defined earlier.

Keywords: reasoning about actions, indirect effects, ramification problem, causality, cyclic
dependencies

1. Introduction

The ramification problem is concerned with how to represent, and reason about, the indirect
effects of actions and events. It has been identified more than 25 years ago by Ginsberg and Smith
[16] as a necessary consequence of solving the classical frame problem [30]. The latter is concerned
with limiting the update of a state to the direct effects of an action, but Ginsberg and Smith [16]
have observed that this may result in states that violate fundamental state constraints. They
have tried to reconcile this by inferring additional, implicit effects from the state constraints.
But it soon became clear that state constraints alone do not provide a sufficiently accurate
representation for deriving the correct indirect effects [24].

Since then, research into the ramification problem has made significant progress. Most of the
earlier results concern the representational aspect after several authors found that some form of
causal information is necessary to be able to correctly infer the ramifications of actions [25, 29, 37].
More recently, the attention has turned to the inferential aspect of the ramification problem,
which is concerned with how to draw the right conclusions from the causal information. Cyclic
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dependencies between causes and effects are the most difficult issue in this regard, because they
can easily lead to inferring phantom effects that would not occur in reality [8].

Existing approaches to the ramification problem can therefore be assessed in two dimensions:
according to the expressiveness of their underlying representation technique, and whether or not
they can handle cycles.

• The following approaches all use causal laws in which ramifications are triggered by the
activation of a formula:

– Lin’s approach [25] is tied to the action formalism of the Situation Calculus and does
not allow for cycles.

– Lin and Soutchanski [27] extend the work of Lin [25] to cope with cycles.

– Shanahan’s solution [35] is tied to the Event Calculus and does not cope with cycles.

– McIlraith [31] disallows cycles and thinks of ramification as syntactical refinement of
state constraints, where the aim is to satisfy these constraints.

• Thielscher [37, 38] uses causal laws with indirect effects being triggered by a literal and
checked against an intermediate (possibly unstable) context.

• Denecker et al. [8] show how the principle of inductive definition can treat the ramification
problem. In their work, indirect effects are triggered by a formula and checked against an
initial context. Due to the constructiveness of inductive definitions, the approach can deal
with cycles.

In this paper, we build on much of this past research and combine and extend it to the first
general axiomatic first-order approach to the ramification problem that can handle cycles. The
key features of our solution can be summarised as follows.

1. It provides a general representation technique that combines trigger formulas with both an
initial and a terminal context.

2. It is independent of a specific action formalism.

3. It provides a general first-order solution to the problem of inferring indirect effects in the
presence of cycles.

All this is achieved as follows.
We begin by defining a special-purpose action language for representing knowledge of causes

and effects that enables us to specify ramifications that are triggered by activation of a formula
rather than just an atomic effect. Moreover, each potential ramification can be embedded in both
the initial and the terminal context of a transition. We then characterise the intended models of
these indirect effect laws by a state-transition semantics.

Turning to the inferential aspect of the ramification problem, we develop a method for com-
piling indirect effect laws into effect axioms that then solve the ramification and frame problems.
These effect axioms are formalised in our unifying action calculus, which is not confined to a par-
ticular time structure and can be instantiated with different action formalisms like the Situation
Calculus or the Event Calculus [39].

For the compilation, special care needs to be taken to deal with positive cyclic fluent depend-
encies, that is, self-supporting effects. Using techniques from logic programming, we identify
positive loops among indirect effects and build their corresponding loop formulas [28] into the
effect axiom. We evaluate our first-order solution to the inferential ramification problem by prov-
ing the resulting effect axioms sound and complete with respect to the state-transition semantics
defined earlier.
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Structure of this paper. The next section provides the necessary background on the unifying
action calculus and on the answer set semantics for logic programs. In the section afterwards, we
introduce indirect effect laws and their semantics. In Section 4, we provide an axiomatic combined
solution to the frame and ramification problems. We start out with how we axiomatise persistence
and direct effects, then how we include indirect effects and finally and most importantly how we
deal with circular dependencies among effects. After proving the correctness of our axiomatic
solution, we show how to express arbitrary trigger formulas in our formalism. We then give a
detailed discussion of related work and conclude.

2. Background

In the following, we will employ sorted first-order logic with equality. We assume the language
contains the fixed formulas >,⊥ for truth and falsity, respectively. More complex compound
formulas may use negation ¬, conjunction ∧ and disjunction ∨, and universal ∀ and existential
∃ quantification. For literals of the language, we use a meta-level negation · which is defined by
¬P def= P and P def= ¬P ; it carries over to sets L of literals by L def=

{
ψ
∣∣ ψ ∈ L}. Furthermore,

each literal has a sign defined by sign(P ) def= + and sign(¬P ) = −. First-order structures are
denoted by M, and interpretations I consist, as usual, of a structure M and a variable valuation
V.

2.1. Unifying Action Calculus

The unifying action calculus (UAC) [39] has the objective to bundle research efforts in action
formalisms. It does not confine to a particular time structure and can be instantiated with
situation-based action calculi, like the Situation Calculus or the Fluent Calculus, as well as with
formalisms using a linear time structure, like the Event Calculus.

The UAC is based on a finite sorted signature with predefined sorts for the basic building
blocks of virtually all action formalisms: time itself, world properties that change over time
(fluents), and actions, that initiate these changes.

Definition 2.1. A domain signature is a signature which includes the sorts time, fluent and
action along with the predicates

• < : time× time denoting an ordering of time points,

• Holds : fluent× time stating whether a fluent evaluates to true at a given time point,

• Poss : action × time × time indicating whether an action is applicable for particular
starting and ending time points.

The following definition introduces the most important types of formulas of the unifying
action calculus: they allow to express properties of states and applicability conditions and effects
of actions.

Definition 2.2. Let ~s be a sequence of variables of sort time.

• A state formula Φ[~s ] in ~s is a first-order formula with free variables ~s where

– for each occurrence of Holds(f, s) in Φ[~s ] we have s ∈ ~s and

– predicate Poss does not occur.

Let s, t be variables of sort time and A be a function into sort action.
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• A UAC precondition axiom is of the form

Poss(A(~x), s, t) ≡ πA[s] (1)

where πA[s] is a state formula in s with free variables among s, t, ~x.

• A UAC effect axiom is of the form

Poss(A(~x), s, t) ⊃ Υ1[s, t] ∨ . . . ∨Υk[s, t] (2)

where k ≥ 1 and each Υi (1 ≤ i ≤ k) is a formula of the form

(∃~y i)(Φi[s] ∧ (∀f)(Γ+
i ⊃ Holds(f, t)) (3)

∧ (∀f)(Γ−i ⊃ ¬Holds(f, t)))

in which Φi[s] is a state formula in s with free variables among s, ~x, ~y, and both Γ+[s, t]
and Γ−[s, t] are state formulas in s, t with free variables among f, s, t, ~x, ~y.

Example 2.3 (Gear Wheels [8]). Two gear wheels can be separately turned and stopped. Let the
fluents W1,W2 express that the first (respectively second) wheel is turning, then Holds(W1, s)
and ¬Holds(W2, s) are examples of state formulas in s. Let the actions to initiate and stop
turning be Turni and Stopi (for i = 1, 2) with precondition axioms

Poss(Turni, s, t) ≡ ¬Holds(Wi, s) Poss(Stopi, s, t) ≡ Holds(Wi, s)

The (direct) effects of the actions can be formalised by these UAC effect axioms:

Poss(Turni, s, t) ⊃ ((∀f)(f = Wi ∨Holds(f, s) ⊃ Holds(f, t))∧
(∀f)(f 6= Wi ∧ ¬Holds(f, s) ⊃ ¬Holds(f, t)))

Poss(Stopi, s, t) ⊃ ((∀f)(f 6= Wi ∧Holds(f, s) ⊃ Holds(f, t))∧
(∀f)(f = Wi ∨ ¬Holds(f, s) ⊃ ¬Holds(f, t)))

The effects are unconditional and deterministic, hence in both cases there is only one sub-formula
Υ1 (cf. (2)), whose condition Φ1[s] (cf. (3)) is equivalent to > and therefore can be omitted. The
reader may note that the two effect axioms imply the two wheels to be independent, because it
follows, for example,

Poss(Turn1, s, t) ∨ Poss(Stop1, s, t) ⊃ (Holds(W2, t) ≡ Holds(W2, s))

provided that W1 6= W2. Later in this paper we will consider the ramification problem that
arises from interlocking the wheels.

Next, we formalise the concept of an (action) domain axiomatisation with its notion of time
and action laws.

Definition 2.4. Consider a fixed UAC domain signature. A UAC domain axiomatisation is a
set of axioms Σ = Ω ∪Π ∪Υ ∪ Σaux , where

• Ω is a finite set of foundational axioms that define the underlying time structure,

• Π is a set of precondition axioms (1),
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• Υ is a set of effect axioms (2),

• Π and Υ contain exactly one axiom for each function into sort action and

• Σaux is a set of auxiliary axioms containing unique-names axioms for sorts fluent and
action.

2.2. Logic Programming

Since the underlying idea of our axiomatic solution to the ramification problem with cycles
uses ideas from answer set programming, we first introduce the original concepts from logic
programming.

Definition 2.5. For a propositional or first-order signature, a definite logic program rule is of
the form H ← B1, . . . , Bm where H,B1, . . . , Bm are atoms; H is the head and the Bi are the
body atoms. A definite logic program Λ is a set of definite logic program rules.

