
On Optimal Strategies for Wordle and General Guessing Games

Michael Cunanan and Michael Thielscher
School of Computer Science and Engineering, University of New South Wales

cunananm2000@gmail.com, mit@unsw.edu.au

Abstract
The recent popularity of Wordle has revived in-
terest in guessing games. We develop a general
method for finding optimal strategies for guessing
games while avoiding an exhaustive search. Our
main contributions are several theorems that build
towards a general theory to prove the optimality of
a strategy for a guessing game. This work is de-
veloped to apply to any guessing game, but we use
Wordle as an example to present concrete results.

1 Introduction
Mastermind is a guessing game that has been studied exten-
sively in the past [Knuth, 1977; Stuckman and Zhang, 2005;
Doerr et al., 2016; Glazik et al., 2021]. Such work has not
seemed to be carried over to other guessing games, however.
Our vision is to have AI agents learn how to approach any
game of this kind, similar to a general-game-playing setting
[Genesereth and Björnsson, 2013; Genesereth and Thielscher,
2014]. To do this we supply human intelligence to guide this
area of research; this paper aims to do just that for general
guessing games. We also aim to add mathematical rigour to
the study of meta-reasoning in guessing games, such as in
[Filman et al., 1983], or to aid in developing predicates for
grounded languages such as in [Thomason et al., 2016].

The timing of this publication coincides with the recent
popularity of the online game Wordle [Wardle, 2021], which
we will use for our example guessing game of choice. Wor-
dle is a word game that was published in October 2021. Since
then, it has gained significant popularity, with over 300,000
daily users in January 2022 [Serrels and Boom, 2022]. There
has been widespread interest in the general community for an
optimal approach to the game, with several websites making
unsupported claims to have determined the best strategy.

The game itself is a guessing game in which players must
deduce a hidden word using clues that the game gives in re-
sponse to the player’s guesses, with a fixed limit of 6 guesses
allowed. The exact details of these clues and the structure of
the game will be explored in further detail in the next section.

The popularity of Wordle has also caused several variants
to appear, including with

• Different word sets (e.g. Bardle [Bardle, 2022], FFXIV-
rdle [FFXIV, 2022])

• Multiple games at the same time (e.g. Dordle [Dor-
dle, 2022], Tridle [Tridle, 2022], Sexaginta-quattuordle
[Sexaginta-quattuordle, 2022])

• Completely different forms of input (e.g. Heardle [Hear-
dle, 2022], Chessle [Chessle, 2022]).

As such, the focus of this paper lies in guessing games in gen-
eral, but we will use Wordle as the main example throughout.

Our main contribution is a series of theorems that build to-
wards a general method to determine if a strategy is optimal
or not, without the need for an exhaustive search. These for-
mal results can also be used to find an optimal strategy. The
theorems we present are generalized to work for any guess-
ing games to automatically find strategies and prove their op-
timality. We specifically demonstrate using these theorems to
show the Wordle strategy found by our framework is optimal.
We also present a method of determining the next optimal
guess, which to our knowledge, is a novel approach.

The remainder of the paper is organized as follows. In the
next section, we recapitulate the basic components of guess-
ing games in general, including Wordle, and we recapitulate
known heuristics from the literature on Mastermind. In Sec-
tion 3, we show how to combine heuristics to search for good
strategies. In Section 4, we present novel and general the-
orems by which a strategy can be proved optimal without an
exhaustive search. In the section that follows, we demonstrate
using the general method and theorems on Wordle and some
of its variants. We conclude in Section 6.1

2 Background
2.1 Guessing Games
In this section, we define exactly what we consider to be gen-
eral guessing games, following similar definitions by Koyama
and Lai [1991] and Focardi and Luccio [2012]. Koyama and
Lai refer to a guessing game as an ‘interactive knowledge
transfer model’, but for the sake of readability we will use
the term ‘guessing game’.

In a guessing game, we have two parties: a learner and a
teacher. The teacher’s goal is to communicate some secret
s that is initially hidden from the learner. The learner sub-
mits a guess g to the teacher, to which the teacher responds

1An extended version of this paper with full proofs and more
examples can be found on arXiv: http://arxiv.org/abs/2305.09111.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5541

http://arxiv.org/abs/2305.09111

with some response r. The teacher’s responses are to be used
as clues by the learner to deduce what s is. The teacher com-
putes responses using an answering function a; this function
is known to both parties. These communications continue un-
til the teacher responds with the affirmative response r∗, at
which point we say the learner has learnt the secret and has
won the game. The following definition summarizes the com-
ponents of a general guessing game.

Definition 1 (Guessing game). A guessing game can be
uniquely represented as a tuple (G,S,R, r∗, a), where

G = Set of allowable guesses
S = Set of allowable secrets, with S ⊆ G

R = Set of possible responses, with |R| > 1

r∗ = Affirmative response, with r∗ ∈ R

a = Answering function of type G× S → R,

with ∀g ∈ G ∀s ∈ S : a(g, s) = r∗ ⇐⇒ g = s

and G, S and R are finite sets.

