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Abstract

A solution to the ramification problem caused
by underlying domain constraints in Strips-
like approaches is presented. We introduce
the notion of causal relationships which are
used in a post-processing step after having
applied an action description. Moreover, we
show how the information needed for these
post-computations can be automatically ex-
tracted from the domain constraints plus gen-
eral knowledge of which fluents can possibly af-
fect each other. We illustrate the necessity of
causal relationships by an example that shows
the limitedness of a common method to avoid
unintended ramifications, namely, the distinc-
tion between so-called frame and non-frame flu-
ents. Finally, we integrate our solution into a
recently developed, Strips-like yet purely de-
ductive approach to reasoning about actions
based on Equational Logic Programming.

1 Introduction

The ramification problem [Finger, 1987] is usually re-
garded as one of the challenges to all formal frameworks
for reasoning about actions and change. It states that it
is unreasonable to specify explicitly all changes that are
caused by the execution of some action. Rather the spec-
ification should concentrate on immediate effects, and so-
called indirect effects are then implicitly derived by some
additional general knowledge of dependencies. Consider,
as an example, an electric circuit containing a switch and
a light bulb. Here one might wish to specify that the only
direct effect of toggling the switch is a change of its posi-
tion while the state of the bulb is indirectly affected via
a general law (called domain constraint) that describes
the causal connection between the switch’s state and the
bulb [Lifschitz, 1990].

It has often been argued (see, e.g., [Ginsberg and
Smith, 1988]) that Strips-like approaches [Fikes and
Nilsson, 1971] are inherently unsuited to tackle the rami-
fication problem since they are based on the idea that all
fluents remain unchanged which are not explicitly men-
tioned in an action description. In this paper, however,
we propose to regard the set of fluents which is obtained

after having applied some action description merely as
a preliminary approximation of the resulting situation—
which then is computed by performing additional post-
processing steps that model indirect effects according to
given domain constraints.

Our approach consists of two steps. First, we show
how the post-processing computations just mentioned
can be performed on the basis of additional knowledge
of so-called causal relationships. These define how the
occurrence of a particular atomic effect might cause the
additional occurrence of certain other effects. The inten-
tion is to apply such rules if and as long as the situation
at hand (which has been obtained by computing the di-
rect effects of an action) violates the domain constraints.
Second, we illustrate how causal relationships can be au-
tomatically generated from given domain constraints by
taking into account general knowledge of how facts can
possibly affect each other.

The applicability of our solution is demonstrated by
extending a concrete Strips-like yet purely deductive
method which is based on Equational Logic Program-
ming (ELP) [Hölldobler and Schneeberger, 1990]. In
contrast to Strips, this approach has recently turned
out to have a wide range of applicability as regards gen-
eral aspects of topical interest, e.g., postdiction prob-
lems, reasoning about nondeterministic and concur-
rent actions, etc. [Thielscher, 1994; Bornscheuer and
Thielscher, 1994]. Moreover, this method is provably
equivalent to a modification of the Connection Method
designed for planning problems [Bibel, 1986] and to an
approach to planning based on Linear Logic [Masseron
et al., 1990] (see [Große et al., 1995]).

The rest of this paper is organized as follows. In
Section 2, we introduce the formal notion of a causal
relationship. Based on this concept, we define post-
processing steps used to compute ramifications accord-
ing to underlying domain constraints. In Section 3, we
present an algorithm to generate causal relationships au-
tomatically given some domain constraints and a formal
specification of which fluents are causally connected. In
Section 4, we turn to the ELP-based approach and show
how to integrate our solution to the ramification prob-
lem. To this end, we extend the basic logic program
by clauses expressing domain constraints and model-
ing the successive application of single causal relation-
ships. The adequateness of this extension is proved



wrt the semantics developed in Section 2. Finally, our
proposal is discussed and future research is outlined
in Section 5. In particular, we compare the employ-
ment of causal relationships with methods based on the
distinction between frame and non-frame fluents made
to address the ramification problem [Lifschitz, 1990;
Kartha and Lifschitz, 1994]—and show the limitedness
of the latter.