A rule is called ground if it does not contain variables. This notion carries over to logic
programs. To define the semantics of a ground logic program Λ, one approach is to define an
operator TΛ that maps sets of ground atoms to sets of ground atoms, where

TΛ(S) = {H | H ← B1, . . . , Bm ∈ Λ, {B1, . . . , Bm} ⊆ S}

that is, the operator returns all atoms which can be derived from the atoms in the input set
using rules from the program. A set S of atoms is then a supported model of the program iff it
is a fixpoint of TΛ, that is, if TΛ(S) = S. The axiomatic counterpart to this fixpoint property
is given by Clark’s completion [6], which syntactically transforms a program into a set of logical
equivalences such that the models of these equivalences correspond one-to-one with the supported
models of the program.

For definite logic programs Λ, the operator TΛ is monotone and so possesses a least fixpoint,
which can be regarded as the canonical or intended model of the program. Once negation is
allowed in rule bodies, however, the operator need not be monotone any more and the existence
of fixpoints (i.e. models of the program) cannot be guaranteed. What is more, supported model
semantics in general does not check for atoms that cyclicly depend on each other. This may lead
to unintuitive and unintended results when logic programs are used for knowledge representation
purposes.

Gelfond and Lifschitz [13] introduced the stable model semantics, that checks for cyclic self-
support in a declarative way. For a given signature, a normal logic program rule is of the form

H ← B1, . . . , Bm, not C1, . . . , not Cn

whereH,B1, . . . , Bm, C1, . . . , Cn are atoms –B1, . . . , Bm are the positive body atoms and C1, . . . , Cn
are the negative body atoms. A variable occurs positively in a rule if it occurs in a positive body
atom. A variable occurs negatively in a rule if it occurs in the head or in a negative body atom.
A rule is called safe if any variable that occurs negatively in the rule also occurs positively. A
variable is called local if it occurs in the body but not in the head.

A normal logic program is a set of normal logic program rules. A normal logic program is
ground if all its rules are ground.

Definition 2.6 (Answer Set). Let Λ be a ground normal logic program and M be a set of ground
atoms. M is an answer set for Λ iff M is the least fixpoint of TΛM , where the definite program
ΛM is obtained from Λ by (1) eliminating each rule whose body contains a literal not C with
C ∈M , and (2) deleting all literals of the form not C from the bodies of the remaining rules.
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This definition guarantees that – under the assumption that all atoms not in M are false –
there is a constructive proof for all atoms in M .

Loops and Loop Formulas. Lin and Zhao [28] discovered an interesting relationship between
Clark’s completion for definite logic programs [6] and the answer set semantics. The relationship
focuses on dependencies among program atoms, where P depends on Q if there is a program
rule with head P such that Q is among the rule’s positive body atoms. Answer set semantics
implicitly “checks” for positive cyclic dependencies among program atoms and disallows answer
sets that contain unjustified self-referential loops. As Clark completion does not check for cycles,
it may allow models that do not correspond to answer sets. Lin and Zhao [28] showed that
adding so-called loop formulas for each loop of Λ to the Clark completion, there is a one-to-one
correspondence between the models of the resulting propositional theory and the answer sets of
Λ. So this propositional theory forms the axiomatic counterpart of the answer set semantics.

Chen et al. [5] later generalised the notion of a loop for programs with variables to avoid
computing essentially the same loops on different ground instantiations of a program. They
provided a theoretical result that guarantees the existence of a finite, complete set of loops for
programs over relational signatures.1 In their work, program clauses with variables are viewed
as representatives of their ground instances.

Definition 2.7. Let Λ be a logic program over a relational signature Ξ. The positive dependency
graph GΛ for Λ is the (possibly infinite) graph (V,E) where V is the set of atoms over Ξ and for
µ, ν ∈ V , we have (µ, ν) ∈ E iff there is a program ruleH ← B1, . . . , Bm, not C1, . . . , not Cn ∈ Λ
and a substitution θ such that Hθ = µ and Biθ = ν for some 1 ≤ i ≤ m. A finite, non-empty
subset L of V is called a first-order loop of Λ iff for all µ, ν ∈ L, there is a directed, non-zero
length path from µ to ν in the subgraph of GΛ induced by L. For two sets of literals L1, L2

we say that L1 subsumes L2 if there is a substitution θ with L1θ = L2. A set L of loops of a
program Λ is complete iff for each loop L of Λ there is an L′ ∈ L that subsumes L.

The main result of Chen et al. [5] identifies a syntactical class of programs for which the
answer sets can be captured by a finite logical theory that is independent of a specific ground
instantiation.

Lemma 2.8. [5, Proposition 9] Let Λ be a normal logic program over a relational signature. Λ
has a finite, complete set of loops if no rule in Λ contains local variables.

3. An Action Language with Indirect Effects

Much like the frame problem, the ramification problem of reasoning about actions has aspects
that relate to specification and representation of as well as reasoning about effects. Where the
frame problem is concerned with world properties that do not change, the ramification problem
is about world properties that change indirectly – that is, not as a direct result of applying
the action but rather as a result of a change induced by the action. The main task here is to
efficiently deal with domino effects, where a single change can initiate arbitrarily complex chains
of indirect effects. Specifying these effects should be possible in a modular, elaboration-tolerant
fashion. For example, it should be sufficient to state indirect effect relations only for immediate
neighbours in the effect chain and have the theory figure out what actually happens. After all
(direct and indirect) effects have been determined, the persistence assumption can be employed

1Although finite, the size of the set of loops may in the worst case be exponential in the number of program
atoms for propositional programs already.
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to complete the knowledge about the resulting time point with those world properties that have
not been affected by direct or indirect effects.

We will now introduce an action language for the purpose of specifying and reasoning about
dynamic domains with indirect action effects. Building upon a vocabulary of fluents and actions,
it offers a more or less standard way of expressing the direct effects of actions. Below, a fluent
formula is like an ordinary first-order formula with the difference that fluent terms play the
role of atomic formulas; consequently a fluent literal is a fluent or its negation.

Definition 3.1. Consider a fixed UAC domain signature. Let A be a function into sort action
and ~x be a sequence of variables matching A’s arity.

• A precondition law for A(~x) is of the form possible A(~x) iff ΦA where ΦA is a fluent
formula with free variables in ~x.

• A direct effect law for A(~x) is of the form action A(~x) causes ψ if Φ where ψ (the effect)
is a fluent literal and Φ (the condition) is a fluent formula.

An action domain specification (ADS) Θ – for short, domain – is a finite set of precondition and
direct effect laws.

The variables ~x matching an action A’s arity are placeholders for the arguments of the
action. The arguments can be understood as those domain objects which are directly affected
by A. The action’s precondition may refer to these arguments, but may not contain any further
free variables. Effect laws for action A may refer to arbitrary variables, in particular to those
among ~x. After compilation to an effect axiom, the variables in ~x are universally quantified from
the outside. This expresses the intuition that precondition and effect laws hold for any ground
instance of the action.

We assume without loss of generality that different effect laws for the same action A(~x) share
only variables among ~x, and that these constitute the only pairs of elements of action domain
specifications that share variables. In view of our later solution to the combined frame and
ramification problems, the consequence of an effect law must be a literal, not complex formulas.
While this prevents the use of disjunctions to represent actions with indeterminate effects, these
actions can be easily modelled within such a setting following Lin’s [26] approach of using multiple
effect laws, one for each possible effect, as illustrated later in this section with Example 3.7.

Example 3.2 (Bowl Position). Consider the following simple domain that involves a table and
a bowl of soup.2 Without wishing to anticipate subsequent definitions, we exemplify our desired
state transition semantics in the following figures.

If the soup is on the table and just one side of the table is lifted while the other stays on the
ground, the bowl falls off and the soup will be spilled.

{OnTable,¬LeftUp,¬RightUp,¬Spill} LiftRight
−−−−−−−−−→ {¬OnTable,¬LeftUp,RightUp, Spill}

2For the purpose of this paper, we focus only on the ramification aspects of this domain, and not on its
concurrency aspects. In principle, our approach to ramification can be combined with any equally general approach
to concurrency to treat both aspects.
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If however both sides of the table are lifted at the same time, there will be no spill and the bowl
stays on the table.

{OnTable,¬LeftUp,¬RightUp,¬Spill} LiftBoth−−−−−−−−−→ {OnTable, LeftUp,RightUp,¬Spill}

If the soup is not on the table, there will be no spill whatsoever.

{¬OnTable,¬LeftUp,¬RightUp,¬Spill} LiftRight
−−−−−−−−−→ {¬OnTable,¬LeftUp,RightUp,¬Spill}

With the equipment introduced in Definition 3.1 above, we can model this domain ΘSpill in
our action language as follows. The fluent sort consists of the functions OnTable (the soup is
on the table) LeftUp,RightUp (the left, resp. right side of the table is lifted), Spill (the soup is
spilled); available action functions are LiftLeft, LiftRight for lifting either side of the table and
LiftBoth for lifting both sides simultaneously. The effects of the last action are clearly specified
by action LiftBoth causes LeftUp and action LiftBoth causes RightUp.

To formalise the semantics of action effects, we begin with how we capture the truth values
of all domain-relevant fluents at a specific time point via so-called states. A state represents a
snapshot of the properties of the world at a certain point in time. Under the assumption that all
objects in the domain are designated by ground terms, the semantics of closed fluent formulas
can be defined in a standard way.

Definition 3.3. Consider a fixed UAC domain signature Ξ. A state is a maximal consistent set
of ground fluent literals. The satisfaction relation |= between a state S and ground fluent atoms
ϕ and fluent formulas Φ1,Φ2 is recursively defined by

S |= > and S 6|= ⊥
S |= ϕ iff ϕ ∈ S
S |= ¬Φ1 iff S 6|= Φ1

S |= Φ1 ∧ Φ2 iff both S |= Φ1 and S |= Φ2

S |= Φ1 ∨ Φ2 iff one of S |= Φ1 or S |= Φ2

S |= (∀x)Φ1 iff S |= Φ1 {x 7→ t} for all ground terms t over Ξ

S |= (∃x)Φ1 iff S |= Φ1 {x 7→ t} for some ground term t over Ξ

Whether a fluent formula is satisfied by a given state will later be used to figure out if a
conditional action effect occurs. To compute the changes to a state caused by action effects,
we use the concept of state update known from the Fluent Calculus. For the purpose of this
definition, direct effect laws with variables are viewed as representatives of their ground instances.