We assume that S is known to the learner, though exactly
which element of S is the secret is not known. This may not
be true in practice for human players, but we do this because
any guessing game should have a well-defined domain of se-
crets that an AI certainly could use.

2.2 Wordle
In Wordle2, the player (learner) must deduce a common 5-
letter English word chosen by the computer (teacher). Similar
to the well-known guessing game Mastermind, the player’s
guesses are met with colour-coded responses to guide them
toward the answer. The secret in Wordle changes daily.

We provide an example play of Wordle in Figure 1 using
the game from March 22 2022. The player’s first guess was
TARES. The computer assigned a grey colour to T, A, R, E,
and so none of those letters appear in the secret word. The
letter S however was assigned a yellow colour, which indi-
cated that S does appear in the secret, but not in its current
position (i.e. the 5th position). The player’s next guess was
SPOIL. Now S and O are assigned green, which indicates S
and O appear in those positions in the secret word. The player
uses these colour encodings as responses from the computer
to determine what to guess next throughout the game. Wordle
ends when the player receives an all-green encoding, as seen
in the final row.

To represent colours we use 0 = Grey, 1 = Yellow and
2 = Green in the following definition.

Definition 2 (Wordle). Wordle is a guessing game
(GW , SW , RW , r∗W , aW) according to Definition 1, where

GW = All 5 letter words, curated by the developer.
SW = Common 5 letter words decided by the developer.
RW = {00000,00001, . . . ,22220,22222}
r∗W = 22222

aW = See the above paragraph and Figure 1 for example.
2Wordle has several variants. In this paper we consider Wordle

in its default mode.

Figure 1: March 22 2022 Wordle puzzle, completed in 4 turns.

GW and SW are publicly known sets and can be found in
Wordle’s source code. It is worth noting however that this
set has been altered a few times since the game’s creation.
Our research into Wordle strategies was initially conducted
on Wordle’s original sets of guesses and secrets (before 15th
February 2022), and so we describe our work using these sets,
with |GW | = 12972 and |SW | = 2315. Importantly however,
the results presented in this paper could easily be replicated
for the updated Wordle sets, or any other word set in general,
as we will see.

2.3 Strategies
In this section, we formalize how we intend agents to play
guessing games by defining strategies; as well as how we in-
tend to compare the performance of strategies.

As a learner plays a guessing game, they should be us-
ing the previously submitted guesses and the corresponding
received responses to make informed decisions about what
guess to submit next. We may capture this learned informa-
tion using candidates.
Definition 3 (Candidates). Suppose in a guessing game
(G,S,R, r∗, a) the guesses and responses so far are
((g1, r1), . . . , (gn, rn)), i.e. guess gi was met with response
ri. The candidate set C is defined as

C =
n⋂

i=1

{s ∈ S : a(gi, s) = ri}

If there are no guesses or responses so far, C = S.
Candidates are elements of S that could be the secret word

according to the information contained in the guesses and re-
sponses played so far. At the start of a game, the set of can-
didates is S as no information about the secret has been com-
municated to the learner yet.

A strategy is a learner’s method of determining what guess
to submit next, recalling the goal is to get response r∗. We
make use of candidate sets in formalising this notion.
Definition 4 (Strategy). A strategy σ can be defined as

σ : P (S) → G

where P (S) is the power set of S. Then σ(C), for some can-
didate set C ⊆ S, would represent what guess to submit next.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5542

Note that the co-domain of σ is G; the learner is allowed to
make guesses that may not be possible secrets. Strategies also
may be non-deterministic, but in this paper, we only consider
ones that are deterministic.

On receiving a response from the teacher, we need to filter
the candidate set appropriately. After submitting a guess, we
can know the possible future candidate sets; in this sense each
guess can split the candidate set.
Definition 5 (Split). For a candidate set C, we say that guess-
ing g creates splits categorized by response r:

Cg,r = {c ∈ C : a(g, c) = r}
We can calculate our score playing according to any strat-

egy using TURNSNEEDED.
Definition 6 (TURNSNEEDED). Suppose we play using strat-
egy σ and the hidden secret is s. Start with candidate set
C = S and submit guess g = σ(C). If response r∗ is re-
ceived, then we are done. Otherwise, replace C with Cg,r

and again submit guess σ(C). Repeat until response r∗ is re-
ceived. TURNSNEEDED(σ, s) is the number of guesses sub-
mitted.

Note that in this process, the player does not use s to decide
what to guess; we only use the remaining candidates and σ to
determine what to guess next.

The objective of this paper is to find an ‘optimal’ strat-
egy. Existing papers measured the performance of strategies
by taking the EXPECTED number of guesses needed (taken
over all secrets in S) [Koyama and Lai, 1994; Focardi and
Luccio, 2012]. Other authors such as Kooi [2005] also con-
sidered the maximum number of guesses needed, but the pri-
mary goal historically has always been to minimize the EX-
PECTED score. In this paper we will be using an equivalent
metric TOTAL as defined below.
Definition 7 (TOTAL metric). For a strategy σ, TOTAL(σ) is
the total number of turns needed over all secrets in S:

TOTAL(σ) =
∑
s∈S

TURNSNEEDED(σ, s)

It should be clear that a strategy that is optimal accord-
ing to the EXPECTED case is also optimal according to the
TOTAL (= |S| · EXPECTED) case. We use TOTAL however
because it makes the work in Section 4 much easier to read.

