
The Logic of Dynamic Systems

Michael Thielscher

Intellektik, Informatik, TH Darmstadt
Alexanderstraße 10, D–64283 Darmstadt (Germany)

mit@intellektik.informatik.th-darmstadt.de

Abstract

A formal theory of actions and change in dy-
namic systems is presented. Our formalism is
based on the paradigm that state transitions
in a system naturally occur while time passes
by; one or more agents have the possibility to
direct the development of the system by execut-
ing actions. Our theory covers concurrency of
actions and events and includes a natural way
to express delayed effects and nondeterminism.
A uniform semantics for specifications of dy-
namic systems is developed, which enables us
to express solutions to problems like temporal
projection, planning and postdiction in terms
of logical entailment.

1 Introduction

A common assumption underlying most formal theories
of actions, such as [Gelfond and Lifschitz, 1993; Sande-
wall, 1994], is that state transitions in dynamic sys-
tems only occur when some agent executes an action—
otherwise the state of the system is assumed to be stable.
As pointed out for instance in [Pollack, 1992], this view
is often too restrictive if one intends to model more re-
alistic scenarios where one or more autonomous agents
act in a complex world. In this paper, we present an
alternative theory of dynamic systems that is based on
a different paradigm: State transitions naturally occur
while time passes by. A reasoning agent might influence
and direct the development of the system by initiating
actions but the system is not assumed to pause in case
there are no explicit actions.1

The aim of this paper is to develop a logic-oriented,
formal theory of dynamically changing worlds and the
process of acting in them. We will show that our
view provides naturally two main characteristic features.
First, the notion of parallelism is an intrinsic element
of our theory. This notion includes the concurrent ex-
ecution of actions as well as the simultaneous occur-
rence of events. Second, we can easily model delayed
effects of actions by initiating additional independent

1A similar principle was recently introduced in [Große,
1994] in the context of a modal logic approach to reasoning
about actions.

events which eventually trigger a particular effect. This
is the case since parallelism normally means that the var-
ious changes during a state transition are simultaneously
caused by several reasons.

When specifying a dynamic system, a major challenge
is to find a compact description of the underlying causal
model, which defines the space of possible state changes
in the course of time. Our theory includes these two
fundamental concepts: First, the persistence assump-
tion2, which enables one to state explicitly only what
changes during a single state transition while everything
else is implicitly assumed to remain unchanged. Sec-
ond, atomic causal laws are used to state relationships
between single cause-effect-pairs. Since usually several
of these atomic laws apply to the current state of a dy-
namic system, a combination of such laws determines the
complete transition step. The use of atomic causal rela-
tionships is especially necessary in theories which involve
concurrency of actions and events.

The major application of formal specifications of dy-
namic systems is to address one of the following three
problem categories:

• In a temporal projection problem, one is interested
in the result of executing a particular sequence of
actions starting in a particular state of the system.

• In a planning problem, the question is whether a
sequence of actions, taken as a plan, can be found
whose execution in the system results in the sat-
isfaction of a given goal. Below, we will illustrate
that our theory enables us to formulate more general
planning problems compared to the classical AI de-
finition of planning. We are able to specify that the
properties we strive for might be distributed over
several states of the system and need not necessar-
ily be satisfied in a single final state, until otherwise
required.

• In a postdiction problem3, one is faced with a nar-
rative which is represented by a number of obser-
vations regarding a system’s development during a
specific period. These observations are used to de-
rive more information about what has happened.
Our theory generalizes former work such as [Gelfond

2also called frame assumption or inertia principle
3called chronicle completion in [Sandewall, 1994]

and Lifschitz, 1993; Sandewall, 1994] in so far as the
sequence of actions performed during the period in
question is not necessarily completely known.

In the course of this paper, we will give precise definitions
of all these three problem categories in terms of our the-
ory. We will illustrate that this results in a model-based
semantics for formal specifications of dynamic systems
along with particular problem instances, which enables
us to define solutions to such problems in terms of logical
entailment.

