
Game Description Language and Dynamic Epistemic Logic Compared

Thorsten Engesser1, Robert Mattmüller1, Bernhard Nebel1, Michael Thielscher2
1 Faculty of Engineering, University of Freiburg, Germany

2 School of Computer Science and Engineering, University of New South Wales, Australia
{engesser,mattmuel,nebel}@cs.uni-freiburg.de, mit@unsw.edu.au

Abstract
Several different frameworks have been proposed
to model and reason about knowledge in dy-
namic multi-agent settings, among them the logic-
programming-based game description language
GDL-III, and dynamic epistemic logic (DEL),
based on possible-worlds semantics. GDL-III and
DEL have complementary strengths and weak-
nesses in terms of ease of modeling and simplic-
ity of semantics. In this paper, we formally study
the expressiveness of GDL-III vs. DEL. We clarify
the commonalities and differences between those
languages, demonstrate how to bridge the differ-
ences where possible, and identify large fragments
of GDL-III and DEL that are equivalent in the sense
that they can be used to encode games or planning
tasks that admit the same legal action sequences.
We prove the latter by providing compilations be-
tween those fragments of GDL-III and DEL.

1 Introduction
Modeling and reasoning about knowledge in dynamic multi-
agent settings has gained increasing interest in recent
years [Baral et al., 2017]. Several frameworks for this
task have been proposed: In logic, dynamic epistemic logic
(DEL) [van Ditmarsch et al., 2007] has emerged, with an
application to epistemic planning [Bolander and Andersen,
2011]. In the area of general game playing [Genesereth et
al., 2005], the game description language with imperfect in-
formation and introspection (GDL-III) [Thielscher, 2017] has
recently been developed. Moreover, various other proposals
of how to handle knowledge have been made in planning [Ko-
minis and Geffner, 2015; Muise et al., 2015].

Despite some superficial differences in their originally in-
tended application areas, in their syntax, semantics, and ex-
ecution frameworks, DEL and GDL-III can often be used as
alternative modeling languages for the same problems, when-
ever knowledge must be made explicit within the model of a
dynamic multi-agent system, for example in preconditions or
goal specifications. This is required whenever multiple agents
ought to gain, share, or hide knowledge [Cooper et al., 2016].

However, both languages are far from perfect. In particular,
DEL is based on possible-worlds semantics [van Ditmarsch et

al., 2007; Bolander and Andersen, 2011], which means that
both the initial situation and all actions have to be specified
as Kripke structures with explicitly given indistinguishability
relations between worlds (or events) for all agents. More-
over, the description of an action may change depending on
whether another agent observes its execution [Baral et al.,
2017]. This makes DEL relatively complicated to use for a
non-expert modeler.

GDL-III is easier to use because indistinguishability be-
tween states, i. e., the knowledge of the agents, follows im-
plicitly via observation tokens and action histories. This eas-
ier syntax, however, comes at a price: First, specification and
modeling of nested knowledge is not as straightforward in
GDL-III as it is in DEL. Second, it requires a more involved,
inductive semantics that a GDL-III based general game player
has to adhere to, which makes the analysis of the language
more difficult. Hence, while it has been shown that possible
worlds can be used to characterize the knowledge of players
for the predecessor language GDL-II [Ruan and Thielscher,
2011], it is unclear whether the expressiveness of GDL-III
matches that of other general languages for multi-agent epis-
temic reasoning and in particular DEL [Thielscher, 2017].

In order to determine whether the use of observation to-
kens in GDL-III and DEL event models are equally expres-
sive, we investigate the commonalities and differences be-
tween the two languages. We demonstrate how to bridge the
differences, and we formally show identical expressiveness of
large fragments by providing compilations between GDL-III
and DEL, along with soundness and completeness results.

Our results show that the use of observation tokens pro-
vides an equally expressive alternative to the use of Kripke
structures for specifying actions in multi-agent epistemic do-
mains. Problems can often be described in GDL-III more
compactly, and more naturally, than in DEL. Hence, our ana-
lysis paves the way for the development of a description lan-
guage for epistemic domains that combines the best of both
worlds: the simple syntax of GDL-III, including observation
tokens to model knowledge and its evolution, and the clean
and simple semantics of DEL and DEL-based planning, in-
cluding perspective shifts between the agents [Engesser et al.,
2017]. In addition, our results should help to transfer theoret-
ical complexity results and solution concepts, e.g. the notion
of implicitly coordinated plans in DEL-based planning [En-
gesser et al., 2017], from one to the other formalism.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1795

2 Background
We begin by recapitulating the foundations of DEL and
GDL-III. To formally compare the two languages, we have
to be able to talk about their states in a common language.

Let P be a finite set of atomic propositions and A be a
finite set of agents. Then the epistemic language LKC(P,A)
is given by the BNF
φ ::= p | ¬φ | φ ∧ φ | Kiφ | Cφ, where p ∈ P and i ∈ A.
The formula Kiφ reads “Agent i knows that φ” and Cφ

stands for “φ is common knowledge between all agents”. We
will also use the abbreviations φ ∨ ψ, φ→ ψ, φ↔ ψ, ⊥ and
>, which are defined as usual in propositional logic.

2.1 Dynamic Epistemic Logic (DEL)
The term Dynamic Epistemic Logic refers to several modal
logics of knowledge and the change thereof [van Ditmarsch
et al., 2007]. As base variant of DEL, we use the action model
logic as described by Bolander and Andersen [2011]. For the
compilation from GDL-III to DEL, we will introduce some
extensions that allow us to keep the translation of actions as
simple as possible. While it is possible to translate these ac-
tion models back to our base version of DEL, it comes with a
worst-case exponential increase in the size of the models.