2.4 Known Strategies
In the extensive literature on Mastermind [Knuth, 1977;
Bestavros and Belal, 1986; Kooi, 2005; Berghman et al.,
2009], several strategies have been developed and tested. We
restate some of these strategies in this section for later refer-
ence. They all determine what guess to submit next by as-
signing each guess g a numerical score based on the current
candidate set using a valuation.
Definition 8 (Valuation-based strategy).

σv(C) = argmin
g∈G

v(g, C)

where C is a candidate set and v is some function of type
G× P (S) → R. We call v a valuation. In tie-breaks, default
to lexicographical ordering.

A simple (yet useful) valuation is the following:

INSET(g, C) = −I[g ∈ C]

where I is the indicator function. This is adapted from one
of the earliest published algorithms on Mastermind [Sterling
and Shapiro, 1994]. We use the negative sign since we are
taking the min in Definition 8, and prioritising guesses that
are in C.

Strategies developed for Mastermind focused on using dif-
ferent valuations such as:

MAXSIZESPLIT(g, C) = max
r∈R

|Cg,r|

EXPSIZESPLIT(g, C) =
∑
r∈R

(
|Cg,r|
|C|

· |Cg,r|
)

INFORMATION(g, C) =
∑
r∈R

|Cg,r|
|C|

log2
|Cg,r|
|C|

MOSTPARTS(g, C) = −NSPLITS (g, C)

where

NSPLITS (g, C) = |{r ∈ R : |Cg,r| ̸= 0}|
Knuth [1977] used MAXSIZESPLIT, Kooi [2005] introduced
MOSTPARTS and Bestavros and Belal [1986] used INFOR-
MATION. There are several other valuations developed for
Mastermind, but we only included the ones which showed
promising results in existing literature.

3 Finding Good Strategies
Before we can prove the optimality of a strategy for any given
guessing game, it is necessary to first find a good one. We do
this by first using Knuth’s [1977] paper on Mastermind for
inspiration, and revisit Definition 7 to develop a method by
which we may search for strategies with low TOTAL scores.

3.1 Combining Known Valuations
Knuth [1977] used the MAXSIZESPLIT evaluation. In the
event several guesses had equally minimal valuations, he sug-
gested that for the next guess, “a valid one should be used”,
i.e. a guess that is also a candidate. He made no explicit
rule about which to choose if there are multiple guesses with
equally minimal valuations and that are candidates. We re-
solve this in the context of a general guessing game.
Definition 9 (Combined valuations). For valuations
v1, . . . , vn, we can combine them to assign each guess g a
tuple of values:

V (g, C) = (v1(g, C), . . . , vn(g, C))

We can then compare tuples lexicographically.
Only if the combined valuations together are the same for

two guesses, then we may revert to choosing alphabetically,
but ideally we would append more valuations to avoid this.

In choosing which valuations to combine for Wordle, we
tested3 every non-empty ordered combination of INSET,
MAXSIZESPLIT, INFORMATION, MOSTPARTS, EXPSIZE-
SPLIT, giving 325 combined valuations.

3Full source code for this experiment and all subsequent ones is
available at https://github.com/cunananm2000/WordleBot.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5543

Rank Combined Valuations TOTAL

1 MOSTPARTS,INSET,ESS 7944
2 MOSTPARTS,INSET,ESS,MSS 7944
3 MOSTPARTS,INSET,MSS,ESS 7944
...

...
...

323 MSS 8510
324 INSET,MSS 8516
325 INSET 10069

Table 1: Combined valuations on Wordle. For space, we shorten
EXPSIZESPLIT to ESS and MAXSIZESPLIT to MSS.

As shown by Table 1, using combined valuations does of-
fer an improvement over using any single valuation alone.
Moreover, all the best-performing combinations use MOST-
PARTS as the main valuation, which makes sense as it was the
best-performing standalone valuation for Mastermind [Kooi,
2005].

3.2 Searching For Strategies
Koyama and Lai [1991] presented an equation to calculate the
minimum EXPECTED score achievable. We adapt this to an
equation to calculate the minimum TOTAL score:

Definition 10 (MINTOTAL). For a non-empty candidate set
C, the minimum TOTAL number of guesses needed to reach
all candidates in C is given by

MINTOTAL(C) = |C|+min
g∈G

∑
r∈R\{r∗}

MINTOTAL(Cg,r)

If C is empty, then MINTOTAL(C) = 0.