2 Applying Causal Relationships

A formal framework to reason about actions and change
requires the basic notion of a situation, which is a par-
tial snapshot of the world at a particular instant of time.
So-called fluents serve as the atomic elements to de-
scribe situations—these are properties whose truth val-
ues may change in the course of time [McCarthy and
Hayes, 1969]. For sake of simplicity, we assume a finite
number of propositional constants as the underlying set
of fluents throughout this paper.

Definition 1 Let F be a finite set of symbols, called
fluents. A situation S is a set of fluent literals, i.e.,
expressions of the form f or f , where f ∈ F , such that
each fluent occurs either affirmatively ( f ) or negatively
( f ) in S .

For convenience, let us agree to interpret f as f , and
by |l| we denote the affirmative part of a fluent literal l ,
i.e., |f | = |f | = f where f ∈ F .

Example 1 The basic version of the Yale Shooting
scenario [Hanks and McDermott, 1987] consists of the
fluents loaded and alive , which determine the state of
a gun and a turkey, respectively. For instance, the situ-
ation {loaded , alive} describes the fact that the gun is
unloaded and the turkey is alive.

Example 2 The Electric Circuit domain [Lifschitz,
1990] consists of two binary switches whose positions are
described by the fluents switch1 and switch2 , respec-
tively, plus a light bulb represented by the fluent light .
The set {switch1, switch2, light} , for instance, describes
a situation where the two switches are in different posi-
tions and the light is off.

Actions are specified in a Strips-like fashion by stat-
ing a set of fluent literals to be removed from along with
a set of fluent literals to be added to the situation at
hand. Such an action is applicable if all literals to be
removed are contained in the current situation:

Definition 2 Let F be a set of fluents. An action de-
scription is a triple 〈C, a, E〉 where C , called condition,
and E , called effect , are sets of fluent literals and the
action name a is a symbol. Such an action description
is applicable in a situation S iff C ⊆ S . The application
yields the set (S \ C) ∪ E .

Example 1 (continued) The action of loading the
gun can be formalized by the triple

〈{loaded}, load , {loaded}〉 . (1)

This action description is applicable in the situation
S = {loaded , alive} since {loaded} ⊆ S ; its application
yields (S \ {loaded}) ∪ {loaded} = {loaded , alive} .

Since the effects of an action may vary from situa-
tion to situation, one often needs more than just a single
specification such as (1). In order to avoid unintended
conflicts in case of multiple descriptions of one action,
we employ the following partial order on action descrip-
tions [Hölldobler and Thielscher, 1995]:

Definition 3 An action description 〈C1, a1, E1〉 is
more specific than a description 〈C2, a2, E2〉 iff a1 = a2

and C1 ⊃ C2 . If A is a set of action descriptions, S
a situation and a an action name then a successor of
S is obtained by applying the most specific (wrt A )
applicable action description of a to S .

Example 1 (continued) The action of shooting with
the gun might be defined by

〈{loaded}, shoot , {loaded}〉 (2)

stating that the gun becomes unloaded. Additionally,
shooting at a living turkey with a previously loaded gun
causes him to drop dead, i.e.,

〈{loaded , alive}, shoot , {loaded , alive}〉 . (3)

Following Definition 2, both (2) and (3) are applicable
in the situation {loaded , alive} . However, (3) is more
specific than (2) and, hence, the only successor of S is
{loaded , alive} as intended.

In the sequel, we assume that any given set of action
descriptions is deterministic, i.e., contains at most one
most specific applicable description for each action and
situation. Furthermore, its application shall always pre-
serve the condition of being a situation (see Definition 1).

Our concept of a situation suggests that first of all each
possible combination of fluent values describes a possible
situation in the domain being modeled. In more complex
scenarios, however, fluents might depend on each other.
These dependencies are expressed by means of domain
constraints, which are formalized as (propositional) for-
mulae built up from fluent literals and the usual logical
connectives:

Definition 4 Let F be a set of fluents. The set of
fluent formulae is the smallest set such that the constant
> (true) and each fluent literal f and f ( f ∈ F ) are
fluent formulae; and if F and G are fluent formulae
then (F ∧ G) , (F ∨ G) , (F ⇒ G) , and (F ⇔ G) are
also fluent formulae.