Description of Static Facts and Knowledge
In DEL, epistemic formulas are evaluated on epistemic mod-
els. An epistemic model is a tuple 〈W, (Ri)i∈A, V 〉 with a
non-empty, finite set of worlds W , an indistinguishability re-
lation Ri ⊆ W × W for each agent i ∈ A, and a valua-
tion function V : P → P(W), mapping each proposition to
the set of worlds in which they are true. Since we talk about
knowledge in this paper (e.g., in contrast to belief), we require
our indistinguishability relations to be equivalence relations.
The idea is that agents cannot distinguish between worlds that
belong to the same equivalence class of their respective indis-
tinguishability relations. We visualize epistemic models as
undirected graphs, where the set of nodes is W and the edges
between two worlds w and w′ are labeled with all agents i
such that wRiw′ (or left out, if there is no such i). Nodes are
additionally labeled with the world name and the propositions
that are true in that world. Note that for improved readability
we leave out all reflexive edges and sometimes also edges that
are implied by transitivity. Consider the following example:

M =
w1 : p, q w2 : p w3 :

1 2

Let us assume that w1 is the actual world. Then agent 1
knows that p is true, since it is true in both worlds which he
considers possible (w1 and w2). However, he does not know
whether or not q is true. Trivially, agent 2 knows that both p
and q are true. But agent 1 does not know that agent 2 knows
this, since if w2 was the actual world, agent 2 would not be
able to rule out being in w3 where p (and also q) is false.

Formally, the evaluation semantics is given as follows,
where the propositional cases are standard and hence left out:

M, w |= p iff w ∈ V (p)
M, w |= Kiφ iff M, w′ |= φ for all wRiw′
M, w |= Cφ iff M, w′ |= φ for all wR∗w′

where R∗ is the transitive closure of
⋃
i∈ARi.

Description of Factual and Knowledge Change
An event model in the style of Bolander and Andersen [2011]
is a tuple E = 〈E, (Qi)i∈A, pre, eff〉 with a non-empty, fi-
nite set of events E and for each agent i ∈ A an indistin-
guishability relation Qi ⊆ E × E (again – since we talk
about knowledge – with all Qi being equivalence relations).
Furthermore, it contains functions pre : E → LKC(P,A)
and eff : E → LKC(P,A) assigning preconditions (arbitrary
formulas) and effects (conjunctions of propositional literals)
to each event. We depict event models similar to epistemic
models, with the events being the nodes in a graph. As with
epistemic states, the edges between the events are annotated
with the agents for which the events are indistinguishable.
Additionally, each node is annotated with the event name e
followed by 〈pre(e), eff(e)〉. As an example, consider the
following event model that describes the action of agent 1
simultaneously switching and possibly (in the case that p is
true) sensing the value of proposition q:

E =

e1 : 〈p ∧ q,¬q〉 e2 : 〈p ∧ ¬q, q〉

e3 : 〈¬p ∧ q,¬q〉 e4 : 〈¬p ∧ ¬q, q〉

2

1, 2
2 2

Our event model contains one event for all possible valua-
tions over {p, q}. All events are indistinguishable for agent 2.
Agent 1’s indistinguishability relation consists of the equiva-
lence classes {e1}, {e2}, and {e3, e4}, corresponding to the
observations that q was true, false, or that it cannot be sensed
(which implies that p must be false).

To compute the update of a state model and an event model,
each world w is paired up with each event e for which the
precondition is satisfied, meaning M, w |= pre(e). Result-
ing worlds (w, e) and (w′, e′) are indistinguishable for some
agent i if both the predecessor worlds and the events were
indistinguishable for that agent (wRiw′ and eQie′). The set
of true propositions in a world (w, e) is the set of true propo-
sitions in w plus the positive and minus the negative literals
occurring in eff(e). E.g., by applying our event model E to
M, we obtain the following model:

M⊗E =
(w1, e1) : p (w2, e2) : p, q (w3, e4) : q

2

We can see that if the actual world was w1 initially, since the
only applicable event is e1, in the successor modelM⊗E , we
end up in world (w1, e1), where it is common knowledge be-
tween the agents that now p is true and q is false. If the actual
world was w2 or w3 initially, we end up in world (w2, e2), or
(w3, e4) respectively, where it is common knowledge that q
is true and that agent 1 (but not agent 2) knows the value of
p. We will writeM⊗En for the n-fold update ofM with E .

Epistemic Actions and States
While an event model specifies all events that any agent might
consider possible, for defining a single action we addition-
ally have to designate the events that the acting agent actually
seeks to perform. Sometimes we need the outcome of an ac-
tion to be chosen nondeterministically. For that purpose we

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1796

employ multi-pointed event models. E.g., for an event model
E with two possible events e1 and e2 we can define three
reasonable actions: (E , {e1}), (E , {e2}) and (E , {e1, e2}).
One example where we need nondeterminism is sensing ac-
tions. E.g., for our example action, all four events of the event
model have to be designated. This is because agent 1 cannot
know the sensing result in advance, yet the action is supposed
to be applicable in any case, even if p is false.

Formally, an epistemic action (E , Ed) is an event model E
together with a set of designated events Ed, which is a subset
of the set of all events of E . An epistemic state (M, w) is a
model M together with a designated world w of the model
An action (E , Ed) is said to be applicable in (M, w) if there
exists a designated event e ∈ Ed such thatM, w |= pre(e).
The application of (E , Ed) in (M, w) results in a successor
state (M⊗E , (w, e)) such that e ∈ Ed andM, w |= pre(e).

2.2 Game Description Language GDL-III
The Game Description Language (GDL) was developed for
the purpose of specifying the rules of arbitrary games to gen-
eral game-playing systems [Genesereth et al., 2005]. The
most recent version is GDL-III, which can express both in-
complete information and epistemic game rules, i.e., which
refer to the knowledge of players [Thielscher, 2017].