Unfortunately, it isn’t feasible to calculate MINTOTAL for
most candidate sets in real guessing games such as Wordle.
The recursive definition means that with each calculation of
MINTOTAL we loop over g ∈ G. If we were to limit our re-
cursion depth to d, then our algorithm would run in O(|G|d).
To limit this exponential growth, we propose that instead
of searching over all g ∈ G, only search over the ‘best’ n
guesses in G; we call n the search breadth.

Definition 11 (Approximate MINTOTAL). For a candidate
set C, the approximate minimum total number of guesses
needed is APMINTOTAL(C, n), defined by replacing g ∈ G
in Definition 10 with g ∈ {Best n guesses}.

We will be using the topmost combined valuation from Ta-
ble 1, (MOSTPARTS, INSET, EXPSIZESPLIT), to determine
what the best n guesses are; taking the n guesses with the
lowest valuations.

Depending on how exhaustively we want to look for
strategies we may change n; a higher value of n means
a more exhaustive search. It should be clear, then, that
APMINTOTAL(C, n) ≥ MINTOTAL(C) for any n ≥ 1, and
that at n = |G| the two are equal.

As mentioned previously, we may use the argmin of the
‘otherwise’ case of Definition 11 to extract a strategy.

Since Wordle is the main guessing game for this paper, we
first show our results in Table 2. As we expect, the TOTAL

n APMINTOTAL(SW , n) Starter
1 7944 TRACE
5 7921 SALET

10 7920 SALET
20 7920 SALET

Table 2: Using APMINTOTAL to find a good strategy for Wordle.

Game |G| |S| APMINTOTAL(S, 20)

FFXIVrdle 849 168 432
Mininerdle 206 206 544

Nerdle 17723 17723 53512
Primel 8363 8363 29011

Table 3: Using APMINTOTAL to find a good strategy for other pop-
ular guessing games, for which we purposely show the EXPECTED
rather than TOTAL. The choice of breadth 20 was due to Table 2.

decreases as the search breadth increases, as this means we
search more exhaustively.

We repeated this process of using Definition 11 to search
for strategies with low TOTAL scores on the following vari-
ants of Wordle:

• FFXIVrdle: S = References to the video game Final
Fantasy 14, e.g. HILDA.

• Mininerdle: G = S = 6 character math equations, e.g.
4*7=28.

• Nerdle: G = S = 8 character math equations, e.g.
8*3+2=26.

• Primel: G = S = 5 digit prime numbers, e.g. 42821.
Results are shown in Table 3.

4 Proving Optimality
The previous section was focused on using heuristics to find
good strategies; now we’d like to determine if the best ones
found were indeed optimal. First, we revisit Definition 10,
and explore the idea of representing strategies as ‘trees’. Do-
ing so allows us to prove several propositions which we use
to create novel theorems by which we can prove a strategy
optimal without exhaustive search.

4.1 Useful Guesses
In order to help restrict the search space, we define the notion
of usefulness.
Definition 12. For a candidate set C with |C| > 1, a guess
g ∈ G is useful w.r.t. C iff NSPLITS (g, C) ̸= 1. We notate
this as g ∈ UG (C) for short. If |C| ≤ 1, then UG (C) = C.
Property 1. Equivalently for |C| > 1, g ∈ UG (C) iff
|Cg,r| < |C| for all r ∈ R.
Lemma 1. For any non-empty C ⊆ S,

MINTOTAL (C) = min
g∈UG(C)

|C|+
∑

r∈R\{r∗}

MINTOTAL (Cg,r)

Note the replacement of g ∈ G from Definition 10 with
g ∈ UG (C).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5544

Proof. Suppose the minimum was achieved by some g ̸∈
UG (C), so Cg,r = C for a specific r and Cg,r′ = ∅
for r′ ∈ R \ {r}. By Definition 10 this would imply
MINTOTAL (C) = |C| + MINTOTAL (C), so |C| = 0, con-
trary to the assumption.

This also shows that optimal strategies can only have useful
guesses.

4.2 Setup
Definition 13 (V ∗). By splitting Lemma 1, we define

MINTOTAL (C) = min
g∈UG(C)

V ∗(g, C)

V ∗(g, C) = |C|+
∑

r∈R\{r∗}

MINTOTAL (Cg,r)

and MINTOTAL (∅) = 0.
V ∗(g, C) then represents the minimum TOTAL, starting

from candidate set C, provided we guess g ∈ G first. The
optimal strategy would then be achieved by taking the
argmin.

MINTOTAL (C) and V ∗(g, C) are what we should try to
estimate. Finding an upper bound for MINTOTAL (C) is
easy; as noted previously APMINTOTAL(C, n) is an upper
bound for any n. We notate such an upper bound as UB(C).
As per Table 2, the lowest known value found for Wordle,
UB(SW), is 7920. Lower bounding V ∗ is important via the
following theorem:
Theorem 1. Suppose we have some function UB such that
UB(C) ≥ MINTOTAL (C) for any C ⊆ S. If we can find
some estimate function V ′ such that V ′(g, C) ≤ V ∗(g, C)
for any guess g ∈ G and C ⊆ S, then for any g′ ∈ G

V ′(g′, C) > UB(C) =⇒ g′ ̸= argmin
g∈UG(C)

V ∗(g, C)

Proof. If V ′(g′, C) > UB(C) for a particular g′ ∈ G,

V ∗(g′, C) ≥ V ′(g′, C) > UB(C) ≥ MINTOTAL (C)

We then use Definition 13 to complete the proof.