Definition 3.4. Consider a fixed UAC domain signature. For a state S and set L of fluent
literals, define the update of S with L as S + L def= (S \ L) ∪ L. Let Θ be an action domain
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specification and α be a ground term of sort action. The resulting state of α in S is

S + {ψ | action α causes ψ if Φ ∈ Θ, S |= Φ} (4)

So for a given state S and an action A applied in S, the resulting state is simply the state
that contains all positive and negative effects whose conditions were satisfied in S and all literals
that are not affected by the action. Note that S + L is a state if and only if L is consistent.

Example 3.2 (Continued). Let us apply the action LiftBoth to the previously depicted initial
state S = {OnTable,¬LeftUp,¬RightUp,¬Spill} where the table is level and on the ground with
the soup on top of it. State update determines the resulting state S + {LeftUp,RightUp} =
{OnTable, LeftUp,RightUp,¬Spill}.

For the remaining actions LiftLeft and LiftRight, we could be tempted to specify their effects
by, say,

action LiftLeft causes LeftUp

action LiftLeft causes Spill if OnTable ∧ ¬RightUp

action LiftLeft causes ¬OnTable if OnTable ∧ ¬RightUp

for LiftLeft and symmetrically for LiftRight. But there are several issues with this specification:
Firstly, it makes unstated assumptions. The second and third law implicitly assume that

the right side of the table not being up persists through lifting the left. But this cannot be
guaranteed. An effect may occur at the same time which causes the left side to be up as well,
leading the representation above to falsely predict a spill. What we want to express is that there
is a spill if the two sides of the table are at different levels in the resulting state! This also relates
to elaboration tolerance: if the specification is later changed, these laws might become incorrect
and would have to be revisited. This is in contrast to the property of elaboration tolerance that
we desire for our formalism, meaning that we incorporate new domain information by adding
new laws.

Secondly, the specification above is not a faithful representation of causality. Although the
left side of the table being up can be seen as a direct effect of lifting it, this hardly holds for the
bowl falling off the table and subsequently producing a spill on the floor.

Thirdly, assume the chain of events possibly initiated by lifting the table does not stop
there. What if a paper airplane happens to lie below the table and the spilled soup wets it,
thereby impairing the plane’s ability to fly? Surely, we cannot take into account all such absurd
contingencies when specifying the supposed direct effects of lifting the table. It is particularly
mentionable here that the cause of the paper airplane becoming wet is irrelevant to its subsequent
not-flying, yet the effect would have to be duplicated for the effect specifications of LiftLeft and
LiftRight.

From these reflections we can see that formulating all possible changes using direct effect laws
leads to cumbersome and at last unmanageably large action specifications, if it is not outright
impossible. To deal with this representational aspect of the ramification problem, we introduce
here a modular specification of indirect action effects. We employ expressions that specify certain
conditions under which a change of truth value of one fluent causes a change of truth value of
another fluent. These conditions do not hinge on execution of a specific action, but solely depend
on change of a world property instead.

Definition 3.5. Consider a fixed UAC domain signature and let χ, ψ be fluent literals and
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Φ1,Φ2 be fluent formulas. An indirect effect law is of the form

effect χ causes ψ if Φ1 before Φ2 (5)

where χ is the trigger, ψ is the effect, Φ1 is the initial and Φ2 the terminal context. An indirect
effect law is open if it contains variables, otherwise it is closed.

The intended reading of such an indirect effect law is “whenever Φ1 holds in the starting
state, Φ2 holds in the resulting state and χ has turned from false to true during action execution,
then ψ should be an indirect effect.” If both contexts are >, we omit them and simply write
effect χ causes ψ.

Example 3.2 (Continued). In the soup-on-the-table domain, the effects propagate as follows.
For causing a spill and causing the bowl to fall off the table, we have, respectively:

effect LeftUp causes Spill if OnTable before ¬RightUp (6)

effect RightUp causes Spill if OnTable before ¬LeftUp (7)

effect LeftUp causes ¬OnTable if > before ¬RightUp (8)

effect RightUp causes ¬OnTable if > before ¬LeftUp (9)

For the actions of lifting just one side of the table, it now suffices to specify their immediate, dir-
ect effects action LiftLeft causes LeftUp and the symmetric action LiftRight causes RightUp,
which completes the description of the domain ΘSpill .

Although it might at first glance seem to be an overkill to have two contexts, the expressiveness
gained through the distinction is crucial here and in general: the context of the bowl being on the
table must be checked in the starting state, since it might become false during action execution
(when the bowl falls off the table); the context of the other side of the table not being up must
be checked in the resulting state, since it could become true during action execution (when both
sides are lifted simultaneously). It is important to note that we do not care exactly how the
change in the trigger or the terminal context was established. The potential user need not fear
to have to specify triggers and terminal contexts manually by themselves – in Section 4.3 we
provide a general method for specifying formula triggers, that is, effects that occur whenever
some formula becomes true.

Using indirect effect laws, a knowledge engineer need only specify the immediate causal
relationships of action domains in which complex causal chains may occur. The decision which
causal relations are relevant for a problem at hand is part of the knowledge engineering process
and cannot be detailed further in this paper, but we do mention that there have been attempts
to automate the generation of causal laws from a given set of state constraints and with the help
of information about causal directionality [38].

In an early attempt to overcome the restriction to direct effects from STRIPS-like systems,
Wilkins [41] already proposed to use statements like (5), that he called domain rules. However,
their semantics was only defined operationally by his implemented system. In the reasoning
about actions community, on the other hand, researchers started out with simpler causation
statements that however had a clear-cut meaning [25, 37, 29]. Here, we in a sense reunite these
two lines of research by providing a declarative semantics for Wilkins’ domain rules.

Using the notions of states and state update as above, we now formally define the meaning
of indirect effect laws. For the following definition, we take open direct and indirect effect laws
to represent the respective sets of their ground instances.
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Definition 3.6. Let Θ be an action domain specification, α be a ground action and let S, T be
states. Define

Sα0
def= {ψ | action α causes ψ if Φ ∈ Θ, S |= Φ}

and for i ≥ 0

Sαi+1
def= Sαi ∪ {ψ | effect χ causes ψ if Φ1 before Φ2 ∈ Θ, S |= Φ1 ∧ ¬χ, Sαi |= χ, T |= Φ2}3

Sα∞
def=

∞⋃
i=0

Sαi

T is called a successor state of S for α iff T = S + Sα∞.

So in order to verify that a given state T is indeed a successor state, we must be able to
reconstruct it in a well-founded way. First, we figure out all the direct action effects in Sα0 . We
then repeatedly apply indirect effect laws to construct a set Sα∞ of literals that contains the direct
and indirect atomic effects of the action. It only remains to check whether updating the starting
state S with these effects does lead to T .

Example 3.2 (Continued). Let us now apply the action LiftLeft to the previously depicted initial
state S = {OnTable,¬LeftUp,¬RightUp,¬Spill} where the soup is on the table, that is level on
the ground. We can by means of Definition 3.6 verify that the state where the bowl fell off the
table and the soup has spilled, T = {¬OnTable, LeftUp,¬RightUp,Spill}, is a successor state of S
for LiftLeft: The direct effects are SLiftLeft

0 = {LeftUp}, which makes the indirect effect laws (6)
and (8) applicable with respect to S. We get SLiftLeft

1 = SLiftLeft
0 ∪ {Spill,¬OnTable}. No more

indirect effect laws are triggered through these effects, therefore SLiftLeft
1 = SLiftLeft

2 = SLiftLeft
∞ .

Lastly, we verify that S + SLiftLeft
∞ = T : we have that {OnTable,¬LeftUp,¬RightUp,¬Spill} +

{LeftUp,Spill,¬OnTable} = {¬OnTable, LeftUp,¬RightUp,Spill}.

It is clear that the successor state of some S for an action α need not be unique; there may be
zero or more successor states in general. This is useful – for example – to model the indeterminate
effects of actions. Pinto [33, Section 4.1.3] mentions problems of his approach (that compiles state
constraints into successor state axioms) whenever there are multiple minimal models. As our
adaptation of his example shows, such a case is easily treated by our state transition semantics.

Example 3.7 ([33]). A person can put on a hat and also take it off, but does so only in the
bedroom. After taking it off, the hat is either in the wardrobe or on the bed. Fluent OnHead says
that the hat is on the head, InWardrobe and OnBed similarly express the hat’s other possible loca-
tions. The direct effects of taking off the hat are formalised by action TakeOff causes ¬OnHead.
Now whenever the hat is caused not to be on the head any more (through whatever means),
then either of the two possible new locations of the hat is justified:

rw = effect ¬OnHead causes InWardrobe if > before ¬OnBed

rb = effect ¬OnHead causes OnBed if > before ¬InWardrobe

For a state S = {OnHead,¬InWardrobe,¬OnBed} where the hat is on the head and nowhere else,

3Notice the occurrence of T in the definition of the Sαi .
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we can verify that both states

Tw = {¬OnHead, InWardrobe,¬OnBed}
Tb = {¬OnHead,¬InWardrobe,OnBed}

are successor states of S for TakeOff: We have

STakeOff
0 = {¬OnHead}

and with respect to state Tw, indirect effect law rw is applicable since we have S |= > ∧ ¬¬OnHead,
STakeOff

0 |= ¬OnHead and Tw |= ¬OnBed. This leads to the accumulated set of effects

STakeOff
1 = STakeOff

∞ = {¬OnHead, InWardrobe}

and Tw = S + STakeOff
∞ is easily checked. The verification of state Tb is analogous.