Unlike DEL, the game description language is based on the
syntax of logic programs with negation [Lloyd, 1987]. Dif-
ferent elements of a game description are specified by using
reserved keywords [Genesereth and Thielscher, 2014].

Description of Agents, States and Actions
Agents are defined by a finite set of ground facts using
the keyword role. A special agent is the predefined role
random, which always uniformly chooses one of its legal
actions randomly. An (actual) initial state is specified with
the help of the reserved predicate init, for example:
role(ag1).
role(ag2).
init(p).

The principle of negation-as-failure [Clark, 1978] applies
here and elsewhere in GDL. For example, since the given
rules do not imply init(q), proposition q is initially false.

Preconditions for an action a taken by agent i are defined
by rules with the keyword legal(i, a) in the head. The
body of these rules can use any of the following three key-
words: true(f), saying that f must hold in the current state;
knows(i, f), to require that agent i knows f ; and knows(f),
which means that f is common knowledge among all agents.

The state update effected by an action a is described with
the keyword next(f) to define the propositions, also known
as fluents, that are true after the execution of a. The rule body
can include keywords true and knows along with the key-
word does(i, a), which is true when agent i takes action a.
For example, we can model the action of agent 1 from Sec-
tion 2.1 in GDL-III as follows:
legal(ag1,a).
next(q) :- does(ag1,a), not true(q).
next(p) :- does(ag1,a), true(p).

According to these rules, action a by ag1 is always possible.
Its effect is to switch the state of q (note that when true(q)

holds, next(q) cannot be derived and hence q is false in
the next state), while p remains unchanged.

Description of Observations
Effect axioms are accompanied by observation rules with the
reserved keyword sees(i, t) in the head. They define the
conditions under which agent i receives an observation to-
ken t. These can be used for very succinct specifications of
epistemic actions. For example, the epistemic effect of the
action from above, namely that agent 1 senses the value of
proposition q under the condition that p holds, can be ex-
pressed in GDL-III as follows:

sees(ag1,qT) :- does(ag1,a),true(p),true(q).
sees(ag1,qF) :- does(ag1,a),

true(p), not true(q).

Observation tokens are what make representations of multi-
agent knowledge and epistemic actions so concise in
GDL-III. Only objective rules about what players can see
need to be specified; rules about how actions and percepts af-
fect the knowledge of players are not required. For example,
from the absence of an observation token for agent 2, it fol-
lows implicitly from the semantics of GDL-III that all events
corresponding to action a are indistinguishable for this agent.

There are also keywords for defining conditions for a game
to end and how a game is won; however, these are not relevant
for the purpose of this paper and will therefore be ignored.

Semantics
The semantics of GDL-III combines the standard semantics
of logic programs with negation1 with an inductive definition
of how a knowledge state evolves. The initial state of a game
described by rulesG consists of all f for which init(f) can
be derived from G.

The rules for legal, next, and sees determine a
knowledge state transition system as follows: Let (S,K)
be an arbitrary knowledge state, where S is a set of ground
true-instances and K a set of ground knows-instances. An
action a of agent i is legal in (S,K) if legal(i, a) can be de-
rived fromG∪S∪K. A joint actionM is a set of does(i, a)-
instances, one action for every agent i. The resulting state
when M is executed in (S,K) consists of all true(f) such
that next(f) can be derived from G ∪ S ∪K ∪M . Agent i
observes token twhenM is executed in (S,K) iff sees(i, t)
can be derived from G ∪ S ∪K ∪M .

By definition, the initial state is common knowledge
among the agents. A legal play sequence is a sequence
of joint actions, beginning in the initial knowledge state, in
which all agents always select a legal action. Legal play se-
quences δ and δ′ are indistinguishable by agent i, written
δ ∼i δ′, iff i’s actions and observations are the same in δ and
δ′. Agent i knows a property φ after a legal play sequence δ
iff φ is true in all δ′ that i cannot distinguish from δ. Finally,
φ is common knowledge after δ if it holds after all δ′ in the
transitive closure ∼C of

⋃
i ∼i.

1Syntactic restrictions [Genesereth et al., 2005] ensure that GDL
descriptions always have a finite grounding and admit the so-called
standard model [Apt et al., 1987], which is the same as their unique
answer set [Gelfond, 2008].

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1797

Given a game description G, we can determine a set of
propositional variables P that contains exactly the grounded
propositions fromG [Schiffel and Thielscher, 2009]. Further-
more, we can assume a set A containing exactly the r which
occur in a fact role(r). With this, we can evaluate arbitrary
formulas φ ∈ LKC(P,A) over arbitrary GDL-states (G, δ).
For propositional formulas, truth is defined inductively based
on the init and next rules. For knowledge formulas, we
have G, δ |= Kiφ iff G, δ′ |= φ for all δ′ with δ ∼i δ′ and
G, δ |= Cφ iff G, δ′ |= φ for all δ′ with δ ∼C δ′.

3 Differences between GDL-III and DEL
Before translating between GDL-III and DEL, we briefly dis-
cuss some differences between them and why these are un-
problematic for the translations. Where necessary, we point
out how they can be dealt with by either restricting the more
expressive or enhancing the less expressive formalism. The
differences can be grouped into syntactic and semantic differ-
ences, and differences pertaining to the execution model.

Syntax. GDL-III is a first-order language while DEL is
propositional. However, syntactic restrictions ensure that
GDL-III game descriptions have a finite grounding [Gene-
sereth et al., 2005]. Furthermore, unlike GDL-III, DEL does
not know derived fluents. We deal with this difference by
disallowing cyclic definitions and unrolling all definitions in
GDL-III first. Finally, in GDL-III, observations can be state-
dependent. In other words, the same action can yield differ-
ent observations to the same agent depending on the state in
which it occurs. The same cannot be expressed as easily and
compactly in standard DEL. To overcome this difference, we
will introduce a variant of DEL that allows a form of edge-
conditioned event models similar to those of Bolander [2014].