Theorem 1 has the effect that for any guess g′, if
V ∗(g′, S) > UB(S), then g′ cannot be an optimal starting
word.

In order to estimate V ∗, we must first estimate MINTOTAL
as it is much easier to create bounds for.

4.3 Tree Representations
Ville [2013] demonstrated representing their Mastermind
strategy as a decision tree, and we may do the same with
strategies in guessing games in general, as illustrated in Fig-
ure 2 for a Wordle strategy. We will call these strategy trees.
Each node is a guess to be submitted; starting at the root node
as the initial guess. The outgoing branches from a node repre-
sent the possible responses received by submitting the node’s
guess. If r∗ is a possible response, then we do not include that
branch and instead highlight the node in green as a possible
end to the game.

Alternatively, each node can be thought of as correspond-
ing to a current set of candidates C, labelled with σ(C).

Figure 2: Part of our Wordle strategy represented as a strategy tree.
Not all branches or guesses are shown.

It follows that for the tree representation of a strategy σ,
the value TURNSNEEDED(σ, s) is represented by the depth
of node labelled with s as a leaf node. Note that the same
word may appear multiple times in a strategy tree, so we must
follow the nodes and branches to properly compute the ‘cor-
rect’ depth. Importantly, we assign the depth of the root node
as 1, so the value TOTAL(σ) can be then visualized as the
sum of the depths of each secret. With this, we can then no-
tice that MINTOTAL is purely dependent on the placements
of the nodes corresponding to possible secrets within a tree.
The natural question to ask then is, “What is the best way
to arrange the nodes corresponding to possible secrets in a
strategy tree to minimize the sum of depths to each of these
nodes?”, or put more generally,

“What is the best way to arrange the n nodes in a tree to
minimize the sum of depths to each node?”

To answer this we need to prove some properties about strat-
egy trees.

Definition 14. For any C ⊆ S,

MAXSPLITS (C) = max
g∈G

NSPLITS (g, C)

Lemma 2. For candidate sets C ′ and C, if C ′ ⊆ C, then
MAXSPLITS (C ′) ≤ MAXSPLITS (C).

Proof. If C ′ ⊆ C, for any guess g ∈ G we must have
NSPLITS (g, C ′) ≤ NSPLITS (g, C). This is because if C ′

g,r
is non-empty for some response r, then Cg,r is non-empty.
This implies the desired result.

Theorem 2. In any tree made to resolve a candidate set C,
all nodes have at most MAXSPLITS(C) children.

Proof. The value MAXSPLITS(C) is the highest number of
branches the root node can have. This is true even after not-
ing that r∗ is never assigned a corresponding branch. Re-
call moreover that each child node also corresponds to a can-
didate set C ′ ⊂ C. The number of children that the di-
rect child nodes of the root node can have is upper bounded
by MAXSPLITS(C ′), but by Lemma 2, this value is upper
bounded by MAXSPLITS(C). The same logic can be cas-
caded down each branch of the tree to show that each node
has at most MAXSPLITS(C) children.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5545

Definition 15. For integers n ≥ 0 and b ≥ 1, BOUND (n, b)
is the minimum sum of depths of each node in a tree with n
nodes, and each node having at most b children. We call such
a tree a b-tree.

Theorem 3. For integers n > 0 and b > 1,

BOUND (n, b) =
k∑

i=1

ibi−1 + (k + 1) ·
(
n− bk − 1

b− 1

)
where k = ⌊logb(n(b− 1) + 1)⌋

For b = 1, BOUND(n, 1) = n(n+1)
2 .

For n = 0, BOUND(0, b) = 0.

Proof. Note that BOUND(0, 1) = 0 by either of the last two
cases.

This is trivial when n = 0 or b = 1. In the case where
n > 0 and b > 1, there are multiple ways to arrange n nodes
in a b-tree. We are interested in minimizing the sum of depths
to each node; clearly we must fill in level-order, noting that
there are at most bi−1 nodes of depth i. Doing this will show
that k is the depth of the last completely filled layer. The
last term in the definition accounts for the ‘leftover’ nodes at
depth k + 1.

The restriction on the number of children suggests we use
BOUND in creating lower bounds for MINTOTAL.

Definition 16.

LB1(C) = BOUND (|C|, MAXSPLITS (S))

LB2(C) = BOUND (|C|, MAXSPLITS (C))

In turn, we use this to recursively build bounds for V ∗ and
MINTOTAL, taking inspiration from Definition 13.

Definition 17. For integers i ≥ 1

LBi+2(C) = min
g∈UG(C)

Vi(g, C)

Vi(g, C) = |C|+
∑

r∈R\{r∗}

LBi(Cg,r)

It remains to prove that LBi and Vi are in fact lower bounds
to MINTOTAL and V ∗ respectively.