If S is a situation and F a fluent formula then the
notion of F being true in S , written S |= F , is induc-
tively defined as follows:

1. S |= > ;

2. S |= f (resp. S |= f ) iff f ∈ S (resp. f ∈ S ), for
each f ∈ F ;

3. S |= (F ∧G) iff both S |= F and S |= G ;

4. S |= (F ∨G) iff S |= F or S |= G (or both);

5. S |= (F ⇒ G) iff S 6|= F or S |= G (or both); and

6. S |= (F ⇔ G) iff S |= F and S |= G or else
S 6|= F and S 6|= G .



Example 1 (continued) The Yale Shooting scenario
is extended by two fluents, dead and walking , stat-
ing whether the turkey is dead and whether he is walk-
ing around, respectively [Baker, 1991]. The constraint
alive ⇔ dead then formalizes the obvious connection
between these two fluents while walking ⇒ alive states
that our turkey must be alive to take some exercises.

Example 2 (continued) We assume that our electric
circuit is designed such that the light bulb is on if and
only if the two switches are in the same position (see also
Figure 1 in Section 5). This is expressed via the domain
constraint light ⇔ (switch1 ⇔ switch2) .

The ramification problem now arises as soon as do-
main constraints describe dependencies which are not
reflected in some action description. Since the frame as-
sumption tells us that fluents keep their value unless they
are explicitly mentioned in such an action description,
the domain constraints become violated through the ex-
ecution of that action. For instance, applying (3) to
the (reasonable) situation {loaded , alive, dead ,walking}
yields the set S ′ = {loaded , alive, dead ,walking} accord-
ing to Definition 2, which now violates both underlying
domain constraints from above.

From a theoretical point of view it is of course conceiv-
able to integrate all domain constraints into the various
action descriptions, by making intensive use of our speci-
ficity criterion. From a practical point of view, however,
this would soon lead to an intractable number of action
descriptions when trying to model slightly more complex
scenarios. Moreover, adding a new domain constraint to
a scenario might force, in the worst case, the reconstruc-
tion of a completely new set of action descriptions.

Instead of exhaustively integrating domain constraints
into action descriptions, we should view these con-
straints as reason for certain indirect effects in addi-
tion to the effects explicitly occurring when executing
actions according to Definition 2. These indirect effects
are computed by performing additional post-processing
steps. Hence, the basic idea is to regard a set like
S ′ = {loaded , alive, dead ,walking} from above as a mere
approximation which requires further investigation to
obtain the finally resulting situation. If and as long
as the preliminarily obtained set violates the given do-
main constraints, particular indirect effects are gener-
ated. To this end, we need information of the various
causal connections between the fluents in the domain un-
der consideration. For instance, our domain constraint
alive ⇔ dead suggests that if some action affects the
fluent alive then it also influences, indirectly, the flu-
ent dead . In particular, this information should lead
to the replacement of dead by dead in S ′ . Such a
replacement—triggered by what will be called a causal
relationship below—is considered as a single step in the
post-process to be performed in order to address ram-
ifications. It is of course inevitably necessary to know
which of the two fluents alive and dead in S ′ was an
immediate effect of the action that has just been exe-
cuted. Otherwise, one could as well argue that the oc-
currence of dead should lead to the replacement of alive
by alive , which is clearly not intended in this example.

Moreover, since indirect effects potentially cause addi-
tional effects, it is necessary to keep in mind all computed
effects during the post-process. The following definition
of a causal relationship and its application to a set of flu-
ents in conjunction with a particular set of effects makes
this idea manifest:

Definition 5 A causal relationship is an expression of
the form C : e ; f where C is a fluent formula and
e, f are fluent literals. Let S be a situation and E a
set of fluent literals then such a relationship is applicable
to (S, E) iff S |= C , f ∈ S and e ∈ E . Its application
yields S ′ = (S \ {f}) ∪ {f} and E ′ = E ∪ {f} .