The paper is organized as follows. In Section 2, we
define deterministic dynamic systems, where a unique
successor state can always be determined provided the
current state is completely known. For sake of simplic-
ity, we focus on so-called propositional dynamic systems,
where states are described by means of a finite number
of propositional constants. We introduce the notion of
a logical formula to describe properties of system states.
Such a formula can be used, for instance, to specify which
combinations of truth values for the underlying proposi-
tional constants denote impossible (inconsistent) states.
In Section 3, we define the notions of persistence as-
sumption and atomic causal laws; they both are funda-
mental for a compact and intuitive specification of the
behavior of a dynamic system. We introduce a certain
specificity criterion in order to resolve conflicts which
occur whenever the concurrent execution of actions or
the simultaneous occurrence of events, respectively, has
different effects than the serial execution. In Section 4,
we develop a model-based semantics for specifications
of dynamic systems and define the process of influenc-
ing the development of a system by means of executing
actions. This allows for a precise formalization of the
three aforementioned problem categories. In Section 5,
we extend the basic version of our theory to nondeter-
ministic dynamic systems, where uncertainty about the
successor state may exist even if the system’s current
state is completely known. In particular, we argue that
the concept of nondeterminism provides an interesting
and reasonable solution to the problem of concurrently
executed actions whose causal laws propose mutually ex-
clusive effects: Instead of declaring such situations im-
possible, which is the standard proposal in literature
(e.g., [Lin and Shoham, 1992; Baral and Gelfond, 1993;
Große, 1994]), we take only the disputed effects as un-
certain (c.f. [Bornscheuer and Thielscher, 1994]).

The reader should be aware of the purpose of this pa-
per, which is unusual in so far as it merely consists of de-
finitions rather than describing concrete results. We pro-
pose a formal framework to specify and to reason about
dynamic systems. Thus, our intention is similar to the
purpose of the topical systematic approaches [Sandewall,
1994; Gelfond and Lifschitz, 1993], namely, to provide a
high-level framework which deserves adequate proof the-
ories or can be used to assess the range of applicability
of existing approaches. A brief discussion of this aspect
in Section 6 concludes the paper.

2 Specifying Dynamic Systems

A formal specification of a dynamic system consists of
two components. First, a collection of fluents [McCarthy

and Hayes, 1969], which are used to describe particu-
lar states of the system. For sake of simplicity, we re-
strict attention to a finite set of propositional constants
here. Second, the behavior of the system as regards state
transitions needs to be described. In this and the next
two sections, we focus on deterministic dynamic systems.
This is reflected in the following definition, where a tran-
sition function determines unique successor states.

Definition 1 A deterministic, propositional dynamic
system is a pair (F ,Φ) consisting of a finite set of sym-
bols F , called fluents, and a partially defined mapping
Φ : C 7→ C , called causal model . The range of the latter
is a particular set of subsets of F , i.e., C ⊆ 2F .

Each subset s of F determines a (not necessarily pos-
sible) state of the dynamic system at hand. Each fluent
f ∈ s is then said to be true in s while each fluent
f ∈ F \ s is taken to be false. The set C is intended
to contain all so-called consistent states—only for these
states s the successor state Φ(s) is defined through the
exhaustively given causal model.

Based on the notion of truth wrt single fluents and
states, we can construct (propositional) formulae and
define entailment following the standard way:

Definition 2 Let F be a set of fluents. The set of
fluent formulae (based on F) is the smallest set such
that each element f ∈ F is a fluent formula; and if F
and G both are fluent formulae then ¬F , (F ∧ G) ,
(F ∨G) , and (F →G) are also fluent formulae.

Given a state s ⊆ F and a fluent formula F , the no-
tion of F being true in s , written s |= F , is inductively
defined as follows:

• s |= f iff f ∈ s , for each f ∈ F .

• s |= ¬F iff s 6|= F .

• s |= (F ∧G) iff both s |= F and s |= G .

• s |= (F ∨G) iff s |= F or s |= G (or both).

• s |= (F →G) iff s 6|= F or s |= G (or both).

Fluent formulae can be used, for instance, to specify con-
sistency of states more compactly by means of a partic-
ular formula C such that a state s ∈ F is defined to be
consistent iff s |= C . Then, the set C , which contains
all consistent states of a dynamic system (see Defini-
tion 1), is implicitly given by C = {s ⊆ F | s |= C} .

In order to integrate the paradigm mentioned in the
introduction, we call some distinguished fluents Fa ⊂ F
actions; these are fluents which an agent can make true
in the current state in order to influence the system’s
behavior. Hence, actions are nothing else than elements
of a state description. The formal notion of executing
actions will be given below, in Section 4.

Example 1 The Yale Shooting domain will be used,
in several variants, as the running example throughout
the paper. To formalize a first version, consider the
set of fluents F = {alive, loaded , load , shoot}—where
alive and loaded are used to describe the state of the
turkey and the gun, respectively, while load and shoot
are action fluents to describe the events of loading the
gun and shooting with it, respectively. The particular

state s = {alive, load} ⊆ F , for instance, describes
the facts that the turkey is alive, that the gun is un-
loaded, and that the agent intends to execute the ac-
tion load . The successor state Φ(s) might then be de-
fined as {alive, loaded} , stating that the turkey is still
alive and that the gun is now loaded. Furthermore, one
might wish to specify that the agent cannot simultane-
ously load the gun and shoot. This can be achieved by
means of the consistency criterion C = ¬(load ∧ shoot)
such that, say, s |= C due to {alive, load} 6|= shoot .