Semantics. GDL-III uses successor-state axioms to derive
the next state, whereas DEL uses state updates. To address
this mismatch, we assume that the GDL-III game descrip-
tion gives us a precise condition ϕa(f) under which action a
makes fluent f true, which can be obtained following the so-
lution of the inferential frame problem in GDL of Romero et
al. [2014]. We can then use a variant of DEL with conditional
effects [van Benthem et al., 2006] of the form f 7→ ϕa(f).

Execution model. In GDL-III, moves are associated with
players allowed to make them, whereas action ownership is
not part of DEL itself. Related to that, GDL-III assumes joint
moves where all players move simultaneously in each step.
While we could define DEL planning domains assigning DEL
actions to each action profile (containing the decision of each
agent), our solution is to assume that GDL-III games are se-
quentialized in the standard way [Rasmusen, 2007]. We make
the assumption that as a result of the sequentialization, after
each play sequence the GDL-III description allows exactly
one agent to freely choose between actions. All other agents
have only one action available waiting for the active agent.
We assume these waiting actions to be identifiable from the
GDL-III description. Most importantly, they are not allowed
to have any effects on the successor state or on the received
observation tokens (in particular, they should not occur in any
of the does-instances of the GDL description).

Since GDL-III does not require knowledge of precondi-

tions [Moses, 2015], we do not assume this knowledge of
the action’s owner in DEL, either. Finally, whereas GDL-III
is most commonly viewed as a language for encoding com-
petitive settings, DEL planning is more about cooperation to-
wards achieving a joint goal. Since the expressive power of
the formalization languages does not depend on the goal con-
ditions, we ignore them in this paper.

4 An Extension of DEL
In Section 2.2, we exemplified how an action with epistemic
effects can be compactly described in GDL, whereas corre-
sponding DEL event models require an exponential number
of events in the worst case, both in the number of observation
tokens and in the number of propositions that can change con-
ditionally. In the following, we propose a modified version of
event models, which allow us to model GDL-III actions in
a more succinct way while not making the computation of
the product update harder. Most importantly, it will simplify
our compilation from GDL to DEL, making each action rep-
resentable by one single event in a larger underlying event
model which is common to all actions.

A More Succinct Representation of Events
Our first change is that we replace the indistinguishability re-
lation by a partial edge-condition function Qi : E × E 7→
P(LKC(P,A) × LKC(P,A)), mapping event pairs to a fi-
nite set of edge conditions for each agent i ∈ A. The idea
behind these edge conditions is the following: Determining
whether two worlds (w, e) and (w′, e′) will be indistinguish-
able should be dependent on additional information (e.g., ob-
servation tokens) received by the agents, which can be condi-
tionalized both on the actual predecessor world (w or w′) and
on the event that actually occurred (e or e′). We say that an
edge condition (φ, ψ) ∈ Qi(e, e′) is satisfied between w and
w′ ifM, w |= φ iffM, w′ |= ψ. If all edge conditions are
satisfied, this means the additional information received by
the agent is identical in w and w′ and that i thus cannot dis-
tinguish (w, e) from (w′, e′). We leave Qi(e, e′) undefined if
we want e and e′ to be always distinguishable. If Qi(e, e′) is
defined, we also write eQie′. In spirit, our edge-conditioned
event models work very similarly to the event models used in
generalized arrow update logic [Kooi and Renne, 2011].2

We additionally adopt a more expressive version of effects
in the style of van Benthem et al. [2006], which resemble the
effect axioms of GDL much more closely. We define our con-
ditional effects by a function eff : E → {P → LKC(P,A)},
which specifies for each proposition a formula that is to be
evaluated in the parent worlds to determine the new value for
that proposition. In our depiction of event models, we some-
times omit effects of the form p 7→ p. Using these extensions,
we can express the action from our initial example as

E ′ =

e1 : 〈>, {q 7→ ¬q}〉.

1 : {(p ∧ q, p ∧ q), (p ∧ ¬q, p ∧ ¬q)}, 2 : ∅

2The slightly differing semantics (we have universally quantified
iff -conditions instead of existentially quantified and-conditions) is
vital to the succinctness of our translation, as we will see later.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1798

The event model can be interpreted as follows: There is only
one possible event which always switches the value of q. Af-
ter the event, situations which were previously indistinguish-
able, but which differed in terms of p∧q or p∧¬q (the condi-
tions from the GDL version of the action for obtaining obser-
vation tokens qT and qF) will additionally be distinguished.

Formally, we define the product update of an epistemic
model with such an event model as 〈W, (Ri)i∈A, V 〉 ⊗
〈E, (Qi)i∈A, pre, eff〉 = 〈W ′, (R′i)i∈A, V ′〉 where

• W ′ = {(w, e) ∈W × E | M, w |= pre(e)}
• R′

i = {((w, e), (w′, e′)) ∈W ′ ×W ′ | wRiw
′, eQie

′, and
f.a. (φ, ψ) ∈ Qi(e, e

′):M, w |= φ iffM, w′ |= ψ}
• V ′(p) = {(w, e) ∈W ′ | M, w |= eff(e)(p)}

One can now verify that taking the product update produces
an equivalent model as before (but with e2 and e4 replaced by
e1). Instead, we want to show what happens for three much
simpler examples. In each example, agent 1 initially does
not know the value of q. We’re not interested in agent 2.
Furthermore, in the first example, p is true in all worlds and
in the second example p is false in all worlds. In the third
example, agent 1 does not know whether or not p is true.

w1 : p w2 : p, q

1 ⊗ E ′ =
w1, e1 : p, q w2, e1 : p

w1 : w2 : q

1 ⊗ E ′ =
w1, e1 : q w2, e1 :

1

w1 : p w2 : q

1 ⊗ E ′ =
w1, e1 : p, q w2, e1 :

We can see that the product update works as expected. If p is
true in both worlds, the agent will be able to distinguish the
successor worlds. This corresponds to the GDL action, where
the agent would have received one of the observation tokens
qT or qF. If p is false in both worlds, the agent will not be
able to distinguish the successor worlds, which corresponds
to the GDL case, where no tokens are received. Finally, if p is
true in one and false in the other world, the successor worlds
will be distinguishable. This is also analogous to our GDL
specification, where the agent is able to distinguish between
receiving the token qT (or qF) and receiving no tokens at all.