Let S be a consistent (wrt a set of given domain con-
straints D ) situation and 〈C, a, E〉 be a most specific
applicable action description (wrt a fixed set A ). A
consistent (wrt D ) set S ′ is a result of executing a
in S if some (S ′, E ′) can be obtained by applying a
sequence of causal relationships to ((S \ C) ∪ E , E) .

In words, a causal relationship consists of a condition C
that has to be satisfied, a particular effect e that must
have been occurred (directly or indirectly), and a fluent
that changes its value as an indirect effect caused by e .
A resulting situation is then obtained by applying a pure
action description following Definition 3 and, afterwards,
using causal relationships until the underlying domain
constraints become satisfied.

Example 1 (continued) Let the following two causal
relationships be given:

> : alive ; dead

> : alive ; walking
(4)

If S = {loaded , alive, dead ,walking} denotes the situa-
tion at hand then the application of (3) yields the set
(S \ C) ∪ E = {loaded , alive, dead ,walking} along with
E = {loaded , alive} . Now, the two relationships (4) can
be sequentially applied as follows:

( {loaded , alive, dead ,walking} , E )
↓

( {loaded , alive, dead ,walking} , E ∪ {dead} )
↓

( {loaded , alive, dead ,walking} , E ∪ {dead ,walking} )

The resulting situation does no longer violate the domain
constraints and is exactly the intended solution.

Example 2 (continued) Consider the relationship

switch2 : switch1 ; light . (5)

Furthermore, let 〈switch1, toggle1, switch1〉 be one spec-
ification of toggling the first switch. This descrip-
tion is applicable in {switch1, switch2, light} and yields
S ′ = {switch1, switch2, light} along with the set of ef-
fects E = {switch1} . Because of S ′ |= switch2 ,
the causal relationship (5) is applicable and yields
{switch1, switch2, light} , which now is compatible with
the underlying domain constraint.

The reader should be aware of the fact that Defini-
tion 5 does neither guarantee uniqueness nor even ex-
istence of a successor situation. Both aspects will be
discussed in Section 5.



3 Extracting Causal Relationships

The causal relationships used in the previous section
were given as part of the problem specification. In this
section, we investigate the possibility to extract these
rules automatically from arbitrary domain constraints.
Doing this, however, one is faced with a well-known prob-
lem: Recall the formula light ⇔ (switch1 ⇔ switch2) ,
and consider the set of fluents {switch1, switch2, light}
being obtained by changing the position of the first
switch (Example 2). This situation violates the underly-
ing constraint. To correct this via a ramifications step,
there are two different possibilities even in case we are
aware of the fact that the first switch has just changed its
position. Either we could replace light by light or else
switch2 by switch2 . Both are (minimal) changes result-
ing in a situation that satisfies our domain constraint.
Obviously, the latter contradicts our intuition; yet no
syntactical criterion tells us which of the two changes
should be preferred. By using the given, intended causal
relationship (5), we have obtained the desired result. But
first of all our constraint suggests as well the counterin-
tuitive relationship light : switch1 ; switch2 .

This is a general problem arising in any formal ap-
proach to the ramification problem. Several ways to
overcome it are informally discussed in [Ginsberg and
Smith, 1988]. The most promising and reasonable solu-
tion, which we adapt here, seems to be the incorporation
of additional knowledge of the domain into the reason-
ing process. For instance, we know from general laws of
physics that changing a switch’s position might immedi-
ately influence the bulb but not another switch.1

Domain knowledge of how fluents possibly affect each
other is formally specified by a binary influence rela-
tion I on the set of fluents. For example, defining
I = {(switch1, light), (switch2, light)} encodes the fact
that a change of a switch’s position can possibly influence
the state of the light bulb but not vice versa. Based on
this additional information, all intended causal relation-
ships can be extracted automatically from given domain
constraints by considering each possible way to satisfy a
violated constraint through the change of certain fluents:

Algorithm 1 Let F be a set of fluents, D a set of
domain constraints and I ⊆ F×F an influence relation.
For each D ∈ D do:

1. Let F1 ∧ . . . ∧ Fn be the conjunctive normal form
(CNF) of D ( n ≥ 1 ). For each i = 1, . . . , n do:

2. Let Fi = L1 ∨ . . . ∨ Lm where each Lj is a fluent
literal (m ≥ 1 ). For each j = 1, . . . ,m do:

3. For each k = 1, . . . ,m such that j 6= k and
(|Lj |, |Lk|) ∈ I generate this causal relationship:

∧

l = 1, . . . , m

l 6= j, l 6= k

Ll : Lj ; Lk .