3 Causal Laws

The main challenge when specifying a dynamic system
is the problem of finding a compact representation of the
corresponding causal model Φ . The most fundamental
concept related to this is the principle of persistence,
which enables us to only specify the fluents that change
their value during a particular state transition; all other
fluents are implicitly taken to keep their value.

In our theory, we make a distinction between so-called
static fluents Fs that “tend to persist,” i.e., which are
assumed to keep their value until the contrary is ex-
plicitly stated (and, hence, to which the persistence as-
sumption should apply), and so-called momentary flu-
ents Fm that “tend to disappear” [Lifschitz and Ra-
binov, 1989]. For instance, shooting with a previously
loaded gun causes a bang which, however, does not per-
sist and abates immediately. As an important subclass of
momentary fluents we have the action fluents Fa . Alto-
gether, the set of fluents F describing a dynamic system
consists essentially of three components (Fs,Fm,Fa)
where Fa ⊆ Fm and Fs ∩ Fm = ∅ .

Based on this sophistication, the persistence principle
is integrated into our framework by defining that, for
each state s , the successor state Φ(s) is specified via
an associated triple of sets of fluents 〈sf −, sf +,mf +〉 .
Here, sf − contains the static fluents which change their
truth value to false during the state transition, i.e., which
are removed from s ; sf + contains the static fluents
which change their truth value to true, i.e., which are
added to s ; and mf + contains all momentary fluents
which are true in Φ(s) . All other static fluents in s
continue to be (and no other static fluents become) ele-
ment of Φ(s) while all momentary fluents except those
in mf + shall not be contained in the resulting state.

Example 2 Consider an extension of the Yale Shoot-
ing domain with static fluents Fs = {alive, loaded} and
momentary fluents Fm = {bang , bullet , load , shoot} ,
where the additional fluents bang and bullet describe,
respectively, the temporary acoustical occurrence of a
shot and a flying bullet. We then might specify the fol-
lowing:

State s : 〈sf −, sf +,mf +〉

(a) {alive, loaded , shoot} : 〈{loaded}, ∅, {bang , bullet}〉

(b) {alive, bang , bullet} : 〈{alive}, ∅, ∅〉

In words, shooting with a previously loaded gun causes
the gun to become unloaded (loaded ∈ sf −(a)) and the
occurrence of two events, bang and bullet ; and the fly-
ing bullet is intended to hit the turkey and, hence, causes

it to drop dead (alive ∈ sf −(b)) during the following state
transition. This example illustrates how our paradigm
allows for a natural formalization of delayed effects (here,
the victim’s death as a final result of having shot with the
gun). Using this specification, we obtain, for instance,
Φ(Φ({alive, loaded , shoot})) = Φ({alive, bang , bullet}) =
∅ . Note that finally both fluents bang and bullet dis-
appear automatically because they are momentary.

Although the persistence assumption allows for a com-
paction of defining a successor state Φ(s) by providing
instructions to computing it, the formalization above
still requires an exhaustive description as regards the
space of states s . Therefore, the second major principle
of specifying the behavior of a dynamic system consists
in splitting the definition of a single state transition into
separate atomic laws of causality, which then are usually
applicable in multiple states. This is especially essential
in theories which involve concurrency since it enables one
to specify the effects of each single action (or event like
bullet) separately:

Definition 3 Let F = Fs∪̇Fm be a set of static
and momentary fluents. A structure c : 〈sf −, sf +,mf +〉
is called a causal law if c ⊆ F , called the condition;
sf −, sf + ⊆ Fs ; and mf + ⊆ Fm .

A causal law is applicable in a state whenever its con-
dition is contained in the state description.4 In what
follows, to select the four components of some causal
law ` = c : 〈sf −, sf +,mf +〉 , we use the four functions

cond(`)
def
= c , static−(`)

def
= sf − , static+(`)

def
= sf + and

moment+(`)
def
= mf + . For convenience, we furthermore

use the following abbreviation to describe the result of
applying a set of causal laws L to some state s :

Trans(L, s)
def
= ((s \

⋃

`∈L
static−(`)) \ Fm)

∪
⋃

`∈L
static+(`) ∪

⋃

`∈L
moment+(`)

where Fm denotes the set of momentary fluents con-
sidered in the dynamic system at hand. Hence, we first
remove from s all static fluents that are supposed to
become false by some causal law in L ; afterwards, all
momentary fluents are removed; and finally, all static
and all momentary fluents are added that are supposed
to become true by some law in L .

Example 3 Consider the two causal laws

Condition : 〈sf −, sf +,mf +〉

`1 {shoot , loaded} : 〈{loaded}, ∅, {bang , bullet}〉

`2 {bullet , alive} : 〈{alive}, ∅, ∅〉

(1)

whose conditions both are contained, hence satisfied,
in the state s = {alive, loaded , bullet , shoot} (where
bullet might result from a previous shot). We obtain
Trans({`1, `2}, s) = {bang , bullet} .