Note that our edge-conditioned event models are a non-
straightforward generalization of the edge-conditioned event
models introduced by Bolander [2014]. We can express one
of their edge-conditions φ as {(φ,>)}. It is important to
note that defining sensing actions like E ′ with only a single
event is not possible using the edge-conditions of Bolander
[2014]. Using the arrow update semantics from Kooi and
Renne [2011] this is possible, but only with a number of edge
conditions that is worst-case exponential in the number of in-
dependent sensing outcomes (i.e., observation tokens). Sim-
ilarly, conditional effects can only be compiled away with a
worst-case exponential blowup in the number of events.

To ensure that the product update is closed epistemically
(meaning indistinguishability relations of updated models are
always again equivalence relations), additional requirements
have to be imposed. Our compilation satisfies the follow-
ing sufficient conditions on Qi for all agents i ∈ A and

events e, e′, e′′ ∈ E: (1) eQie and if (φ, ψ) ∈ Qi(e, e), then
φ = ψ, (2) If (φ, ψ) ∈ Qi(e, e

′), then (ψ, φ) ∈ Qi(e
′, e),

and (3) If (φ, ψ) ∈ Qi(e, e
′′) and eQie

′ or e′Qie′′, then
there is a χ ∈ LKC(P,A) such that (φ, χ) ∈ Qi(e, e′) and
(χ, ψ) ∈ Qi(e

′, e′′). Condition (1) enforces reflexivity, (2)
enforces symmetry and (3) enforces transitivity.

There is a straight-forward compilation from event mod-
els with edge conditions into basic event models: Edge con-
ditions can be removed one by one. Specifically, for an
edge condition (φ, ψ) ∈ Qi(e, e

′), we replace e by two
events eφ and e¬φ, and we replace e′ by two events e′ψ and
e′¬ψ . While the effects are inherited from e and e′, we have
pre(eφ) = pre(e)∧φ and pre(e¬φ) = pre(e)∧¬φ, as well as
pre(e′ψ) = pre(e′)∧ψ and pre(e′¬ψ) = pre(e′)∧¬ψ. Agent i
can distinguish between the equivalence classes {eφ, e′ψ} and
{e¬φ, e′¬ψ}. For all the other agents, all four events are indis-
tinguishable. Also, the indistinguishability between the du-
plicates of e, e′, and events other than e, e′ is inherited from
the indistinguishability between the original events.

DEL Domain Descriptions
A DEL domain description is a tuple ∆ = 〈M0, (Ai)i∈A〉,
consisting of an initial epistemic model M0 and for each
agent i ∈ A a finite set of epistemic actions Ai, the action
library. We require each epistemic action (E , Ed) ∈ Ai to
be local to its owner agent i, meaning that the set of desig-
nated events is closed under his indistinguishability relation.
This is needed to ensure that the agents have perfect recall of
their own actions (otherwise we could define an action where
an agent chooses an event and immediately forgets about his
choice). Furthermore, we require an additional closure prop-
erty for the action library: If (E , Ed) ∈ Ai for some i ∈ A
and e is an event in E, then there exists a set E′d with e ∈ E′d
and (E , E′d) ∈

⋃
j∈AAj . This ensures that the uncertainty of

the agents about an occurred event is reflected by the uncer-
tainty about the actions that can actually be performed.

5 Compilation from GDL-III to DEL
We now define a translation from GDL-III to DEL under the
assumptions made in Section 3, i.e., that GDL-III descriptions
are sequentialized, grounded, and without derived predicates.
We assume that the agents’ waiting actions are all named
wait. Then the set of action names for some agent i can
then be extracted from the GDL-III description as Ai = {a |
legal(i, a) :- body. ∈ G for some arbitrary body} \
{wait}. Similarly, the set of names for the observation to-
kens which agent i can receive can be extracted as T i = {t |
sees(i, t) :- body. ∈ G for some arbitrary body}.

For each action a ∈ Ai of an agent i, we can then extract
the precondition as DEL-formula legal(i, a), as well as the
action’s effect next(i, a, p) on a given proposition p and the
condition sees(j, t, i, a) under which an agent j sees obser-
vation token t ∈ T j after the action was applied:

legal(i, a) =
∨
legal(i,a) :- body. ∈ G σ(body, i, a)

next(i, a, p) =
∨
next(p) :- body. ∈ G σ(body, i, a)

sees(j, t, i, a) =
∨
sees(j,t) :- body. ∈ G σ(body, i, a)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1799

We use the substitution σ(body, i, a) to obtain a proper
DEL formula from the body of a relevant GDL clause. It
replaces occurrences of true(f) by f and occurrences of
knows(i, p) and knows(p) by Kiσ(x) and Cσ(x) where x
is obtained from the clause p :- x. Moreover, the GDL
connectives not, ,, and ; are replaced by the DEL connec-
tives ¬, ∧, and ∨. Finally, occurrences of does(j, b) are
replaced by > if i = j and a = b, and by ⊥ otherwise. For
simplification, we assume that facts in G are written as rules
of the form p :- >.