1It is important to distinguish between immediate and
possibly indirect influence. Though two switches cannot di-
rectly affect each other, they might be causally connected
indirectly through, for instance, a relay (see also Figure 1).

Note that a domain constraint might yield an exponen-
tial number of causal relationships if its CNF consists
of exponentially many literals. But the overall number
of relationships is linear in the size of D because each
constraint is treated separately.

Example 2 (continued) Consider the domain con-
straint D = light ⇔ (switch1 ⇔ switch2) and the in-
fluence relation I = {(switch1, light), (switch2, light)} .
The CNF of D is

(light ∨ switch1 ∨ switch2) ∧ (light ∨ switch1 ∨ switch2)

∧ (light ∨ switch1 ∨ switch2) ∧ (light ∨ switch1 ∨ switch2) .

Let us apply the second and third step of Algorithm 1
to the first conjunct, light ∨ switch1 ∨ switch2 :

• In case Lj=1 = light , no causal relationship is gen-
erated since I includes neither (light , switch1) nor
(light , switch2) .

• In case Lj=2 = switch1 , this causal relationship is
generated due to (switch1, |Lk=1| = light) ∈ I :

switch2 : switch1 ; light

(c.f. (5)), whereas (switch1, |Lk=3| = switch2) 6∈ I
prevents us from generating the unintended rela-
tionship light : switch1 ; switch2 .

• In case Lj=3 = switch2 , this causal relationship is
generated due to (switch2, |Lk=1| = light) ∈ I :

switch1 : switch2 ; light

while (switch2, |Lk=2| = switch1) 6∈ I suppresses
the generation of another one.

Correspondingly, the remaining conjuncts in the CNF
above yield these six causal relationships:

switch2 : switch1 ; light switch1 : switch2 ; light

switch2 : switch1 ; light switch1 : switch2 ; light

switch2 : switch1 ; light switch1 : switch2 ; light

Example 1 (continued) Given the influence rela-
tion I = {(alive, dead), (dead , alive), (alive,walking)} ,
the reader is invited to verify that our two domain con-
straints yield these five causal relationships:

> : alive ; dead > : alive ; dead

> : dead ; alive > : dead ; alive

> : alive ; walking

(6)

4 Ramification in ELP

The completely reified representation of situations is
the distinguishing feature of the ELP-based approach
[Hölldobler and Schneeberger, 1990]. To this end, the
fluent literals being true in a situation are treated as
terms and are connected using a special binary function
symbol, denoted by ◦ and written in infix notation:

Definition 6 Let S = {f1, . . . , fm, fm+1, . . . , fn} be
a set of fluent literals then

τS
def
= f1 ◦ . . . ◦ fm ◦ fm+1 ◦ . . . ◦ fn

is the term representation of S .



Intuitively, the order of the fluent literals occurring in
a term representation should be irrelevant, which is why
we employ an underlying equational theory, viz

(X ◦ Y ) ◦ Z =AC1 X ◦ (Y ◦ Z) (A)

X ◦ Y =AC1 Y ◦X (C)

X ◦ ∅ =AC1 X (1)

where ∅ is a constant denoting a unit element for ◦ .
Based on this equational theory, written (AC1), the

reasoning process described in Definitions 2 and 3 is en-
coded by means of an equational logic program (see,
e.g., [Hölldobler, 1989]) as follows. Each action de-
scription 〈C, a, E〉 is represented by the unit clause
action (τC , a, τE) . The application of actions, which in-
cludes consideration of the specificity criterion, is per-
formed on the basis of these three program clauses:2

causes (I, [ ], I).
causes (I, [A|P ], G) ← action (C,A,E),

C ◦ V =AC1 I,

¬non specific (A,C, I),
causes (V ◦ E,P,G).

non specific (A,C, I) ← action (C ′, A,E′),

C′ ◦ V =AC1 I,

C ◦W =AC1 C′,

¬W =AC1 ∅.