4.4 Key Theorems and Proofs
We now use the work of Sections 4.1, 4.2 and 4.3 to build the
key theorems of this paper.

Lemma 3. For any C ⊆ S, LB1(C) ≤ LB2(C).

Proof. Note that BOUND (n, b) increases as b decreases for
a fixed n. Recall the definition of BOUND (n, b). Clearly
decreasing b means each node’s depth can only increase, so
the overall sum of depths for each node must increase.

This fact combined with Lemma 2 implies the desired re-
sult.

Lemma 4. For any C ⊆ S, LB2(C) ≤ MINTOTAL (C).

Proof. MINTOTAL is intended to represent the best way to
arrange the candidates of C in any valid strategy tree in order
to minimize the sum of depths to each candidate. We know
that in this ‘ideal’ strategy tree, there must be at least |C|
nodes (one for each candidate), and that by Theorem 2 this
tree is a MAXSPLITS(C)-tree. It follows by Definition 16
and Definition 15 that the sum of depths to each node is lower
bounded by LB2(C).

Lemma 5. If LBi(C) ≤ LBj(C) for any C ⊆ S, then
Vi(C) ≤ Vj(C) for any guess g ∈ G and C ⊆ S.

Proof. Follows from construction in Definition 17.

Proposition 1. If Vi(C) ≤ Vj(C) for any guess g ∈ G and
C ⊆ S, then LBi+2(C) ≤ LBj+2(C) for any C ⊆ S.

Proof. Follows from construction in Definition 17.

Corollary 1. If LBi(C) ≤ LBj(C) for any C ⊆ S, then
LBi+2(C) ≤ LBj+2(C) for any C ⊆ S.

Proof. Follows from Lemma 5 and Proposition 1.

Theorem 4. For any integer n ≥ 1, we have that
LB2n−1(C) ≤ LB2n(C) ≤ MINTOTAL (C) for any C ⊆ S.

Proof. We may follow a similar proof to Corollary 1 to show
that if LBi(C) ≤ MINTOTAL (C) for any C ⊆ S, then
LBi+2(C) ≤ MINTOTAL (C) for any C ⊆ S.

The desired result follows combining this with Lemmas 3
and 4 along with Corollary 1.

Theorem 5. For any integer n ≥ 1, we have that
LBn(C) ≤ LBn+2(C) ≤ MINTOTAL (C) for any C ⊆ S.

Sketch Proof. We can show that for any C ⊆ S, we have
LB1(C) ≤ LB3(C). Intuitively, LB1(C) is the minimum
sum of depths in a tree assuming that each node has at most
MAXSPLITS (S) children. LB3(C) however asserts that the
root node must split according to a legitimate guess. This
restriction implies LB1(C) ≤ LB3(C).

We can also show that LB2(C) ≤ LB4(C), for any
C ⊆ S. Proving this uses the previous claim of
LB1(C) ≤ LB3(C). It requires the trick that we may re-
place S in the explicit definition of that claim with C, since
we only require that S be a super-set of C.

Combine these two inequalities with Lemmas 3 and 4, and
Corollary 1 to reach the desired conclusion.

Proposition 2. For any integer n ≥ 1, Vn(g, C) ≤ V ∗(g, C)
for any guess g ∈ G and any C ⊆ S.

Proof. Theorem 4 shows that LBn(C) ≤ MINTOTAL (C)
for any integer n ≥ 1 and any C ⊆ S.

By the construction of V ∗ (Definition 13) and Vi (Defini-
tion 17), we can use the above to conclude Vn(C) ≤ V ∗(C)
for any integer n ≥ 1 and any C ⊆ S.

Theorem 6. For any integer n ≥ 1, we have that
Vn(g, C) ≤ Vn+2(g, C) ≤ V ∗(g, C) for any guess g ∈ G
and C ⊆ S.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5546

Proof. Proposition 2 and Lemma 5 imply that inequalities
from Theorem 5 also hold if we replace each LB with V ,
keeping subscripts the same, which was what we wanted.

This shows we have developed an infinite system of lower-
bounds for V ∗. Recall how we plan to use these as stated in
Theorem 1.

Theorem 7. For any guess g ∈ G and any C ⊆ S, we have
V2|C|+1(g, C) = V ∗(g, C).

Proof. First we prove a similar statement about LB, that
LB2|C|+1(C) = MINTOTAL (C) for any C ⊆ S. We do this
by way of induction.

The base case of |C| = 0 is trivial. Assume then this is
true for any |C| ≤ M for some integer M ≥ 0, and suppose
we have some C where |C| = M + 1. Then we have

LB2|C|+1(C) = min
g∈UG(C)

|C|+
∑

r∈R\{r∗}

LB2M+1(Cg,r)

Because we are only considering g ∈ UG (C), we have
Cg,r ⊂ C, implying |Cg,r| ≤ M . Since 2 |Cg,r| + 1 and
2M +1 are odd, Theorem 5 and the induction step imply that
LB2M+1(Cg,r) = MINTOTAL (Cg,r).