4It is for the sake of simplicity why we have restricted the
condition of a causal law to a set of fluents and defined ap-
plicability as validity of the conjunction of these fluents in the
state at hand. It is however natural and straightforward to
consider arbitrary fluent formulae (c.f. Definition 2) instead.

It is of course important to take into account the pos-
sibility that the simultaneous occurrence of two or more
actions (or events) might have different effects than their
separate occurrence. As an example, consider a table
with a glass of water on it. Lifting the table on any side
causes the water to be spilled whereas nothing similar
happens if it is lifted simultaneously on opposite sides.
In terms of our theory, we can specify this situation by
three causal laws, viz

Condition : 〈sf −, sf +,mf +〉

`1 {lift-left} : 〈∅, ∅, {water-spills}〉

`2 {lift-right} : 〈∅, ∅, {water-spills}〉

`3 {lift-left , lift-right} : 〈∅, ∅, ∅〉

(2)

where lift-left and lift-right both are action fluents
and water-spills too is a momentary fluent. Unfor-
tunately, however, each law is applicable in the state
s = {lift-left , lift-right} , thus determining the unin-
tended result Trans({`1, `2, `3}, s) = {water-spills} .

In order to avoid this kind of counterintuitive behav-
ior, we employ an additional criterion to suppress the ap-
plication of some causal law as soon as, roughly spoken,
more specific information is available (see also [Baral and
Gelfond, 1993; Hölldobler and Thielscher, 1995]). For in-
stance, Law `3 in (2) should override `1 and `2 when-
ever it is applicable. Formally, we introduce the following
partial ordering on causal laws:

Definition 4 Let `1, `2 be two causal laws then `1
is called more specific than `2 , written `1 ≺ `2 , iff
cond(`1) ⊃ cond(`2) .

E.g., `3 ≺ `1 and `3 ≺ `2 but neither `1 ≺ `2 nor
`2 ≺ `1 in (2).5

Based on the specificity criterion, the causal model of
a dynamic system is obtained from a set of causal laws
as follows:

Definition 5 Let F be a set of fluents and L a set of
causal laws. For each (consistent) state s ⊆ F let L(s)
denote the set

{ ` ∈ L | cond(`) ⊆ s & ¬∃`′ ∈ L . `
′≺ ` & cond(`′) ⊆ s } .

Then, Φ(s) := Trans(L(s), s) .

In words, L(s) contains each causal law ` ∈ L which is
applicable in s (i.e., cond(`) ⊆ s) unless there is a more
specific law `′ ∈ L that is also applicable (i.e., `′ ≺ `
and cond(`′) ⊆ s).

For instance, since the first two causal laws in (2) are
less specific than the third one, we now obtain—due
to L({lift-left , lift-right}) = {`3}—the successor state
Φ({lift-left , lift-right}) = ∅ as intended. On the other
hand, we still obtain, say, Φ({lift-left}) = {water-spills}
because Law `3 , though more specific than `1 , is not
applicable in this case.

5If we allow arbitrary fluent formulae as conditions of
causal laws (c.f. Footnote 4), then a law with condition c1

is said to be more specific than a law with condition c2 iff
∀s. s |= c1→ c2 and ∃s. s |= ¬(c2→ c1) . In the propositional
case, this is obviously still decidable and a corresponding de-
pendence graph could be computed in a pre-processing step.

One should be aware of the fact that nonetheless it
might well happen that two most specific applicable laws
have mutually exclusive effects. A reasonable way to
handle this problem will be proposed and formalized be-
low, in Section 5. For the moment we assume that the
combination of most specific causal laws never leads to
contradictory fluent values, i.e., more formally, that

⋃

`∈L(s)

static−(`) ∩
⋃

`∈L(s)

static+(`) = ∅ (3)

for each (consistent) state s (where L(s) is as in Defi-
nition 5).

4 A Model-Based Semantics

Based on the specification of state transition in a dy-
namic system, we can define its behavior over a longer
period and under the influence of one or more agents.
To direct the development of a system, these agents are
able to (simultaneously) execute actions. The execution
of one or more actions in a particular state is modeled
by adding the corresponding set of action fluents to the
state descriptions before applying the transition func-
tion. Since we take action fluents as momentary, these
are usually removed during a state transition. The fol-
lowing definition formalizes this concept and extends it
to the application of sequences of action sets:

Definition 6 Let (F ,Φ) be a dynamic system with
action fluents Fa ⊂ F and p = [a1, . . . , an] (n ≥ 0)
be a sequence of sets of action fluents (i.e., ai ⊆ Fa).
Furthermore, let s0 be a consistent state, then the ap-
plication of p to s0 yields an infinite sequence of system
states 〈s1, . . . , sn, sn+1, . . .〉 where

• s1 = s0 ∪ a1 ;

• si+1 = Φ(si) ∪ ai+1 , for each 1 ≤ i < n ; and

• si+1 = Φ(si) for each i ≥ n

provided each state s1, . . . , sn is consistent—otherwise
the application of p to s0 is undefined. If it is de-
fined then the triple (p, s0, 〈s1, . . .〉) is a development
in (F ,Φ) .