(7)

In words, the ternary predicate causes (i, [a1, . . . , an], g)
expresses the fact that the application of the sequence
[a1, . . . , an] of actions to the initial situation i yields the
goal situation g . If n ≥ 1 then an action description
of a1 with condition c and effect e is selected such
that c is contained in i , i.e., ∃V. c ◦ V =AC1 i ; the
description is most specific wrt i ; and the recursive call
uses the resulting situation V ◦e along with the sequence
p = [a2, . . . , an] . An instance non specific (a, c, i) states
the existence of a description for a which is more spe-
cific wrt the situation i than the particular description
with condition c . Following Definition 3, such a more
specific action description must have some condition c′

such that c′ is contained in i and the set corresponding
to c′ is a strict superset of the set corresponding to c .3

The clauses in (7) plus the ones encoding a given
set of action descriptions in conjunction with the equa-
tional theory (AC1) form the basic ELP to reasoning
about actions. Since this logic program does not only
require a special unification procedure but also contains
negative literals, an adequate computation mechanism
is SLDENF-resolution, i.e., SLD-resolution augmented
by theory unification and the negation-as-failure prin-
ciple to handle negative subgoals [Shepherdson, 1992;
Thielscher, 1995]. In [Hölldobler and Thielscher, 1995],
the application of this calculus to our ELP has been
proved adequate wrt the semantics given by Defini-
tions 1–3.4

2We use a Prolog-like syntax, i.e., constants and pred-
icates are in lower cases whereas variables are denoted by
upper case letters. As usual, the term [h | t] denotes a list
with head h and tail t .

3In order to treat equality subgoals, we implicitly add the
clause X =AC1 X encoding reflexivity .

4It is important to realize that the axioms (AC1) essen-
tially model the data structure multiset rather than sets;

4.1 Integrating Domain Constraints

As a first step towards integrating our solution to the
ramification problem into the ELP-based approach, we
have to provide a way to express domain constraints. To
this end, we overload to a certain extent the four logical
connectives ∧ , ∨ , ⇒ and ⇔ , introduced in Defini-
tion 4, by treating them as special binary functions in
our logic program. Given a fluent formula F , by τF we
denote its term representation based on these functions
(and where the special formula > is represented by the
unit element ∅ ). The following clauses encode the no-
tion of a formula being true in a particular situation:

holds (F, F ◦ V ).
holds (F ∧G,S) ← holds (F, S), holds (G,S).
holds (F ∨G,S) ← holds (F, S).
holds (F ∨G,S) ← holds (G,S).
holds (F ⇒ G,S) ← ¬holds (F, S).
holds (F ⇒ G,S) ← holds (G,S).
holds (F ⇔ G,S) ← holds (F ⇒ G,S), holds (G⇒ F, S).

(8)

These clauses are adequate wrt Definition 4:

Proposition 7 Let F be a set of fluents, F a fluent
formula and S a situation. Furthermore, let τS and
τF denote term representations of S and F , respec-
tively, then S |= F iff (8) ∪ {← holds (τF , τS)} has an
SLDENF-refutation wrt (AC1).

Proof: If F = > then S |= F . Correspondingly,
the query ← holds (∅, τS) can be refuted by applying
the first clause in (8) since τS =AC1 ∅ ◦ τS .

If F = f (resp. F = f ) for some f ∈ F then S |= F

iff f ∈ S (resp. f ∈ S ). Correspondingly, the query
← holds (τF , τS) can only be resolved by applying the
first clause in (8) and only if τS and f ◦V (resp. f ◦V )
are (AC1)-unifiable.