Using Definition 17 and Definition 13 from this completes
the induction.

Now that we know LB2|C|+1(C) = MINTOTAL (C) for
any C ⊆ S, Definition 17 and Definition 13 again can be
used to achieve the desired result.

Theorem 8. Suppose we have an upper bound UB(C) for
MINTOTAL(C). If for all g ∈ G there exists an ig such that
Vig (g, C) ≥ UB(C), then UB(C) = MINTOTAL(C)

Proof. By Theorem 4, we may ‘round up’ any odd ig to an
even ig + 1 and would still have Vig+1(g, C) ≥ UB(C).
Hence w.l.o.g we may assume that all ig are even. Define
I = maxg∈G ig , which must also be even. Theorem 5 lets us
state that VI(g, C) ≥ Vig (g, C) for all g ∈ G, implying that

UB(C) ≤ min
g∈G

VI(g, C) = LBI+2(C) ≤ MINTOTAL (C)

The construction of UB(C) implies the desired result.

These theorems are the basis for how we can determine an
optimal starting guess and subsequently determine if a strat-
egy is provably optimal:

1. Given a guessing game with secret set S, start with an
upper bound UB(S), found by Definition 11. Recall
that by Theorem 1, we can use any lower bound for V ∗

in conjunction with UB(S) to rule out which guesses
could not be the starting guess of an optimal strategy.
Theorem 6 gives us this lower bound for V ∗.

2. Rule out any guess g for which V1(g, S) > UB(S),
then rule out any for which V2(g, S) > UB(S), and
so on. Do this until there is one guess left, or
Vn(g, SW) ≥ UB(S) for all the remaining guesses (in
which case we have multiple optimal starting guesses,
as shown by Theorem 8), or up until calculating V2|S|+1

(by Theorem 7).

i After filtering by Vi ming∈G Vi(g)

1 12453 6829
2 1711 7664
3 324 7795
4 138 7826
5 1 7919
6 1 7920

Table 4: Using V1, . . . , V5 to filter potential starting Wordle guesses,
starting with 12972 possible guesses.

5 Application
We demonstrate using the general method and theorems of
Section 4 on Wordle to test if our best Wordle strategy found
in Section 3.2 by Definition 11 is optimal.

In Table 2, the best TOTAL for Wordle we found was 7920,
so MINTOTAL(SW) ≤ 7920 where SW is the secret set of
Wordle. We then applied the method summarized at the end
of the previous section to determine the optimal starting word,
as well as the true value of MINTOTAL(SW).

We present our results in Table 4. After applying V5, only
one guess remained, SALET. This agrees with our strategy
found in Section 3, in which the starting guess was indeed
SALET. Although V5(SALET, SW) = 7919, one further iter-
ation showed that V6(SALET, SW) = 7920, so not only did
we find the optimal starting word, but the strategy found in
Section 3 is a provably optimal strategy for minimizing the
TOTAL.

This process of filtering by Vi to determine MINTOTAL
was repeated for FFXIVrdle and Mininerdle, all having
shown that the strategy found was optimal.

6 Conclusion
This paper produced two main contributions. First, we used
combined valuations to leverage information in determining
good strategies for guessing games. Second, we presented
several theorems that led to a general theory for mathemat-
ically proving a certain strategy optimal, thereby avoiding a
complete and exhaustive search. As stated in the introduction,
the concrete results produced in this paper were focused on
Wordle, but the theory and methodology apply to any game
that fits the definition of a general guessing game.

We further hope that these theorems can help in applica-
tions of guessing games [Focardi and Luccio, 2012] as well
as add mathematical rigour to studying optimal context repre-
sentations in the field of meta-reasoning [Filman et al., 1983].
Our results could also assist with developing predicates for
practical guessing games [Thomason et al., 2016], or possi-
bly help an AI to learn such predicates. Our theorems could
be adapted to enable an AI to determine, out of a set of pos-
sible predicates, which are the most ‘discriminatory’.

In terms of future work, we would like to see this work
expanded to guessing games in much looser restrictions, for
example in situations where the answering function is non-
deterministic. We would also like to find estimating functions
that converge to the true answer in fewer iterations, and are
faster to compute.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5547

Acknowledgments
We thank Abdallah Saffidine for his suggestions and input
throughout the duration of this work.

References
[Bardle, 2022] Bardle. A Shakespearian guessing game.

https://bardle.newshakespeare.org/, 2022. [Online; ac-
cessed: 2023-01-11].

[Berghman et al., 2009] Lotte Berghman, Dries Goossens,
and Roel Leus. Efficient solutions for Mastermind using
genetic algorithms. Computers & Operations Research,
36(6):1880–1885, 2009.

[Bestavros and Belal, 1986] Azer Bestavros and Ahmed Be-
lal. Mastermind a game of diagnosis strategies. In Bul-
letin of the Faculty of Engineering. Alexandria University,
Egypt, 1986.