In the same way our approach can easily handle other domains that combine indeterminate
with indirect consequences, as for example the Mailboxes scenario introduced by Castilho et al.
[4], which features an action that triggers either or both of two possible direct effects along with
a further, indirect effect.

4. An Axiomatic Solution to the Ramification Problem

We now present the general, first-order effect axiom that will solve the ramification problem
using the UAC introduced in Section 2.1. This axiom appeals to the same axiomatisation tech-
nique as the effect axiom from Baumann et al. [2]. It formalises the idea of truth by causation:
everything that is true must be caused, and vice versa. In the most simple form of the effect
axiom, we allow two causes to determine a fluent’s truth value: persistence and direct effects.
Before introducing the axiom itself, we formalise the individual causes. For the first cause –
persistence – we introduce a pair of macros expressing that a fluent f persists from s to t.

FrameT (f, s, t) def= Holds(f, s) ∧Holds(f, t) (10)

FrameF (f, s, t) def= ¬Holds(f, s) ∧ ¬Holds(f, t) (11)

For the second cause – a fluent being a direct effect of an action – we introduce two new macros
DirTΘ(f, a, s, t) and DirFΘ(f, a, s, t) expressing that a fluent f is a direct positive/negative effect
of an action a from s to t. In contrast to the domain-independent macros FrameT ,FrameF , the
effect macros depend on a concrete domain Θ: when the direct (positive and negative) effects of
an action are given by the direct effect laws of Θ, they can easily be translated into formulas that
determine the truth values of all relevant DirTΘ and DirFΘ expressions. For a fluent formula Φ
and a term τ : time, we denote by Φ[τ ] the first-order formula where each occurrence of a fluent
literal (¬)ϕ has been replaced by (¬)Holds(ϕ, τ).

Definition 4.1. Let Θ be an action domain specification and A be a function into sort action
with matching sequence of variables ~x. The direct positive and negative effect macros for A(~x)
are

DirTΘ(f,A(~x), s, t) def=
∨

action A(~x) causes ϕ if Φ∈Θ

(f = ϕ ∧ Φ[s]) (12)

DirFΘ(f,A(~x), s, t) def=
∨

action A(~x) causes ¬ϕ if Φ∈Θ

(f = ϕ ∧ Φ[s]) (13)
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Now taking the two causes “persistence” and “direct effect” and putting them together yields
the basic version of this section’s effect axiom.

Definition 4.2. Let Θ be an action domain specification and A be a function into sort action.
An effect axiom with unconditional effects and the frame assumption is of the form

Poss(A(~x), s, t) ⊃ (∀f)(Holds(f, t) ≡ CausedT (f,A(~x), s, t)) ∧
(∀f)(¬Holds(f, t) ≡ CausedF (f,A(~x), s, t)) (14)

where

CausedT (f,A(~x), s, t) def= FrameT (f, s, t) ∨DirTΘ(f,A(~x), s, t) (15)

CausedF (f,A(~x), s, t) def= FrameF (f, s, t) ∨DirFΘ(f,A(~x), s, t) (16)

The macros CausedT ,CausedF will be re-defined in the rest of this paper. When speaking
about effect axiom (14), we will understand it retrofitted with their latest version.4

The design principle underlying our axiomatisation technique is that of causation: a fluent
holds at a time point that is the end point of an action if and only if there is a cause for that;
similarly, a fluent does not hold if and only if there is a cause for that, too.

4.1. Adding Indirect Effects

We now add a third cause, indirect effects, to the basic causes, persistence and direct effects.
The idea is to express them as implications and take care that inferences in the contrapositive,
non-causal direction are not possible. The macros IndTΘ(f, s, t) and IndFΘ(f, s, t) express that
fluent f is an indirect (positive or negative, respectively) effect of an action occurring from s to
t in domain Θ. For an indirect effect law r = effect χ causes ψ if Φ1 before Φ2, the indirect
effect ψ materialises whenever the relationship has been triggered, that is, whenever the initial
context Φ1 holds at the starting time point s, the terminal context Φ2 holds at the resulting
time point t and the trigger χ has changed from untrue to true from s to t. As for direct effect
laws, by the sign of an indirect effect law we refer to the sign of its effect, sign(r) def= sign(ψ).
To access the effect literal of an indirect effect law r, we use Effect(r) def= ψ and do so similarly
for the trigger: Trigger(r) def= χ.

Definition 4.3. Let r(~y ) = effect χ causes ψ if Φ1 before Φ2 be an indirect effect law with
free variables among ~y, and let s, t : time be variables.

Triggeredr(~y)(s, t)
def= Φ1[s] ∧ Φ2[t] ∧ ¬χ[s] ∧ χ[t] (17)

Let Θ be a domain and f be a variable of sort fluent.

IndTΘ(f, s, t) def=
∨

r(~y )∈Θ, sign(r)=+

(∃~y )(f = Effect(r(~y )) ∧ Triggeredr(~y )(s, t)) (18)

IndFΘ(f, s, t) def=
∨

r(~y )∈Θ, sign(r)=−

(∃~y )(¬f = Effect(r(~y )) ∧ Triggeredr(~y )(s, t)) (19)

4The attentive reader will have noticed that the syntax of axiom (14) does not quite correspond to (2). Simple
syntactical manipulations can however be conducted to transform the effect axiom into a form that matches (2).
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According to these macros, a fluent f is an indirect effect from s to t if there is a corresponding
indirect effect law with effect f that triggered from s to t. The macros are straightforwardly
integrated into the effect axiom as follows.

Definition 4.4. Let A be a function into sort action. The effect axiom ΥA with conditional
effects, the frame assumption and ramifications is of the form (14), where

CausedT (f,A(~x), s, t) def= FrameT (f, s, t) ∨DirTΘ(f,A(~x), s, t) ∨ IndTΘ(f, s, t) (20)

CausedF (f,A(~x), s, t) def= FrameF (f, s, t) ∨DirFΘ(f,A(~x), s, t) ∨ IndFΘ(f, s, t) (21)

While the approach presented so far works well for simple ramification domains and easily
copes with instantaneous effect propagation, it still harbours a serious flaw: it cannot handle
cyclic fluent dependencies.

Example 2.3 (Continued). If two gear wheels that can be separately turned and stopped are
interlocked, then the causal relation between them is: whenever the first wheel is turned (resp.
stopped), it causes the second one to turn (resp. stop), and vice versa:

effect W1 causes W2

effect W2 causes W1

effect ¬W1 causes ¬W2

effect ¬W2 causes ¬W1

Let us compile the (positive half of the) effect axiom for a trivial Wait action that has no direct
effects, so that Definitions 4.3 and 4.4 yield the following:

CausedT (f,Wait, s, t) ≡ FrameT (f, s, t) ∨ IndTΘ(f, s, t)

IndTΘ(f, s, t) = (f = W2 ∧ ¬Holds(W1, s) ∧Holds(W1, t)) ∨
(f = W1 ∧ ¬Holds(W2, s) ∧Holds(W2, t))

Consider the first-order structure M with timeM = {σ, τ}, σ <M τ , PossM = {(Wait, σ, τ)} and
HoldsM = {(W1, τ), (W2, τ)}. Together with the variable evaluation V = {s 7→ σ, t 7→ τ}, inter-
pretation I = (M,V) is a model for effect axiom (14) for Wait where both wheels initially stand
still and magically start turning – one being the cause for the other and vice versa. This is
undesired as Wait is intended to have no effect at all.

4.2. Loops and Loop Formulas

Much as in the case of Clark’s completion of normal logic programs, our compilation of indirect
effect laws into effect axioms allows too many models for fluents (that is, reified predicates) that
cyclically depend on each other. We propose a solution to this problem in the spirit of loop
formulas [28] for normal logic programs. In order for the approach to stay practical, we however
have to restrict the syntax of the indirect effect laws in Θ:

1. For each indirect effect law effect χ causes ψ if Φ1 before Φ2 ∈ Θ, we stipulate that
Var(χ) ⊆ Var(ψ), that is, there may not be local variables in triggers.

2. We do not use function symbols with arity greater than zero as arguments of sort fluent.

These two constraints guarantee the existence of a finite, complete set of loops [5]. This set
can be identified by a simple algorithm operating on open indirect effect laws, which makes our
definition of effect axioms entirely constructive and easily automatable.

Throughout the following definitions, we will make explicit use of substitutions, unifiers and
most general unifiers (mgus). Their domains and ranges are understood to be built from the
domain signature used for specifying the indirect effect laws. For unification, negation is treated
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as a unary function. The definition of loops here follows the one of Chen et al. [5] given in
Section 2.

Definition 4.5. Let Θ be an action domain specification over a signature Ξ.

• The influence graph GΘ of Θ is the (possibly infinite) directed graph GΘ
def= (V,E), where

V is the set of all fluent literals over Ξ and for all effect χ causes ψ if Φ1 before Φ2 ∈ Θ
and substitutions θ, there is an edge (χθ, ψθ) ∈ E.

• A finite, nonempty set L of literals constitutes a loop iff for all µ, ν ∈ L, there is a directed,
non-zero length path from µ to ν in the subgraph of GΘ induced by L.

• An indirect effect law r = effect χ causes ψ if Φ1 before Φ2 ∈ Θ leads into the loop L
iff

1. there exists a µ ∈ L and a substitution θ−r = mgu(ψ, µ) and

2. for all substitutions θ′ such that there exists a substitution θ′′ with θ′ = θ−r θ
′′, we

have χθ′ /∈ Lθ′.