Note that some sets of actions ai might be empty, i.e.,
an agent has the possibility to pause for a moment and
let the system act autonomously. Note further that, af-
ter having executed the entire sequence of actions, the
resulting state is not necessarily stable, i.e., the system
might run into a limit cycle by oscillating among a num-
ber of states. Although a transition function Φ should
be designed such that no inconsistent state results from
a consistent one (c.f. Definition 1), the process of adding
action fluents may cause inconsistency of some state si .
This is the reason for the additional consistency require-
ment above.

Example 4 Consider the Yale Shooting domain in the
formalization of Example 2 along with the causal model
determined by the two causal laws in (1). The appli-
cation of the sequence [∅, {shoot}] to the initial state
s0 = {bang , alive, loaded} yields

s1 = s0 ∪ ∅ = {bang , alive, loaded}

s2 = Φ(s1) ∪ {shoot} = {alive, loaded , shoot}

s3 = Φ(s2) = {alive, bang , bullet}

s4 = Φ(s3) = ∅

s5 = Φ(s4) = ∅

...

In the course of the development of a system, we can
make observations concerning its various states. An ob-
servation can be formulated as a fluent formula associ-
ated with a particular time point. We then call a formal
development in the sense of Definition 6 a model of an
observation iff the corresponding fluent formula is true
in the corresponding state of the development:

Definition 7 Let (F ,Φ) be a dynamic system. An
expression [i]ψ is called an observation if i ∈ IN0 and ψ
is a fluent formula. Such an observation holds in a devel-
opment (p, s0, 〈s1, . . .〉) iff si |= ψ . A model of a set Ψ
of observations is a development in (F ,Φ) where each
element of Ψ holds.

For instance, [0]alive ∧ ¬bullet and [3]¬alive are two
observations that can be formulated in our Yale Shoot-
ing domain. Then, this development is a model wrt the
causal laws in (1):

([{shoot}] , {alive, loaded} ,

〈{alive, loaded , shoot}, {alive, bang , bullet}, ∅, ∅, . . .〉)

since we have s0 = {alive, loaded} |= alive ∧ ¬bullet
and s3 = ∅ |= ¬alive . The reader is invited to verify
that not only in this development but in every model
of the two observations above the additional observation
[1]shoot ∧ loaded holds—hence, we are allowed to con-
clude that a shoot action must have taken place and
that the gun was necessarily loaded at the beginning.6

In general, we define the following notion of entailment
on the space of observations:

Definition 8 Let (F ,Φ) be a dynamic system and Ψ
a set of observations. Ψ entails an additional obser-
vation [i]ψ , written Ψ |=Φ [i]ψ , iff [i]ψ holds in each
model of Ψ .

Based on this model-theoretic formalization of dy-
namic systems, we can classify some important and well-
known problem categories as instances given a system
(F ,Φ) , depending on what information is provided:

6One referee raised the question whether one should in
general assume minimality of actions being performed when
trying to find models for a given set of observations. Al-
though this assumption might be helpful (if taken as prefer-
ence ordering) e.g. in case of planning problems, we definitely
do not want to employ this criterion as a global restriction
on the notion of a model. If, for instance, we observe the
gun being unloaded at the beginning and being loaded after
a while, we can conclude safely only that at least one load
action has eventually taken place; we ought not to disregard
the possibility that the gun has been loaded and shot with
several times before, because there is nothing illogical about
this. Besides, our definition guarantees the property of re-
stricted monotonicity [Lifschitz, 1993], which means that ad-
ditional observations can never force the revision of previous
conclusions.

• A temporal projection problem consists of an ini-
tial state s0 along with a sequence of sets of ac-
tions p = [a1, . . . , an] . The question is to compute
the resulting state after having applied p to s0 .

In terms of our theory, the problem is essentially
to find a model for the particular set of observa-
tions that describes the given initial state and ex-
actly those occurrences of action fluents which are
determined by p , i.e.,

Ψ = { [0]
∧

f∈s0
f ∧

∧

f∈F\s0
¬f ,

[1]
∧

f∈a1
f ∧

∧

f∈Fa\a1
¬f ,

...

[n]
∧

f∈an
f ∧

∧

f∈Fa\an
¬f }

where Fa denotes the underlying action fluents.