In our section about edge-conditioned event models, we
have already shown an example of how our compilation of
GDL actions works in the case where there is only one action.
We now generalize this to arbitrarily many actions. The idea
is to construct a single composite event model that contains
one event i:a for all actions a ∈ Ai of all agents i ∈ A.
We can directly extract the preconditions, effects, and edge
conditions using the definitions above.

Definition 1. LetG be a GDL-III description. Then the com-
posite event model of G is E = 〈E, (Qi)i∈A, pre, eff〉, where
E = {i:a | i ∈ A, a ∈ Ai} and for each i, j, k ∈ A and
a ∈ Ai and b ∈ Aj , we have

• pre(i:a) = legal(i, a),

• eff(i:a) = {p 7→ next(i, a, p) | p ∈ P}, and

• Qk(i:a, j :b) = undefined if k ∈ {i, j} and i:a 6= j :b, or
{(sees(k, t, i, a), sees(k, t, j, b)) | t∈T k} otherwise.

In the following, analogously to our event names, we also
use i:a to denote the move in G where agent i performs the
action a. Note that for an arbitrary play sequence δ and two
such moves i:a and j :b in G, we have δ, i:a ∼k δ, j :b iff
i:a Qk j :b and all the edge conditions in Qk(i:a, j :b) are sat-
isfied in E . Note also that Qk satisfies our sufficient condi-
tions for epistemic closedness. The reflexivity and symmetry
properties follow trivially from the definition ofQk. For tran-
sitivity, we consider the formulas φai = sees(l, t, i, a) that are
used for the edge conditions between different actions, for a
fixed observation token t and agent l. We can see that for
three events e = i:a , e′ = j :b, and e′′ = k:c with eQle′′,
we have either both or none of eQle′ and e′Qle′′. If we have
both, the introduced edge conditions are (φai , φ

b
j) ∈ Ql(e, e′),

(φbj , φ
c
k) ∈ Ql(e′, e′′), and (φai , φ

c
k) ∈ Ql(e, e′′).

We can now define the compilation from GDL-III to DEL
domain descriptions. Note that, while non-random agents
have one action in their action library for each of their actions
as defined in G, the random agent has only a single action.

Definition 2. Let G be a GDL-III description and E be its
composite event model. Then the DEL compilation of G
is a DEL domain description with the initial model M0 =
w0 : {p | init(p). ∈ G} and the action libraries Ai =

{(E , {i:a}) | a ∈ Ai} for each agent i ∈ A \ {random} and
Arandom = {(E , {random:a | a ∈ Arandom})}.

Both the GDL specification and its DEL translation induce
transition systems over epistemic states. We now show that
they are isomorphic and that identified states share the same
set of satisfied formulas.

Theorem 1. Let G be a GDL-III description and ∆ be its
DEL-compilation with initial state M0. Then a play se-
quence δ = i1 :a1 , . . . , in:an is legal in G if and only if the
action sequence (E , i1 :a1), . . . , (E , in:an) is successively ap-
plicable in (M0, w0). Furthermore, for Mn = M0 ⊗ En,
and wn = (w0, i1 :a1 , . . . , in:an), and an arbitrary formula
φ ∈ LKC(P,A), we haveMn, wn |= φ iff G, δ |= φ.

Proof sketch. We can prove by induction over the length of
play/action sequences that there is a one-to-one correspon-
dence between all play sequences δ of length n and worlds
(w, δ) in M0 ⊗ En. Both valuations and indistinguishabil-
ity coincides for worlds and play sequences, meaning in both
cases the same formulas are satisfied and the same actions are
legal/applicable.

Example 1. Consider the following GDL description. Ini-
tially, the random agent decides whether or not to set p true.
Afterwards, p will never change its value.
role(random). role(ag1). role(ag2).
init(turnrandom).
legal(random, ptrue) :- true(turnrandom).
legal(random, pfalse) :- true(turnrandom).
next(p) :- does(random, ptrue).
next(p) :- true(p).

Now, agent ag1 can decide whether he wants to sense the
value of p or do nothing. Note that noop is a deliberate ac-
tion the agent can chose to execute instead of sense, rather
than a waiting action for someone else’s move.
legal(ag1, sense) :- not true(turnrandom).
legal(ag1, noop) :- not true(turnrandom).
sees(ag1, ptrue) :- does(ag1,sense), true(p).

For our GDL game to be sequentialized, we have to enforce
that agents have to wait while it is another agent’s turn. In
our example, ag2 is a passive bystander who always waits.
legal(random, wait) :- not true(turnrandom).
legal(ag1, wait) :- true(turnrandom).
legal(ag2, wait).

Let us now have a look at the composite event model E of
our GDL-III description. We use 1 and 2 for agents ag1 and
ag2, as well as r as shorthand for turnrandom. The pre-
condition and edge condition formulas are already simplified.

random:ptrue
〈r, {p 7→ >, r 7→ ⊥}〉

random:pfalse
〈r, {p 7→ p, r 7→ ⊥}〉

ag1:sense
〈¬r, {p 7→ p, r 7→ ⊥}〉

ag1:noop
〈¬r, {p 7→ p, r 7→ ⊥}〉

1 : {(⊥,⊥)}, 2

2 2 2

2

1 : {(⊥,⊥)}, 2 1 : {(⊥,⊥)}, 2

1 : {(p, p)}, 2 1 : {(⊥,⊥)}, 2

Finally, the DEL-compilation of our GDL description is given
as ∆ = 〈M0, (A1, A2, Arandom)〉 withM0 = w0 : r , A1 =

{(E , {ag1:sense}), (E , {ag1:noop})}, A2 = ∅, and
Arandom = {(E , {random:ptrue,random:pfalse})}.
Computing the updated models M0 ⊗ E and M0 ⊗ E2,
one can verify the correspondence between worlds and play
sequences in terms of valuation and indistinguishability.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1800