Then Θ−L
def= {rθ−r | r ∈ Θ and r leads into the loop L}.

Observe that the literals µ in a loop L share the same variables since none of the effect
laws has any local variables. To simplify further constructions, we will assume without loss of
generality that θ−r = mgu(ψ, µ) for rules r leading into a loop L only mentions variables from L.

For example, the indirect effect laws of the gear wheel domain give rise to two loops, L1 =
{W1,W2} and L2 = {¬W1,¬W2}.

From the work of Chen et al. [5], we know that although there may be infinitely many loops
in general, there is always a finite set Loops(Θ) that captures all of them.

Theorem 4.6. Let Θ be a domain that satisfies the restrictions above. There exists a finite set
Loops(Θ) such that every loop L of Θ is subsumed by some L′ ∈ Loops(Θ).

Proof. We define a logic program ΛΘ such that there is a one-to-one correspondence between the
loops of Θ and the loops of ΛΘ. For each function symbol F : s1×· · ·× sn → fluent, introduce
two new predicates PF : s1 × · · · × sn and P¬F : s1 × · · · × sn, and define

ΛΘ
def= {Pψ( ~x2)← Pχ( ~x1) | effect χ( ~x1) causes ψ( ~x2) if Φ1 before Φ2 ∈ Θ}

Correspondence of the loops follows straightforwardly from the definition of loops in Section 2
and Definition 4.5. By Lemma 2.8, there is a finite, complete set of loops for ΛΘ. Due to the
correspondence, its counterpart in Θ is complete for Θ.

Having defined the loops of a given domain and being sure they can be captured finitely,
we can now proceed to define the corresponding loop formulas. The idea of loop formulas is to
eliminate the models that arise due to “spontaneous” activation of loops for which no external
support exists. In the case of logic programs, the external support that counts as “legal” cause
for loop activation is a program rule leading into the loop. In our case, the direct effects of an
action have to be taken into account as potential reasons for loop activation, too. A loop can
also be activated by another loop – but then the union of the two is again a loop, so this case
is implicitly catered for. This general form of direct and indirect loop activation is illustrated in
Figure 1.
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ψ0 ψ1 . . . ψm
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r−1 r−2 r−m

µ2

µ3
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Figure 1: General form of loop activation. The leftmost node ψ0 represents a direct action effect. The cycle on
the right depicts a subset-maximal loop L = {µ1, . . . , µn} of length n where ψm = µ1. For m = 0, we have the
case of direct activation. Otherwise, for any natural m, there is a chain of m effects, and the loop is activated by
the indirect effect law r−m leading into the loop L. Whenever r−m is itself part of a loop L′, then L ∪L′ is again a
loop and L is not subset-maximal.

When translating a logic program into a logical theory, following the approach of Chen et al.
[5] the loop formulas are added to the predicate completion of the program.5 In case of general
effect axioms with their standard first-order semantics, loop formulas are “built into” the axioms,
by enforcing the frame assumption for all fluent literals that could possibly change their truth
value due to spontaneous loop activation. To achieve this for a given literal µ, we specify non-
activation of all loops that could change µ as a sufficient cause for persistence of µ’s truth value.

We use the notation L(~y ) to explicitly refer to the free variables ~y mentioned in the loop L.
Macro DirActivatedL(~y )(A(~x), s, t) expresses whether a loop L(~y ) has been activated by action
A(~x) from s to t. Naturally, this is the case whenever some positive literal F (~y ) ∈ L(~y ) from the
loop is a direct positive effect of the action, or symmetrically some negative literal ¬F (~y ) ∈ L(~y )
from the loop is a direct negative effect of the action. To find out if a loop has been activated
by an indirect effect, macro IndActivatedL(~y )(s, t) checks whether the corresponding instance
of an indirect effect law leading into the loop has been triggered from s to t. Clearly, macro
ActivatedL(~y )(A(~x), s, t) then represents activation of the loop L(~y ), directly or indirectly.

Definition 4.7. Let Θ be an action domain specification, Loops(Θ) be a finite, complete set of
loops of Θ, L(~y ) ∈ Loops(Θ), A be a function into sort action and s, t be variables of sort time.

DirActivatedL(~y )(A(~x), s, t) def=
∨

F (~y )∈L(~y )

DirTΘ(F (~y ), A(~x), s, t) ∨

∨
¬F (~y )∈L(~y )

DirFΘ(F (~y ), A(~x), s, t) (22)

IndActivatedL(~y )(s, t)
def=

∨
r(~y )∈Θ−

L

Triggeredr(~y )(s, t) (23)

ActivatedL(~y )(A(~x), s, t) def= DirActivatedL(~y )(A(~x), s, t) ∨ IndActivatedL(~y )(s, t) (24)

5Meanwhile, there have been more general proposals where the loop formulas are added to the program as is,
without forming the completion [10].
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Let f : fluent be a variable.

LoopFrameT (f,A(~x), s, t) def= Holds(f, s) ∧∨
L(~y )∈Loops(Θ),

¬F (~y )∈L(~y )

(∃~y )
(
f = F (~y ) ∧ ¬ActivatedL(~y )(A(~x), s, t)

)
(25)

LoopFrameF (f,A(~x), s, t) def= ¬Holds(f, s) ∧∨
L(~y )∈Loops(Θ),

F (~y )∈L(~y )

(∃~y )
(
f = F (~y ) ∧ ¬ActivatedL(~y )(A(~x), s, t)

)
(26)

Macros (25) and (26) formalise the intuition that the truth value of a fluent should persist
whenever there is some loop L(~y ) that could change the truth value, but which has not been
activated from s to t. If there indeed exists such a loop, then all of the loops containing the
literal are activated whenever one of them is activated (cf. Figure 1). However, if for a fluent
literal ψ there is no loop containing ¬ψ, then LoopFrame(ψ,A(~x), s, t) = ψ[s] ∧ ⊥ is equivalent
to false. This is justified since ψ may never spontaneously change, so the precaution provided by
the loop formulas is unnecessary. The new causes are now added to the effect axiom as usual.

Definition 4.8. Let A be a function into sort action. The effect axiom ΥA with conditional
effects, the frame assumption and ramifications is of the form (14), where

CausedT (f,A(~x), s, t) def= FrameT (f, s, t) ∨DirTΘ(f,A(~x), s, t) ∨
IndTΘ(f, s, t) ∨ LoopFrameT (f,A(~x), s, t) (27)

CausedF (f,A(~x), s, t) def= FrameF (f, s, t) ∨DirFΘ(f,A(~x), s, t) ∨
IndFΘ(f, s, t) ∨ LoopFrameF (f,A(~x), s, t) (28)

Example 2.3 (Continued). The Wait action has no direct effects and for neither of the loops
L1, L2 exists an indirect effect law leading into the loop, hence ActivatedL1

(Wait, s, t) = ⊥ and
ActivatedL2

(Wait, s, t) = ⊥. The new causes added to the effect axiom say that through Wait,
the truth value of the loop literals must persist:

LoopFrameT (f,Wait, s, t) ≡ Holds(f, s) ∧ (f = W1 ∨ f = W2)

LoopFrameF (f,Wait, s, t) ≡ ¬Holds(f, s) ∧ (f = W1 ∨ f = W2)

For the previously seen interpretation I where the gear wheels start turning by magic, we now
have I |= LoopFrameF (W1,Wait, σ, τ) but I 6|= ¬Holds(W1, τ), and I is no model for the effect
axiom any more, just as desired.

This concludes the compilation of direct and indirect effect laws into first-order effect axioms.
It remains to give the immediate definition of a domain axiomatisation for a domain with indirect
effect laws.

Definition 4.9. Let Θ be an action domain specification. Its corresponding domain axiomat-
isation is Σ = Ω ∪ Π ∪ Υ ∪ Σaux , where Ω defines the time structure, for each function into
sort action, Π contains a precondition axiom (1) and Υ contains an effect axiom according to
Definition 4.8, and Σaux contains the unique-names axioms for sorts fluent and action.

The precise definition of how to turn the precondition laws of a domain into precondition
axioms (1) depends on the chosen time structure. We have left out the details since action
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preconditions are not the primary concern of this paper. The interested reader can consult the
various methods presented by Thielscher [39] and Strass [36].

4.3. From Trigger Formulas to Trigger Literals

Up to here, we considered only triggers that are literals. The question arises whether this is
a proper limitation, especially in light of the derived effect rules initiating X causes ψ if Φ
of Denecker et al. [8], where ψ is a fluent literal and X and Φ can be general propositional fluent
formulas.

It turns out that even more general derived effect rules – namely those where X is a first-order
quantifier-free (implicitly universally quantified) formula – can be transformed into indirect effect
laws by the procedure below. It takes as input a derived effect rule initiating X causes ψ if Φ.

1. Transform X into its disjunctive normal form (DNF) X = X1 ∨ . . . ∨Xm.6 As an example,
we look at the derived effect rule

initiating LeftUp 6≡ RightUp causes Spill if OnTable

Transforming the trigger formula LeftUp 6≡ RightUp into disjunctive normal form yields
(LeftUp ∧ ¬RightUp) ∨ (¬LeftUp ∧ RightUp).

2. Create the intermediate derived effect rules initiating Xi causes ψ if Φ for 1 ≤ i ≤ m.
Note that all trigger formulas are conjunctions of literals. In the example, this step produces

initiating LeftUp ∧ ¬RightUp causes Spill if OnTable
initiating ¬LeftUp ∧ RightUp causes Spill if OnTable

3. For each initiating χ1 ∧ . . . ∧ χn causes ψ if Φ, create for i = 1, . . . , n the indirect ef-
fect laws

effect χi causes ψ if Φ before
∧

j=1,...,n,j 6=i

χj

For the example, we get the indirect effect laws (6) and (7) we already know and the two
new rules

effect ¬RightUp causes Spill if OnTable before LeftUp
effect ¬LeftUp causes Spill if OnTable before RightUp

for the case when both sides are up and only one is let down.