• A classical planning problem consists of an initial
state s0 and a fluent formula g , called the goal .
The question is to find a sequence of sets of ac-
tions p whose application to s0 yields a sequence
of system states containing one particular state sn

which satisfies g .

In terms of our theory, the problem is essentially to
find a model for this set of observations:

Ψ = { [0]
∧

f∈s0
f ∧

∧

f∈F\s0
¬f ,

[n]g }

for some n ∈ IN .

• A postdiction problem consists of a narrative given
by a set of observations Ψ along with a sequence
of sets of actions p = [a1, . . . , an] . The question
is to decide whether an additional observation is a
logical consequence of this scenario.

In terms of our theory, the problem is essentially
to decide entailment wrt the particular set of obser-
vations that includes the given ones and describes
exactly those occurrences of action fluents which are
determined by p , i.e.,

Ψ ∪ { [1]
∧

f∈a1
f ∧

∧

f∈Fa\a1
¬f ,

...

[n]
∧

f∈an
f ∧

∧

f∈Fa\an
¬f } .

Due to the fact that our theory generalizes several formal
approaches to reasoning about actions, we are able to
formulate, for instance, more general planning problems
where the initial situation is only partially defined and
where the goal specification is not necessarily required
to hold in a single state. Or, we can formulate general
postdiction problems where the sequence of actions is
only incompletely specified, etc.

5 Nondeterminism

In this section, we extend the concepts developed so far
to so-called nondeterministic dynamic systems. Non-
determinism occurs when uncertainty about the succes-
sor state exists even in case the current state is com-
pletely known. This is reflected in the following defin-
ition, where the causal model consists of a relation on

pairs of states (see, e.g., [Thielscher, 1994]) instead of a
function as in Definition 1:

Definition 9 A nondeterministic, propositional dy-
namic system is a pair (F ,Φ) consisting of a set of
fluents F and a relation Φ ⊆ 2F × 2F .

Given a state s ⊆ F , each s′ such that (s, s′) ∈ Φ is
called a possible successor state. A state is now said to
be inconsistent in case it has no successor at all.

The concept of nondeterminism is reflected in an ex-
tended notion of a causal law where several expressions
〈sf −i , sf

+
i ,mf

+
i 〉 can be associated with a single condi-

tion; each triple then determines a possible alternative:

Definition 10 Let F = Fs∪̇Fm be a set of static and
momentary fluents. An extended causal law is a struc-
ture c : {〈sf −1 , sf

+
1 ,mf

+
1 〉, . . . , 〈sf

−
n , sf

+
n ,mf

+
n 〉} where

n ≥ 1 ; c ⊆ F ; sf −i , sf
+
i ⊆ Fs ; and mf +i ⊆ Fm

(1 ≤ i ≤ n).

Example 5 The Russian Turkey scenario (see, e.g.,
[Sandewall, 1994]) is obtained from the Yale Shooting
domain by adding an action fluent spin . The effect of
spinning its cylinder is that the firearm becomes ran-
domly loaded or not, regardless of its state before. This
nondeterministic effect can be modeled by the following
extended causal law:

Condition : { 〈sf −i , sf +
i ,mf +

i 〉 }

{spin} :

{

〈{loaded}, ∅, ∅〉,

〈∅, {loaded}, ∅〉

}

(4)

As for the special case of deterministic systems, the
combination of all most specific laws shall determine the
behavior of the system at hand. Hence, for each state s
we define the set L(s) as

{ ` ∈ L | cond(`) ⊆ s & ¬∃`′ ∈ L . `
′≺ ` & cond(`′) ⊆ s } ,

similar to Definition 5, where L denotes the underlying
set of (extended) causal laws. Now, let L(s) be the set
{c1 : A1, . . . , ck : Ak} (k ≥ 0) and define Poss(L(s))
as

{ {c1 : a1, . . . , ck : ak} | ai ∈ Ai (1 ≤ i ≤ k) }

containing each possible selection and combination of al-
ternatives. Each element in Poss(L(s)) determines a
possible successor state of s , i.e.,

(s, s′) ∈ Φ iff ∃P ∈ Poss(L(s)). s
′ = Trans(P, s) .