6 Compilation from DEL to GDL-III
In order to show how DEL can be embedded into GDL-III,
we first deal with the difference that agents in DEL planning
problems can have incomplete knowledge of the initial state
whereas the initial state in a GDL-III game is always common
knowledge. To bridge this gap, we use an initial action by the
special random agent to generate an initial epistemic model.
Definition 3. For a DEL domain description over (P,A) with
initial modelM0 = 〈W, (Ri)i∈A, V 〉, the GDL-III initializa-
tion rules are

role(i). ∀i ∈ A ∪ {random}
init(ran). init(0).
legal(random,w) :- true(0). ∀w ∈W
next(p) :- does(random,w). ∀p ∈ P,w ∈ V (p)
sees(i,[w]i) :- does(random,w). ∀i ∈ A, w ∈W

By this translation, random chooses any of the possible ini-
tial worlds. Each agent then receives an observation token
indicating the equivalence class to which this world belongs
according to that agent’s indistinguishability relation. The
special fluent ran is used to denote that it is random’s turn,
and fluent 0 is true only in the initial state.
Example 2. Recall the epistemic model from Section 2.1:

w1 : p, q w2 : p w3 :

1 2

The GDL-III translation is as follows:
role(random). role(1). role(2).
init(ran). init(0).
legal(random, w1) :- true(0).
legal(random, w2) :- true(0).
legal(random, w3) :- true(0).
next(p) :- does(random, w1).
next(p) :- does(random, w2).
next(q) :- does(random, w1).
sees(1, w12) :- does(random, w1).
sees(1, w12) :- does(random, w2).
sees(1, w3) :- does(random, w3).
sees(2, w1) :- does(random, w1).
sees(2, w23) :- does(random, w2).
sees(2, w23) :- does(random, w3).

It is easy to see that the resulting states from the three
possible moves by random satisfy the same propositions
as in the epistemic model. Moreover, from their observa-
tion tokens, agent 1 cannot distinguish does(random,w1)
from does(random,w2) while agent 2 cannot distinguish
does(random,w2) from does(random,w3).

The example illustrates the use of observation tokens to ob-
tain a given epistemic model. The key to a successful embed-
ding of DEL into GDL-III is the proper use of these tokens to
encode actions defined by arbitrary event models. We repre-
sent the execution of a DEL-action by two steps in GDL-III:
First, an agent chooses an applicable action, that is, an event
model along with a set of designated events. Thereafter, and
similar to the above, random selects one of the applicable
designated events, and the state changes according to the ef-
fects of that event. Each agent will receive an observation
token that indicates their own equivalence class to which the
actual event belongs according to the event model.

In the following, we assume event models with conditional
effects but without edge conditions, which can be compiled
away as described in Section 2.1. Every DEL-action is en-
coded in the GDL-III compilation by a unique constant a,
which is used both as the name of an action and a fluent that
becomes temporarily true when an agent has selected this ac-
tion. The latter is used to let random choose an appropri-
ate event in the subsequent step. For the sake of simplic-
ity, we use DEL-formulas in the body of clauses; to obtain
proper GDL, these need to rewritten by substituting every flu-
ent f by true(f); every Kiφ and Cφ by knows(i, p) and
knows(p), respectively, along with a clause p :- φ; and by
encoding propositional formulas in clause bodies by sets of
logic program rules in the standard way [Lloyd, 1987].
Definition 4. The GDL-III compilation of an action library
(Ai)i∈A over (P,A) consists of the following rules for every
action a = (E , Ed) ∈ Ai with E = (E, (Qj), pre, eff):

legal(j,noop). ∀j ∈ A
legal(i,a):- pre(e) ∧ ¬true(ran). ∀e ∈ Ed

legal(random,e):- true(a)∧ pre(e). ∀e ∈ Ed

legal(random,noop):- ¬true(ran).
next(a):- does(i,a).
next(ran):- does(i,a).
next(X):- true(X)∧does(i,a).
next(p):- does(random,e)∧ eff(e, p). ∀p ∈ P, e ∈ Ed

sees(j,[e]j):- does(random,e)∧ eff(e, p).∀p∈P,e∈Ed

In the theorem below that states the correctness of the trans-
lation, we use ia :a to indicate a joint move that consists of
action a chosen by its owner and noop by all other roles.
Theorem 2. Let ∆ be a DEL domain description with initial
model M0 and G be its GDL-III compilation consisting of
the action and initialization rules for ∆. Then (Mn, wn) =
(M0 ⊗ E1 ⊗ . . . ⊗ En, (w, e1, . . . , en)) is a successor state
of a sequence of applicable actions a1, . . . , an in ∆ iff δ =
random :w , ia1

:a1 ,random :e1 , . . . , ian
:an ,random :en is

a legal play sequence in G, where w is a possible world in
M0 and, for all k ∈ {1, . . . , n}, ek is a designated event in
action ak. Furthermore, (Mn, wn) |= φ iff G, δ |= φ, for
arbitrary formulas φ ∈ LKC(P,A).

Proof sketch. For the base case n = 0, the rules in Defini-
tion 3 ensure that the only legal play sequences of length 1
are of the form random :w . Using the rules in Definition 4
we can then prove inductively the correspondence between
the applicability of a DEL-action and its legality in GDL-III
as well as the correspondence between the ensuing action by
random and the effects of the selected designated event.

7 Conclusion
We have formally investigated the commonalities and differ-
ences between two expressive languages for modeling and
reasoning about knowledge in dynamic multi-agent settings,
GDL-III and DEL. We have demonstrated identical expres-
siveness of large fragments by providing provably correct
compilations between GDL-III and DEL. To this end, and as
an additional benefit, we have developed a powerful exten-
sion to DEL that allows us to compactly define actions whose
effects and observability by other agents can depend on the

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1801

current state. The fact that such actions were not definable in
DEL before has been one of the criticisms (see the discussion
about action types vs. action tokens in Baral et al. [2017]).