[Chessle, 2022] Chessle. https://jackli.gg/chessle/, 2022.
[Online; accessed: 2023-01-11].

[Doerr et al., 2016] Benjamin Doerr, Carola Doerr, Reto
Spöhel, and Henning Thomas. Playing Mastermind with
many colors. Journal of the ACM, 63(5):1–23, 2016.

[Dordle, 2022] Dordle. A double version of the Wordle
game. https://dordlegame.io/, 2022. [Online; accessed
2022-11-15].

[FFXIV, 2022] FFXIV. FFXIV themed word game. https://
ffxivrdle.com/, 2022. [Online; accessed: 2023-01-11].

[Filman et al., 1983] Robert E Filman, John Lamping, and
Fanya S Montalvo. Metalanguage and Metareasoning. In
Proceedings of the 8th IJCAI, pages 365–369, Karlsruhe,
Germany, 1983.

[Focardi and Luccio, 2012] Riccardo Focardi and
Flaminia L Luccio. Guessing bank PINs by winning
a Mastermind game. Theory of Computing Systems,
50(1):52–71, 2012.

[Genesereth and Björnsson, 2013] Michael Genesereth and
Yngvi Björnsson. The international general game playing
competition. AI Magazine, 34(2):107–111, 2013.

[Genesereth and Thielscher, 2014] Michael Genesereth and
Michael Thielscher. General Game Playing. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool, 2014.

[Glazik et al., 2021] Christian Glazik, Gerold Jäger, Jan
Schiemann, and Anand Srivastav. Bounds for the Static
Permutation Mastermind game. Discrete Mathematics,
344(3):112253, 2021.

[Heardle, 2022] Heardle. https://heardle.org/, 2022. [Online;
accessed: 2023-01-11].

[Knuth, 1977] Donald E. Knuth. The computer as Master-
mind. Journal of Recreational Mathematics, 9(1), 1977.

[Kooi, 2005] Barteld Kooi. Yet another Mastermind strategy.
ICGA Journal, 28(1):13–20, 2005.

[Koyama and Lai, 1991] Kenji Koyama and Tony Lai. An in-
teractive knowledge transfer model and analysis of “Mas-
termind” game. In Proceedings of the 2nd Int. Workshop
on Algorithmic Learning Theory, pages 196–206, Tokyo,
Japan, 1991.

[Koyama and Lai, 1994] Kenji Koyama and Tony Lai. An
optimal Mastermind strategy. Journal of Recreational
Mathematics, 25(4):251–256, 1994. As cited by Ville
[2013].

[Serrels and Boom, 2022] Mark Serrels and Daniel Van
Boom. Wordle: Everything You Need to Know About
2022’s Biggest Word Game. https://www.cnet.com/
culture/internet/wordle-everything-you-need-to-know-
about-2022s-biggest-word-game/, Nov 2022. [Online;
accessed 2023-05-11].

[Sexaginta-quattuordle, 2022] Sexaginta-quattuordle. 64 si-
multaneous Wordle games. https://64ordle.au/, 2022. [On-
line; accessed 2022-11-15].

[Sterling and Shapiro, 1994] L.S. Sterling and E.Y. Shapiro.
The Art of Prolog, second edition: Advanced Program-
ming Techniques. Logic Programming. MIT Press, 1994.

[Stuckman and Zhang, 2005] Jeff Stuckman and Guo-Qiang
Zhang. Mastermind is NP-complete. arXiv preprint,
arXiv:cs/0512049, December 2005.

[Thomason et al., 2016] Jesse Thomason, Jivko Sinapov,
Maxwell Svetlik, Peter Stone, and Raymond J Mooney.
Learning multi-modal grounded linguistic semantics by
playing “I Spy”. In Proceedings of the 25th IJCAI, pages
3477–3483, New York, USA, 2016.

[Tridle, 2022] Tridle. A triple Wordle game. https://
engaging-data.com/tridle/, 2022. [Online; accessed 2022-
11-15].

[Ville, 2013] Geoffroy Ville. An optimal Mastermind (4,7)
strategy and more results in the expected case. arXiv
preprint, arXiv:1305.1010, March 2013.

[Wardle, 2021] Josh Wardle. Wordle - The New York
Times. https://www.nytimes.com/games/wordle/index.
html, 2021. [Online; accessed 2022-03-22].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5548

https://bardle.newshakespeare.org/
https://jackli.gg/chessle/
https://dordlegame.io/
https://
ffxivrdle.com/
https://heardle.org/
https://64ordle.au/
https:// engaging-data.com/tridle/
https:// engaging-data.com/tridle/
https://www.nytimes.com/games/wordle/index.html
https://www.nytimes.com/games/wordle/index.html

	Introduction
	Background
	Guessing Games
	Wordle
	Strategies
	Known Strategies

	Finding Good Strategies
	Combining Known Valuations
	Searching For Strategies

	Proving Optimality
	Useful Guesses
	Setup
	Tree Representations
	Key Theorems and Proofs

	Application
	Conclusion