For instance, consider (4) as the only applicable causal
law in the state s = {alive, spin} . Then, Poss(L(s)) is

{ {spin : 〈{loaded}, ∅, ∅〉} , {spin : 〈∅, {loaded}, ∅〉} }

hence, (s, {alive}) ∈ Φ and (s, {alive, loaded}) ∈ Φ .
The concept of nondeterminism provides us with an

interesting solution to the problem of concurrently exe-
cuted actions with mutually exclusive effects. Consider,
for instance, the two causal laws

Condition : 〈sf −, sf +,mf +〉

{push-door} : 〈∅, {open}, ∅〉

{pull-door} : 〈{open}, ∅, ∅〉

(5)

where push-door and pull-door denote action fluents
while the static fluent open describes the state of the
door under consideration here. Now, assume three
agents acting concurrently: The first one tries to push
the door, the second one tries to pull it, and the third
agent intends to lift the left hand side of a table inside the
room (c.f. (2)). Assume further that the door is closed
at the moment and no water spills out of the glass sit-
uated on the table, then this situation can be expressed
by the state s = {push-door , pull-door , lift-left} . Now,
aside from `1 in (2) both causal laws in (5) are applica-
ble. However, the first one requires the door to be open
in the succeeding state (open ∈ sf +) while the second
one requires the contrary (open ∈ sf −). Hence, our
consistency condition, (3), is not satisfied here.

Most classical AI formalizations of concurrent actions,
such as [Lin and Shoham, 1992; Baral and Gelfond, 1993;
Große, 1994], declare situations like s inconsistent and,
hence, do not allow any conclusions whatsoever about
the successor state. Indeed it is impossible that both ac-
tions push-door and pull-door are successful. However,
in [Bornscheuer and Thielscher, 1994] we argue (in the
context of a theory developed in [Gelfond and Lifschitz,
1993; Baral and Gelfond, 1993]) that it is reasonable to
draw some conclusions at least about uninvolved fluents;
e.g., we would like to conclude that the third agent is suc-
cessful in lifting the table, which causes the water to be
spilled out. Preventing global inconsistency in case of
local conflicts is the basic intention in this idea.

The notion of nondeterminism provides us with the
possibility to draw conclusions like the one just men-
tioned. Instead of declaring the successor state of s
as completely undefined, we take only the disputed flu-
ent(s) (here: open) as uncertain while any other ef-
fect (here: water-spills , coming from (2)) occurs as in-
tended. In our example, we then obtain two possible
successor states of s , namely, {open,water-spills} and
{water-spills}—providing us with the conclusion that
water-spills is an obligatory effect of s .

This strategy of conflict solving is integrated in the
following definition of how to obtain the causal model in
case of nondeterministic systems:

Definition 11 Let F be a set of fluents and L a set
of (extended) causal laws. For each (consistent) state
s ⊆ F let L(s) denote the set

{ ` ∈ L | cond(`) ⊆ s & ¬∃`′ ∈ L . `
′≺ ` & cond(`′) ⊆ s } .

Now, if L(s) = {c1 : A1, . . . , ck : Ak} (k ≥ 0) then let
Poss(L(s)) be the set

{ {c1 : a1, . . . , ck : ak} | ai ∈ Ai (1 ≤ i ≤ k) }

and define (s, s′) ∈ Φ iff

∃P ∈ Poss(L(s)), sf Ã∈Confl(P). s
′ = Trans(P, s) \ sf Ã

where

Confl(P) :=
⋃

`∈P

static−(`) ∩
⋃

`∈P

static+(`) .

The set Confl(P) is intended to contain all disputed
fluents (c.f. (3)), and each possible combination of these
fluents determines a possible successor state.7

Finally, the semantics developed in the previous sec-
tion is extended to nondeterministic dynamic systems in
the following way (c.f. Definition 6):

Definition 12 Let (F ,Φ) be a nondeterministic dy-
namic system with action fluents Fa ⊂ F , and let
p = [a1, . . . , an] (n ≥ 0) be a sequence of sets of action
fluents (i.e., ai ⊆ Fa). Furthermore, let s0 be a consis-
tent state, then a triple (p, s0, 〈s1, . . . , sn, sn+1, . . .〉) is
a development iff

• s1 = s0 ∪ a1 ;

• si+1 = s′i ∪ ai+1 , where (si, s
′
i) ∈ Φ , for each

1 ≤ i < n ;

• (si, si+1) ∈ Φ for each i ≥ n

and each state s1, . . . , sn is consistent.

6 Summary and Outlook

We have presented a formal theory of dynamic systems
that is based on a different paradigm compared to stan-
dard approaches such as [Gelfond and Lifschitz, 1993;
Sandewall, 1994]: State transitions naturally occur while
time passes by—the system does not necessarily keep
stable until agents perform actions. We have illustrated
that our framework allows for a natural treatment of
concurrent actions and simultaneous events as well as
delayed effects. Based on the underlying specification of
a dynamic system, we have developed a semantics for
observations, i.e., fluent formulae associated with time
points. We have investigated both deterministic and
nondeterministic systems, and we have integrated a rea-
sonable way to handle the problem of concurrent actions
with mutually exclusive effects.