The intuition behind the procedure is straightforward. Assume the trigger formula X is activated
from s to t, that is ¬X[s] and X[t]. Then ¬Xi[s] for all 1 ≤ i ≤ m and Xj [t] for some 1 ≤ j ≤ m.
In particular ¬Xj [s] ∧Xj [t]. Since Xj = χj1 ∧ . . . ∧ χjn is a conjunction of literals, this in turn
means that there is at least one χjk for 1 ≤ k ≤ n with ¬χjk[s] ∧ χjk[t]. The procedure now
simply creates indirect effect laws for all possible χjk.

6This might involve a (worst-case) exponential blowup, which is however also inherently present for Denecker
et al. [8], where all possible “supporting sets” have to be considered.
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5. Correctness of the Axiomatic Solution

To show that the axioms just presented indeed capture the state-transition semantics given
earlier, we first define how the two semantics link together. Below, we define how two time
points of a first-order interpretation that are connected by an action application give rise to two
states. This definition will be the basis of the correspondence result of this section. Recall that
for a fluent literal (¬)ϕ and term τ : time, the notation (¬)ϕ[τ ] abbreviates (¬)Holds(ϕ, τ), a
notation that generalises to fluent formulas by structural induction.

Definition 5.1. Let Ξ be a domain signature and I = (M,V) be an interpretation for Ξ.
Let σ and τ be ground terms of sort time, α be a ground term of sort action such that
(αM, σM, τM) ∈ PossM. Define two states S and T as follows: for a ground fluent literal ψ, set
ψ ∈ S if and only if I |= ψ[σ], and ψ ∈ T if and only if I |= ψ[τ ].

Throughout the proof, we identify α, σ and τ with their interpretations under M. We then
write Υα[σ, τ ] to refer to effect axiom (14) for α where the time variables s and t have been
replaced by σ and τ , respectively. For predicates with an obvious polarity (like DirT ,DirF ), we
use a neutral version (like Dir) with fluent literals ψ, where Dir(ψ, a, s, t) denotes DirF (F, a, s, t)
if ψ = ¬F for some fluent term F and DirT (ψ, a, s, t) otherwise.

An important first observation concerning the proof is that by the definition of S and T we
have for all fluent formulas Φ that S |= Φ iff I |= Φ[σ] and T |= Φ iff I |= Φ[τ ]. An immediate
consequence thereof is this:

Lemma 5.2. For ground action α and direct effect law action α causes ψ if Φ, we have
ψ ∈ Sα0 iff I |= Dir(ψ, α, σ, τ).

For the rest of the results, assume a fixed domain Θ over the signature Ξ. The next lemma is
easy to prove via induction. It says that whenever I is a model for α’s effect axiom, the action
effects Sα∞ have materialised in the resulting state T .

Lemma 5.3. I |= Υα[σ, τ ] implies Sα∞ ⊆ T .

Proof. We use induction to show Sαi ⊆ T for all i ≥ 0.

i = 0. Let µ ∈ Sα0 . By Lemma 5.2, I |= Dir(µ, α, σ, τ). Together with I |= Υα[σ, τ ], we have
I |= µ[τ ]. The definition of I yields µ ∈ T .

i→ i+ 1. Let µ ∈ Sαi+1 \ Sαi . According to Definition 3.6, there is an indirect effect law
r = effect χ causes µ if Φ1 before Φ2 ∈ Θ such that S |= Φ1 ∧ ¬χ, Sαi |= χ and
T |= Φ2. Applying the induction hypothesis to χ ∈ Sαi yields χ ∈ T and thus, by definition
of I, we have I |= χ[τ ], I |= Triggeredr(σ, τ) and I |= Ind(µ, σ, τ). By the presumption
I |= Υα[σ, τ ] we get I |= µ[τ ] and thus µ ∈ T by definition of I.

Now any fluent literal of which the effect axiom says it is an indirect effect can be found in
the set of action effects.

Lemma 5.4. Let I |= Υα[σ, τ ]. For any ground fluent literal µ, I |= Ind(µ, σ, τ) implies µ ∈ Sα∞.

Proof. Let I |= Υα[σ, τ ] and I |= Ind(µ, σ, τ). Then there is an instance of an indirect effect law
effect χ causes µ if Φ1 before Φ2 ∈ Θ such that I |= Φ1[σ] ∧ ¬χ[σ] and I |= Φ2[τ ] ∧ χ[τ ].
From I |= χ[τ ] by I |= Υα[σ, τ ] we get I |= Caused(χ, α, σ, τ) ∧ ¬Caused(¬χ, α, σ, τ). Since
additionally I |= ¬χ[σ] yields I |= ¬Frame(χ, σ, τ) and I |= ¬LoopFrame(χ, α, σ, τ), we must
have one of I |= Dir(χ, α, σ, τ) or I |= Ind(χ, α, σ, τ).
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• I |= Dir(χ, α, σ, τ). Then Lemma 5.2 shows χ ∈ Sα0 and Definition 3.6 yields µ ∈ Sα∞.

• I |= Ind(χ, α, σ, τ). By I |= ¬CausedT (¬χ, α, σ, τ), we get I |= ¬LoopFrame(¬χ, α, σ, τ),
whose macro-expansion means I |= ¬(¬χ[σ] ∧

∨
L∈Loops(Θ)χ∈L

¬ActivatedL(α, σ, τ)). To-

gether with I |= ¬χ[σ], this yields I |=
∧
L∈Loops(Θ)χ∈L

ActivatedL(α, σ, τ), that is, all

loops containing χ have been activated.

1. χ is not contained in any loop. Due to the syntactic restriction of fluents’
arguments, there is a finite sequence r1, . . . , rm of indirect effect laws such that
I |= Dir(Trigger(r1), α, σ, τ), Effect(ri) = Trigger(ri+1) for 1 ≤ i ≤ m − 1 and
Effect(rm) = χ. By Definition 3.6, we get χ ∈ Sα∞ and thus µ ∈ Sα∞.

2. Let L be a maximal, ground loop containing χ such that I |= ActivatedL(α, σ, τ). We
make a case distinction on the macro expansion of ActivatedL(α, σ, τ).
(a) I |= DirActivatedL(α, σ, τ). Then for some µ′ ∈ L we have I |= Dir(µ′, α, σ, τ)

and therefore µ′ ∈ Sα0 . By the definition of a loop, there is a sequence r1, . . . , rn
of indirect effect laws such that µ′ = Trigger(r1) and Effect(ri) = Trigger(ri+1)
for 1 ≤ i ≤ n − 1. Now L = {Effect(ri) | 1 ≤ i ≤ n} and Definition 3.6 yield
L ⊆ Sα∞, whence χ ∈ Sα∞ and µ ∈ Sα∞.

(b) I |= IndActivatedL(α, σ, τ). Then there is an indirect effect law r ∈ Θ−L leading
into the loop with I |= Triggeredr(σ, τ). Since L is maximal, r is itself not part
of another loop. We now have I |= Ind(Trigger(r), σ, τ) where Trigger(r) is not
part of a loop. Consequently, Effect(r) ∈ Sα∞ and L ⊆ Sα∞ can be argued for as
above (item 1).

With the two lemmata, it becomes straightforward to prove soundness of the axiomatisation.
This is actually the “hard” direction of the overall proof, since inability to deal with cyclic
dependencies results in unsound prediction of effects.

Theorem 5.5 (Soundness). I |= Υα[σ, τ ] implies T = S + Sα∞.

Proof. Let I |= Υα[σ, τ ].

“⊇”: Let ψ ∈ S + Sα∞ = (S \ Sα∞) ∪ Sα∞.

1. ψ ∈ Sα∞ =
⋃∞
i=0 S

α
i . Lemma 5.3 makes ψ ∈ T immediate.

2. ψ ∈ S \ Sα∞, i.e. ψ ∈ S and ¬ψ /∈ Sα∞. Then I |= ψ[σ] and
I |= ¬Frame(¬ψ, σ, τ) ∧ ¬LoopFrame(¬ψ, σ, τ). By Lemma 5.2 and the pre-
sumption ¬ψ /∈ Sα∞, also I |= ¬Dir(¬ψ, α, σ, τ). By Lemma 5.4, ¬ψ /∈ Sα∞ implies
I 6|= Ind(¬ψ, σ, τ). Hence I |= ¬Caused(¬ψ, α, σ, τ), from which – by I |= Υα[σ, τ ] –
we can conclude I |= ψ[τ ] and thus ψ ∈ T .

“⊆”: Let ψ ∈ T . The definition of I tells us I |= ψ[τ ]; I |= Υα[σ, τ ] tells us
I |= Caused(ψ, α, σ, τ) ∧ ¬Caused(¬ψ, α, σ, τ). Macro-expansion of Caused yields that
I |= Dir(ψ, α, σ, τ) or I |= Ind(ψ, σ, τ) or I |= Frame(ψ, σ, τ) or I |= LoopFrame(ψ, α, σ, τ).

1. I |= Dir(ψ, α, σ, τ). Lemma 5.2 immediately yields ψ ∈ Sα0 ⊆ S + Sα∞.

2. I |= Ind(ψ, σ, τ). Using Lemma 5.4, ψ ∈ Sα∞ ⊆ S + Sα∞ is immediate.

3. I |= Frame(ψ, σ, τ) or I |= LoopFrame(ψ, α, σ, τ). Then I |= ψ[σ] and ψ ∈ S. Now
ψ ∈ T by T being a state implies ¬ψ /∈ T , which by Lemma 5.3 yields ¬ψ /∈ Sα∞. Hence
ψ /∈ Sα∞ and ψ ∈ S + Sα∞.