The various cases where F is a complex formula can
be easily proved by induction on its structure.5

Based on this formalization, an underlying set of do-
main constraints {D1, . . . , Dn} is used to define consis-
tency of situations via the following program clause:

consistent (S) ← holds (τD1
, S), . . . , holds (τDn

, S). (9)

4.2 Causal Relationships in ELP

To integrate into the ELP-based approach causal re-
lationships and their application in order to address
the ramification problem, we introduce a new predicate
ramify(τS , τE , τS′ , τE′) . Its intended meaning is that the
application of some causal relationship to a pair (S, E)
yields a pair (S ′, E ′) . More precisely, each causal rela-
tionship C : e ; f is encoded via the unit clause

ramify(S ◦ f,E ◦ e, S ◦ f,E ◦ e ◦ f) ← holds (τC , S ◦ f). (10)

In words, if the situation at hand contains the fluent lit-
eral f and entails C , and if in addition e has occurred

the necessity of this sophistication, as regards our pro-
gram (7), has been shown in [Große et al., 1995]. We neglect
this difference here—which is justified by results presented
in [Thielscher, 1994].

5Regarding the fifth clause in (8), note that a subgoal
¬holds (τF , τS) has an SLDENF-refutation iff the affirmative
query ← holds (τF , τS) finitely fails, i.e., is not refutable.



as effect then f is replaced by f . Furthermore, f is
added to the current set of effects. For brevity, given a
set R of causal relationships by (10)R we denote the
set of program clauses encoding the elements of R .

In order to apply causal relationships in a post-process
after having applied an action description, the body of
the second clause defining causes in our original pro-
gram, (7), is extended by a literal named consistify :

causes (I, [A|P ], G) ← action (C,A,E),
C ◦ V =AC1 I,
¬non specific (A,C, I),
consistify(V ◦ E,E, S),
causes (S, P,G).

(11)

An instance consistify(v ◦ e, e, s) is intended to express
the fact that the preliminarily computed (possibly in-
consistent) situation v ◦ e along with the effect e can
be transformed into a resulting (consistent) situation s
through the successive application of causal relationships
(c.f. Definition 5):

consistify(S,E, S) ← consistent (S).

consistify(S,E, T ) ← ramify(S,E, S′, E′),

consistify(S′, E′, T ).

(12)

In words, if the situation at hand is already consistent
(c.f. (9)) then it describes an acceptable result. On the
other hand, we can apply a causal relationship to the
situation S along with the effects E that yields a new
situation S′ and a new set of effects E′ according to
Definition 5, which are then used in a recursive call.

The following main result states the adequateness of
our extended program wrt the proposal of Section 2:

Theorem 8 Let F be a set of fluents, R a set of
causal relationships, D a set of domain constraints and
S, E ,S ′ three sets of fluents. If S is the outcome of hav-
ing applied some most specific action description with ef-
fect E to some consistent situation then S ′ is a resulting
situation iff ← consistify(τS , τE , τS′) has an SLDENF-
refutation wrt (9)D ∪ (10)R ∪ (12) and (AC1).

Proof (sketch): There is a one-to-one correspon-
dence between the application of a causal relationship
according to Definition 5 and the application of the cor-
responding clause (10). Furthermore, the first clause
in (12) in conjunction with Proposition 7 requires S ′ to
satisfy D . The formal proof is by induction on the num-
ber of applied causal relationships and the length of the
refutation, respectively.

Example 1 (continued) Given the encodings of the
two relationships in (4), of the underlying domain con-
straints, and of the action description (3), i.e.,

ramify(S ◦ dead , E ◦ alive, S ◦ dead , E ◦ alive ◦ dead).

ramify(S ◦ walking , E ◦ alive,

S ◦ walking , E ◦ alive ◦ walking).

consistent (S) ← holds (alive ⇔ dead , S),
holds (walking ⇒ alive, S).

action (loaded ◦ alive, shoot , loaded ◦ alive).

it is possible to find an SLDENF-refutation for the query
← causes (loaded ◦alive ◦dead ◦walking , [shoot ], G) with
answer G 7→ loaded ◦ alive ◦ dead ◦ walking .

light

switch1 switch2

relay

switch3

Figure 1: An extended electric circuit consisting of five
fluents. The current state is described by switch1 (the
first switch is up), switch2 (the second switch is down),
switch3 (the third switch is closed), light (the light bulb
is off) and relay (the relay is deactivated).