The purpose of this paper was to propose a general and
uniform specification language for dynamic systems in
conjunction with an intuitive semantics. We have not yet
tackled the question of an adequate proof theory. The
problem of finding such a calculus and proving its sound-
ness and completeness constitutes the paramount aspect
of future work. Our proposal is meant as a challenge:
How can existing approaches be adopted to the kind of
dynamic systems being specified on the basis of our the-
ory? For instance, how could a variant of the situa-
tion calculus [McCarthy and Hayes, 1969] be designed—
called, say, state calculus—where the common successor
state argument Result(a, s) is replaced by Result(s) ,
i.e., which no longer depends on the execution of some
action? Other promising directions are the adaption of
resource-oriented approaches to reasoning about actions
and change [Große et al., 1992], dynamic logic [Harel,
1984], or a first-order encoding following [Elkan, 1992].
Last but not least, though in its current state it covers
neither the static-momentary distinction nor specificity
or nondeterminism, the modal logic approach [Große,
1994] should be a candidate worth being considered since

7Note that we are supposed to remove the set sf Ã from
Trans(P, s) due to the fact that all elements in Confl(P)
are first of all added when computing Trans(P, s) .

it already includes the principle of taking actions as part
of state descriptions. Conversely, our semantics provides
a tool for a formal assessment of its range of applicabil-
ity, similar to investigations carried out in [Sandewall,
1994].

Acknowledgments

The author thanks Christoph Herrmann for helpful com-
ments on an earlier version of this paper.

References
[Baral and Gelfond, 1993] C. Baral and M. Gelfond. Repre-

senting Concurrent Actions in Extended Logic Program-
ming. In R. Bajcsy, ed., Proc. of IJCAI, p. 866–871,
Chambéry, France, Aug. 1993. Morgan Kaufmann.

[Bornscheuer and Thielscher, 1994] S.-E. Bornscheuer and
M. Thielscher. Representing Concurrent Actions and Solv-
ing Conflicts. In B. Nebel and L. Dreschler-Fischer, ed.’s,
KI-94 : Advances in Artif. Intell., vol. 861 of LNAI, p.
16–27, Saarbrücken, Germany, Sep. 1994. Springer.

[Elkan, 1992] C. Elkan. Reasoning about Action in First-
Order Logic. In Proc. of the Conf. of the Canadian Society
for Computational Studies of Intell., Vanvouver, Canada,
May 1992. Morgan Kaufmann.

[Gelfond and Lifschitz, 1993] M. Gelfond and V. Lifschitz.
Representing Action and Change by Logic Programs. J.
of Logic Programming, 17:301–321, 1993.

[Große et al., 1992] G. Große, S. Hölldobler, J. Schnee-
berger, U. Sigmund, and M. Thielscher. Equational Logic
Programming, Actions, and Change. In K. Apt, ed., Proc.
of IJCSLP, p. 177–191, Washington, 1992. MIT Press.

[Große, 1994] G. Große. Propositional State-Event Logic. In
C. MacNish, D. Peirce, and L. M. Peireira, ed.’s, Proc. of
the European Workshop on Logics in AI (JELIA), vol. 838
of LNAI, p. 316–331. Springer, 1994.

[Harel, 1984] D. Harel. Dynamic logic. In D. Gabbay and F.
Guenther, ed.’s, Handbook of Philosophical Logic, vol. II,
p. 497–604. D. Reidel Publishing Company, 1984.

[Hölldobler and Thielscher, 1995]
S. Hölldobler and M. Thielscher. Computing Change and
Specificity with Equational Logic Programs. Annals of
Mathematics and Artificial Intelligence, 1995.

[Lifschitz and Rabinov, 1989] V. Lifschitz and A. Rabinov.
Things That Change by Themselves. In Proc. of IJCAI,
p. 864–867, Detroit, MI, 1989.

[Lifschitz, 1993] V. Lifschitz. Restricted monotonicity. In
Proc. of AAAI, Washington, DC, July 1993. MIT Press.

[Lin and Shoham, 1992] F. Lin and Y. Shoham. Concurrent
Actions in the Situation Calculus. In Proc. of AAAI, p.
590–595, San Jose, CA, 1992. MIT Press.

[McCarthy and Hayes, 1969] J. McCarthy and P. J. Hayes.
Some Philosophical Problems from the Standpoint of Ar-
tificial Intelligence. Machine Intell., 4:463–502, 1969.

[Pollack, 1992] M. E. Pollack. The uses of plans. Artif. In-
tell., 57:43–68, 1992.

[Sandewall, 1994] E. Sandewall. Features and Fluents. Ox-
ford University Press, 1994.

[Thielscher, 1994] M. Thielscher. Representing Actions in
Equational Logic Programming. In P. Van Hentenryck,
ed., Proc. of ICLP, p. 207–224, Santa Margherita Ligure,
Italy, June 1994. MIT Press.