For the converse direction, the first lemma says that whenever T is a successor state of S for
α, then the effect axiom correctly establishes all indirect effects.
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Lemma 5.6. T = S + Sα∞ and I |= Ind(µ, σ, τ) imply I |= µ[τ ].

Proof. Let T = S +Sα∞ and I |= Ind(µ, σ, τ). Then there exists a ground instance of an indirect
effect law r = effect χ causes µ if Φ1 before Φ2 such that I |= Φ1[σ] ∧ Φ2[τ ] ∧ ¬χ[σ] ∧ χ[τ ].
By definition of I, S |= Φ1 ∧ ¬χ and T |= Φ2 ∧ χ. Since χ /∈ S, χ ∈ T and T = S + Sα∞, there
must be an i ≥ 0 such that χ ∈ Sαi . By Definition 3.6, µ ∈ Sαi+1 ⊆ Sα∞ ⊆ T ; thus I |= µ[τ ].

Indeed, whenever a fluent literal is found to hold at the resulting time point and it was part
of the update, then the effect axiom says it was an effect of the action.

Lemma 5.7. Let T = S + Sα∞ and I |= µ[τ ]. Then µ ∈ Sα∞ implies I |= Dir(µ, α, σ, τ) ∨
Ind(µ, σ, τ).

Proof. Let µ ∈ Sα∞ and consider the smallest i such that µ ∈ Sαi .

1. i = 0, that is, µ ∈ Sα0 . Lemma 5.2 immediately yields I |= Dir(µ, α, σ, τ).

2. i > 0. By Definition 3.6, there is an indirect effect law r =
effect χ causes µ if Φ1 before Φ2 such that S |= Φ1 ∧ ¬χ, Sαi−1 |= χ and
T |= Φ2. Now Sαi−1 ⊆ T implies T |= χ, hence I |= Φ1[σ] ∧ Φ2[τ ] ∧ ¬χ[σ] ∧ χ[τ ]. That
means we have I |= Triggeredr(σ, τ) and hence I |= Ind(µ, σ, τ).

The completeness result below now says that whenever T is a successor state of S for α, the
corresponding interpretation I is a model for the respective instance of the effect axiom.

Theorem 5.8 (Completeness). T = S + Sα∞ implies I |= Υα[σ, τ ].

Proof. Let T = S + Sα∞. We show I |= Υα[σ, τ ] by showing I |= ψ[τ ] iff I |= Caused(ψ, α, σ, τ).

“if”: Let I |= Caused(ψ, α, σ, τ). We make a case distinction according to the macro-expansion
of Caused(ψ, α, σ, τ).

1. I |= Dir(ψ, α, σ, τ). Lemma 5.2 yields ψ ∈ Sα0 ⊆ S+Sα∞. The presumption S+Sα∞ =
T now shows I |= ψ[τ ].

2. I |= Ind(ψ, σ, τ). By Lemma 5.6, we have I |= ψ[τ ].

3. I |= Frame(ψ, σ, τ). Then I |= ψ[τ ] is immediate.

4. I |= LoopFrame(ψ, α, σ, τ). This entails I |= ψ[σ] and thus ψ ∈ S. Furthermore,
I |=

∨
L∈Loops(Θ),¬ψ∈L

¬ActivatedL(α, σ, τ), that is, none of the loops involving ¬ψ
has been activated, whereby we can conclude ¬ψ /∈ Sα∞. Now ψ ∈ T = S + Sα∞ yields
the desired I |= ψ[τ ].

“only if”: Let I |= ψ[τ ]. We have to show I |= Caused(ψ, α, σ, τ). The definition of I yields
ψ ∈ T . By the presumption, we know ψ ∈ S + Sα∞ = (S \ Sα∞) ∪ Sα∞.

1. ψ ∈ Sα∞. By Lemma 5.7, I |= Caused(ψ, α, σ, τ).

2. ψ ∈ (S \ Sα∞), that is, ψ ∈ S and ¬ψ /∈ Sα∞. From ψ ∈ S and ψ ∈ T we directly get
I |= Frame(ψ, σ, τ) and thus I |= Caused(ψ, α, σ, τ).
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6. Related Work

Early treatments of ramifications all assumed the behaviour of the world to be specified by
state constraints – static laws that must hold in all states of the world – and relied on the
principle of minimal change [16, 42]. Brewka and Hertzberg [3] addressed the shortcomings
of these approaches and provided an alternative formalisation which incorporated an explicit
notion of causation. Lin [25], McCain and Turner [29] and Thielscher [37] independently made
the important observation that mere state constraints are insufficient for a proper treatment of
ramifications, and likewise introduced explicit representations of causality to deal with indirect
effects. Thielscher [38] then showed how information on causal influence among fluents can be
used to create a set of causal relationships from a set of domain constraints and provided a
solution to the ramification problem, albeit restricted to a specific formalism.

6.1. Situation Calculus

Important pioneering work on ramification in the situation calculus was done by Lin [25]. We
will discuss his approach and a recent extension of it in more detail below (Section 6.2).

In another approach basically similar to ours, Pinto [33] compiled ramification constraints
into effect axioms by preprocessing. Although he is able to deal with cyclic dependencies, his
approach did not incorporate an explicit notion of causality.

A comprehensive treatment of indirect effects was given by McIlraith [31]. There, causality
is represented implicitly in the syntax of ramification constraints. The approach resorts to a
minimal-model policy and requires stratification of the ramification constraints, hence it cannot
deal with cyclic fluent dependencies.

6.2. Lin’s Causal Action Theories

Recently, the causal action theories of Lin [25] have been extended to the case of cyclic
dependencies among fluents [27]. The approach is based on a version of the Situation Cal-
culus where action domains are characterised by precondition axioms and direct effect state-
ments much like our direct effect laws. Indirect effects are specified by causal rules, formulas
Φ[t] ⊃ Caused(ψ, s, t) meaning that literal ψ is caused to be true whenever state formula Φ[t] is
true.7 Lin and Soutchanski have given a minimisation-based approach to compile such domain
specifications into successor state axioms which works even if there are cyclic fluent dependencies
among the causal rules.

The simplicity of causal rules as implications is appealing from a designer’s point of view, but
the obvious drawback of this simplicity is an increased modelling complexity whenever additional
expressiveness is needed. For example, it is not immediately clear how to treat Example 3.2 about
the bowl of soup falling off the table, for the soup spills only when it was on the table before
unevenly lifting one side.

Causal rules X(t) ⊃ Caused(ψ, s, t) where X(t) is quantifier-free can be viewed as derived
effect rules initiating X causes ψ if > of Denecker et al. [8], which allows to apply the pro-
cedure of Section 4.3 to produce an equivalent set of indirect effect laws (5). In fact, we can even
add an arbitrary first-order formula Φ(s) as initial context, thus leading to a general causal rule

(Φ(s) ∧X(t)) ⊃ Caused(ψ, s, t)

7Actually, Lin and Soutchanski [27] use a different notation where the truth value is reified, but the two
notations are interchangeable.
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which can be written as a derived effect rule [8]

initiating X causes ψ if Φ

To this derived effect rule, we can now apply the procedure of Section 4.3.
On the other hand, the causal rules of Lin and Soutchanski [27] allow for existential quanti-

fication in the trigger formula, which is not easily reproduced in our approach.

6.3. Temporal Action Logics

Gustafsson and Doherty [17] present an approach to ramification in temporal action logic
(TAL) [9]. They use “causal constraints” (which are directed implications) to represent indirect
effects in linear-time domains. For the duration of the action, they use occlusions to exclude
fluents from the frame assumption. At the end point of the action, state constraints determine
the indirect effects. The semantics of TAL is defined through first-order axiomatisation with
circumscription, hence cycles cannot be treated out of the box. Later, Kvarnström and Doherty
[23] extend TAL by actions with duration, concurrent actions and nondeterministic actions.
The circumscription policy they use is still reducible to the first-order case, so cycles remain a
problem.

6.4. Action Language ME
Kakas and Miller [19] use “r-propositions” L whenever C where L is a propositional flu-

ent literal and C a set (representing a conjunction) of propositional fluent literals. These r-
propositions have both a static aspect – the domain constraint C ⊃ L – and a dynamic aspect –
making all of C true causes L to become true. R-propositions are directed in that the converse
¬L ⊃ ¬C need not be the case.

In comparison to our work, we note that C mixes context and trigger. In general, r-
propositions can be translated into our indirect effect laws, but the converse is not always pos-
sible. Additionally, Kakas and Miller [19] present no first-order axiomatisation of the semantics
of r-propositions.

Later, Kakas et al. [20]8 (although mainly focusing on the qualification problem) extend r-
propositions to “c-propositions” C causes L, yet staying within a propositional language. There,
C is a set of action and fluent literals denoting action (non-)occurrences and fluents (not) holding
at the starting state. L is a fluent literal, the effect of a c-proposition, which notably holds only
provisionally. That is, the potential effect L is qualified globally by other effects and observations,
and competes with other potential effects. To define the semantics of c-propositions, Kakas et al.
present a sophisticated fixpoint construction with intermediate states. Their approach can deal
with cycles, but they give no logical axiomatisation.

In their semantical solution to the ramification problem they allow that in between two
successive observable time points, there may be further, non-observable intermediate states which
contribute to the computation of indirect effects. In Example 9 [20], there is a faulty circuit which
can be switched on. After doing this, an electric current will flow. This current will then break
the fuse in the circuit which in turn terminates the current. The important observation of this
example is that “electric current” is neither true at the starting time point (because the switch
is off) nor at the ending time point (since the fuse is broken). But the electric current is vital for
deriving the indirect effect that the fuse breaks. In our approach, all intermediate effects become
full-blown effects and the example is not immediately reproduced.