Our compilations allow for investigating the translation of
theoretical results (e.g., [Bolander et al., 2015; Charrier et al.,
2016]) from one language to the other. Also, the application
of existing epistemic planning systems (e.g., [Muise et al.,
2015; Huang et al., 2017; Le et al., 2018]) to GDL problems
is conceivable. Finally, our compilations may pave the way
for developing a combined description language for epistemic
domains integrating the best features of GDL and DEL.

Acknowledgments
This research was supported under the Australia-Germany
Joint Research Cooperation Scheme 2017–18.

References
[Apt et al., 1987] Krzysztof Apt, H. Blair, and A. Walker.

Towards a theory of declarative knowledge. In Founda-
tions of Deductive Databases and Logic Programming,
chapter 2, pages 89–148. 1987.

[Baral et al., 2017] Chitta Baral, Thomas Bolander, Hans
van Ditmarsch, and Sheila A. McIlraith. Epistemic plan-
ning (Dagstuhl seminar 17231). Dagstuhl Reports, 7(6):1–
47, 2017.

[Bolander and Andersen, 2011] Thomas Bolander and
Mikkel Birkegaard Andersen. Epistemic planning for
single and multi-agent systems. Journal of Applied
Non-Classical Logics, 21(1):9–34, 2011.

[Bolander et al., 2015] Thomas Bolander, Martin Holm
Jensen, and François Schwarzentruber. Complexity results
in epistemic planning. In Proceedings of IJCAI, pages
2791–2797, 2015.

[Bolander, 2014] Thomas Bolander. Seeing is believing:
Formalising false-belief tasks in dynamic epistemic logic.
In Proceedings of ECSI, pages 87–107, 2014.

[Charrier et al., 2016] Tristan Charrier, Bastien Maubert,
and François Schwarzentruber. On the impact of modal
depth in epistemic planning. In Proceedings of IJCAI,
pages 1030–1036, 2016.

[Clark, 1978] Keith Clark. Negation as failure. In Logic and
Data Bases, pages 293–322. 1978.

[Cooper et al., 2016] Martin C. Cooper, Andreas Herzig,
Faustine Maffre, Frédéric Maris, and Pierre Régnier. A
simple account of multi-agent epistemic planning. In Pro-
ceedings of ECAI, pages 193–201, 2016.

[Engesser et al., 2017] Thorsten Engesser, Thomas Bolan-
der, Robert Mattmüller, and Bernhard Nebel. Cooperative
epistemic multi-agent planning for implicit coordination.
In Proceedings of M4M, pages 75–90, 2017.

[Gelfond, 2008] Michael Gelfond. Answer sets. In Hand-
book of Knowledge Representation, pages 285–316, 2008.

[Genesereth and Thielscher, 2014] Michael Genesereth and
Michael Thielscher. General Game Playing. Synthesis
Lectures on AI and Machine Learning. 2014.

[Genesereth et al., 2005] Michael Genesereth, Nathaniel
Love, and Barney Pell. General game playing: Overview
of the AAAI competition. AI Magazine, 26(2):62–72,
2005.

[Huang et al., 2017] Xiao Huang, Biqing Fang, Hai Wan,
and Yongmei Liu. A general multi-agent epistemic plan-
ner based on higher-order belief change. In Proceedings
of IJCAI, pages 1093–1101, 2017.

[Kominis and Geffner, 2015] Filippos Kominis and Hector
Geffner. Beliefs in multiagent planning: From one agent
to many. In Proceedings of ICAPS, pages 147–155, 2015.

[Kooi and Renne, 2011] Barteld P. Kooi and Bryan Renne.
Generalized arrow update logic. In Proceedings of TARK,
pages 205–211, 2011.

[Le et al., 2018] Tiep Le, Francesco Fabiano, Tran Cao Son,
and Enrico Pontelli. EFP and PG-EFP: Epistemic forward
search planners in multi-agent domains. In Proceedings of
ICAPS, 2018.

[Lloyd, 1987] John Lloyd. Foundations of Logic Program-
ming. Series Symbolic Computation. 1987.

[Moses, 2015] Yoram Moses. Relating knowledge and coor-
dinated action: The knowledge of preconditions principle.
In Proceedings of TARK, pages 231–245, 2015.

[Muise et al., 2015] Christian Muise, Vaishak Belle, Paolo
Felli, Sheila McIlraith, et al. Planning over multi-agent
epistemic states: A classical planning approach. In Pro-
ceedings of AAAI, pages 3327–3334, 2015.

[Rasmusen, 2007] Eric Rasmusen. Games and Information:
an Introduction to Game Theory. 4th edition edition, 2007.

[Romero et al., 2014] Javier Romero, Abdallah Saffidine,
and Michael Thielscher. Solving the inferential frame
problem in the general game description language. In Pro-
ceedings of AAAI, pages 515–521, 2014.

[Ruan and Thielscher, 2011] Ji Ruan and Michael
Thielscher. The epistemic logic behind the game
description language. In Proceedings of AAAI, pages
840–845, 2011.

[Schiffel and Thielscher, 2009] Stephan Schiffel and
Michael Thielscher. Automated theorem proving for
general game playing. In Proceedings of IJCAI, pages
911–916, 2009.

[Thielscher, 2017] Michael Thielscher. GDL-III: A descrip-
tion language for epistemic general game playing. In Pro-
ceedings of IJCAI, pages 1276–1282, 2017.

[van Benthem et al., 2006] Johan van Benthem, Jan van Ei-
jck, and Barteld Kooi. Logics of communication and
change. Information and Computation, 204(11):1620–
1662, 2006.

[van Ditmarsch et al., 2007] Hans van Ditmarsch, Wiebe
van der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic. 2007.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1802