5 Discussion

We have proposed the application of single causal rela-
tionships in a post-processing step in order to address
the ramification problem. Moreover, it has been illus-
trated how an adequate set of such relationships can be
automatically extracted from given domain constraints
by taking into account general knowledge of how fluents
can possibly affect each other. Finally, we have inte-
grated both domain constraints and our method to com-
ply with them into an approach to reason about actions
and change based on Equational Logic Programming.

The merits of causal relationships shall be illustrated
by an example that shows the limitedness of a common,
simpler way to avoid unintended ramifications, namely,
the distinction between so-called frame and non-frame
fluents [Lifschitz, 1990; Kartha and Lifschitz, 1994]:6

Consider the extended Electric Circuit scenario depicted
in Figure 1. Two switches and the light bulb are related
as usual, i.e., light ⇔ (switch1 ⇔ switch2) ; the addi-
tional relay is controlled by the first and third switch
through relay ⇔ switch1 ∧ switch3 ; and the relay is
intended to force the second switch into the upper po-
sition if activated, i.e., relay ⇒ switch2 . Now, in order
to prefer the light bulb changing its state to a switch
unexpectedly jumping its position (see Section 3), we
are supposed to consider switch1 and switch2 frame
and light non-frame. Accordingly, switch3 and relay
should be considered frame and non-frame, respectively.
However, if we take the situation depicted in Figure 1
and change the position of the first switch then it is im-
possible to distinguish between these two outcomes: Ei-
ther the relay becomes activated and causes the second
switch to jump into the upper position (as intended) or
else the relay remains deactivated and the third switch
opens magically! This is because in both cases a sec-
ond frame fluent (aside from switch1 ) is affected, yet no
preference is discernible. In contrast, and the reader is
invited to verify this, given the natural influence relation
I = {(switch1, light), (switch2, light), (switch1, relay),

6Roughly spoken, the idea there is to prefer changes of
non-frame fluents to changes of frame fluents whenever addi-
tional effects have to be considered in order to satisfy domain
constraints.



(switch3, relay), (relay , switch2)} , Algorithm 1 gener-
ates an adequate set of causal relationships whose ap-
plication according to Definition 5 yields the intended,
unique resulting situation.

A second merit of causal relationships is that they en-
able us to comply with the observation that domain con-
straints might give rise to qualifications rather than ram-
ifications [Lin and Reiter, 1994]. Consider, for instance,
the action of enticing the turkey to walk.7 The effect
of executing this action shall be {walking} . Yet in case
the turkey is not alive, the constraint walking ⇒ alive
should clearly not lead to his revival. Rather it im-
poses an additional qualification on our new action.
This is reflected in the causal relationships (6): None
of them is applicable to S = {alive, dead ,walking} ,
E = {walking} ; hence, no resulting situation is obtained
here following Definition 5. Our logic program developed
in Section 4 behaves accordingly—the reader is invited to
verify that ← causes (alive ◦ dead ◦ walking , [entice], G)
has no SLDENF-refutation given the encoding of (6) and
the action description action (walking , entice,walking) .

The example just discussed illustrates the possibility
that a resulting situation does not at all exist, i.e., the
available causal relationships might not always be suffi-
cient to satisfy the underlying domain constraints. As
we have seen, this induces (additional) qualifications. On
the other hand, it is also conceivable that multiple suc-
cessor situations can be obtained by applying different
sequences of causal relationships all resulting in the sat-
isfaction of the domain constraints. This induces nonde-
terminism. Both non-existence as well as multitude of re-
sulting situations rise the important question of general
criteria that guarantee a unique successor. A compar-
ison with the concept of revision programs, introduced
in [Marek and Truszczyński, 1994], might help to ad-
dress this problem. Revision programs along with their
application in order to modify states of databases resem-
ble causal relationships and their application in order
to compute ramifications. In [Marek and Truszczyński,
1995], two syntactic conditions have been proved guar-
antee of a unique revised database. Whether and how
these results can be adapted to our approach depends
on the formal correspondence between the two concepts
and is left as future work.
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