8There is also a journal version of that paper [21].
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6.5. Inductive Definitions

Denecker et al. [8] and Van Belleghem et al. [40] show how the principle of inductive defini-
tion provides a way of modelling indirect effects that is independent of a specific calculus. The
approach can treat cycles via the constructive nature of inductive definitions. However, they
use a three-valued semantics and view the ramification problem in isolation from its close re-
lative, the frame problem. It is therefore not immediately clear how the approach is to be
embedded into general-purpose formalisms (where both frame and ramification problems must
be solved) and how classical logical reasoning methods can be used in that approach. Denecker
and Ternovska [7] later addressed these issues and extended Reiter’s Situation Calculus [34] with
inductive definitions. This extension allows to model ramifications (with cyclic dependencies) in
a compact, modular and elaboration-tolerant fashion. The price to pay is however an increased
complexity of the underlying mathematical machinery: the semantics of the logic FO(ID) they
use (first-order logic extended with inductive definitions, where the latter are employed to model
ramifications) is an extension of the semantics of classical logic with the well-founded semantics
of logic programming [7].

In some sense, the work of Denecker and Ternovska [7] can be seen as dual to ours. The
starting point of both is the realisation that classical first-order logic is not particularly well-
suited to handle the full extent of the ramification problem due to FOL’s inability to express
transitive closure. There seem to be two ways to deal with this problem: extending the language
and restricting the problem. Denecker and Ternovska [7] looked for a language that extends FOL
and can treat the full ramification problem. Their result is that it suffices to extend FOL by
inductive definitions. In this paper, we looked for a fragment of the ramification problem that
can still be treated in classical first-order logic. Our result is that – in addition to FOL’s ability
to treat stratified ramification rules, which was previously known [25, 31] – a limited form of
cyclic effects can be correctly handled within first-order logic.

6.6. Event Calculus

Shanahan [35] showed how to handle a particular class of ramifications in the Event Calcu-
lus [22], limited however in that the approach admittedly could not treat self-justifying cycles. In
Chapter 6 of his event calculus book, Mueller [32] elaborates on various methods for dealing with
the ramification problem. He does not discuss cycles explicitly, but his usage of circumscription
suggests that cyclic dependencies pose a problem. Forth and Miller [12] proposed a treatment of
indirect effects in the Event Calculus. The approach offers a logical axiomatisation that can deal
with cyclic causal dependencies due to its use of nested prioritised circumscription. However, it
is bound to linear time and a narrative-based semantics.

6.7. Default Logic-based Ramifications of Baumann et al. [2]

Baumann et al. [2] provided a treatment of ramifications using default logic and the unifying
action calculus. Since it is close to the approach presented in this paper, we review it here in
some more detail. There, indirect effect laws effect χ causes ψ if Φ1 before Φ2 are translated
into justification-free Reiter defaults9

Φ1[s] ∧ Φ2[t] ∧ ¬χ[s] ∧ χ[t] :

Indirect(ψ, s, t)
(29)

9Actually, Baumann et al. [2] have made no distinction between initial and final context. It is however trivial
to add this.
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This solution is very elegant in that there are no syntactic restrictions on indirect effect laws, the
laws can be modularly translated, and the groundedness of default extensions easily guarantees a
proper treatment of causality for indirect effects. On the other hand, the translation of Baumann
et al. [2] produces a default theory, where the translation in this paper produces a classical first-
order theory. Despite being computationally more complex in the propositional case, the default
logic approach is not always strong enough for domains with incompletely known states:

Example 6.1 (Ramification and Casualty). Consider the Yale shooting domain with the single
action Shoot, whose effect is that shooting a loaded gun leads to a casualty, a dead turkey:
action Shoot causes ¬Alive if Loaded. The indirect effect law r = effect ¬Alive causes ¬Walking
states the ramification that whenever the turkey is caused to be not alive, it is caused to be not
walking any more. We could decide to represent r by the two seemingly equivalent laws

r1 = effect ¬Alive causes ¬Walking if Walking before >
r2 = effect ¬Alive causes ¬Walking if ¬Walking before >

that say that getting killed causes the turkey not to be walking any more if it was walking before
(r1), and that the same happens if it was not walking (r2). In the approach of this paper, for all
pairs of states S, T with S |= Alive and T |= ¬Alive, we have that r is applicable and exactly one
of r1 or r2 is applicable. Thus, even if there is uncertainty about Walking on theory level, the
indirect effect ¬Walking occurs. Translating these laws into the Reiter defaults

δr =
Holds(Alive, s) ∧ ¬Holds(Alive, t) :

IndirectF (Walking, s, t)

δ1 =
Holds(Alive, s) ∧ ¬Holds(Alive, t) ∧Holds(Walking, s) :

IndirectF (Walking, s, t)

δ2 =
Holds(Alive, s) ∧ ¬Holds(Alive, t) ∧ ¬Holds(Walking, s) :

IndirectF (Walking, s, t)

reveals the difference between the approaches. While loop formulas treat {r} and {r1, r2} equi-
valently, the ramification defaults behave in a different way when the truth of Walking at s is
unknown: δr always yields the indirect effect ¬Holds(Walking, t) whenever Alive changes to true
from s to t; the defaults δ1 and δ2 do not yield the indirect effect since they depend on the
underlying theory additionally entailing either Holds(Walking, s) or ¬Holds(Walking, s).

Baumann et al. [2] also showed that the default logic-based approach to the ramification
problem can be straightforwardly combined with action default theories. Alas, since normal and
justification-free defaults are mixed, extension existence cannot be guaranteed for that approach.
With our approach based on first-order logic, ramifications can be added to the default theories
of Baumann et al. [2] without disrupting extension existence.

6.8. Further Approaches

Foo and Zhang [11] were the first to address the ramification problem in propositional dynamic
logic, which for this purpose they extended by causal laws [43]. Their solution to the combined
frame and ramification problems differs from ours in that they automatically generate disjunctive
frame axioms by need when answering a query [44]. More recently, Herzig and Varzinczak [18]
dealt with indirect effects through static laws based on their own variant of propositional dynamic
logic. Baader et al. [1] use indirect effect laws that can deal with cycles in the restricted language
of description logics. Their ramifications are triggered by (sets of) literals and guarded by an
initial context only. Gelfond and Lifschitz [15] compare the expressiveness of action languages
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B and C [14]. While ramification is not their primary concern, their main result is relevant to
the study of cyclic dependencies of indirect effects in action theories. They show that there is a
sublanguage of B that can be faithfully and modularly mapped into C given that its static laws
are free of cycles. This is a consequence of B and C’s differing intuitions regarding causality.
For ramification, this means that B has a built-in treatment of cyclic dependencies while C’s
treatment of indirect effects (via static laws) resembles the predicate completion of Lin [25].

7. Conclusion

We presented a solution to the ramification problem that unifies and generalises existing
approaches in that it (1) is independent of a particular time structure, (2) is based on first-order
effect axioms and (3) deals with cyclic causal dependencies among fluents. Moreover, we have
formally proved our axiomatisation correct for the presented state transition semantics.

In the comparison to related work, we have seen that the ramification problem (quite like many
of the fundamental problems in reasoning about actions) has numerous aspects. Approaches to
ramification can be categorised along the dimensions of the expressivity of their specification
language (propositional, first-order, first-order with add-ons, second-order, . . . ), the definition of
the semantics of that language (state-transition semantics, translation into logic or some other
previously existing language) and the range of reasoning about actions phenomena it can treat
(instantaneous change, cycles, race conditions and conflicts, . . . ).

In this paper we focused on giving an axiomatic first-order solution that can treat cycles, and
so there remains potential for future work. A common problem among axiomatic solutions to the
ramification problem is (not) coping with conflicting effects. For example, McIlraith [31] makes
the explicit consistency assumption that direct and indirect effects may not make a fluent both
true and false at the same time. (This is a generalisation of Reiter’s consistency assumption for
direct effects.) We do not make such an assumption explicitly, in our case the axiomatisation
simply becomes inconsistent in case of a conflict between (in)direct effects. This is reminiscent
of logic programming, where odd-length negative cycles among rules (like a← not a) also lead
to the absence of (two-valued) models. It could be worthwhile to use ideas from (three-valued)
logic programming to generalise the approach from this paper.
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[18] Andreas Herzig and Ivan José Varzinczak. Metatheory of actions: Beyond consistency. Artificial Intelligence,
171(16–17):951–984, 2007.

[19] Antonios Kakas and Rob Miller. Reasoning about actions, narratives and ramifications. Electronic Trans-
actions on Artificial Intelligence, 1(4), 1997.

[20] Antonis Kakas, Loizos Michael, and Rob Miller. Modular-E: An Elaboration Tolerant Approach to the
Ramification and Qualification Problems. In Proceedings of the Eight International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-05), pages 211–226. Springer, September 2005.

[21] Antonis Kakas, Loizos Michael, and Rob Miller. Modular-E and the role of elaboration tolerance in solving
the qualification problem. Artificial Intelligence, 175(1):49–78, 2011. John McCarthy’s Legacy.

[22] Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events. New Generation Computing, 4
(1):67–95, 1986.

[23] Jonas Kvarnström and Patrick Doherty. Tackling the Qualification Problem using Fluent Dependency Con-
straints. Computational Intelligence, 16(2):169–209, 2000.

[24] Vladimir Lifschitz. Frames in the space of situations. Artificial Intelligence, 46:365–376, 1990.

27



[25] Fangzhen Lin. Embracing Causality in Specifying the Indirect Effects of Actions. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1985–1993, Montréal,
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