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Abstract
Model sampling has proved to be a practically
viable method for decision-making under uncer-
tainty, for example in imperfect-information games
with large state spaces. In this paper, we examine
the logical foundations of sampling-based belief re-
vision. We show that it satisfies six of the standard
AGM postulates but not Vacuity nor Subexpansion.
We provide a corresponding representation theo-
rem that generalises the standard result from a sin-
gle to a family of faithful assignments for a given
belief set. We also provide a formal axiomatisation
of sampling-based belief revision in the Situation
Calculus as an alternative way of reasoning about
actions, sensing, and beliefs.

1 Introduction
Model sampling is a viable approach to automated decision-
making under uncertainty in a variety of domains; examples
include the control of autonomous robots [Fox et al., 1999;
Hollinger and Sukhatme, 2014] and computer game playing,
where sampling is the method of choice to cope with highly
incomplete knowledge of the game state in most imperfect-
information games [Frank and Basin, 1998; Ginsberg, 2001;
Richards and Amir, 2012]. In all of these applications, agents
base their decisions on a small set of samples from the set
of all complete models that are consistent with their obser-
vations. When further information is acquired, models that
turn out to be inconsistent with the new observations are re-
sampled in order to maintain both consistency as well as
a uniform size of the sample set [Frank and Basin, 1998;
Edelkamp et al., 2012; Schofield et al., 2012].

From a logical perspective, when agents base their deci-
sions on model sampling then they can be said to believe
that the world is fully characterised by the samples. If, for
instance, all models randomly sampled by a Bridge-playing
agent [Ginsberg, 2001] happen to assume that their partner
carries at least one card of each suit, then the agent concludes
that the player will have to “follow suit” on any lead card.
However, rational agents operating with beliefs (rather than
knowledge) ought to take into account the possibility that
their beliefs may be wrong, for example when a subsequent
observation implies that a player does in fact not have a card

of a specific suit. When this happens, the agent needs to re-
sample inconsistent models [Frank and Basin, 1998], thereby
causing him to revise his beliefs in the light of new informa-
tion.

In this paper, we study the formal properties of this kind of
belief revision operators that follow from the sampling-based
approach to handling incomplete information. The purpose
of this study is two-fold:

1. A formal analysis of how model sampling affects the be-
liefs of an agent provides for a deeper understanding of
the formal properties of an approach that has proved suc-
cessful in a range of applications including robot control
and computer game playing.

2. A formalisation of model sampling as a general princi-
ple for belief revision enriches the suite of traditional op-
erators based on the AGM postulates [Alchourrón et al.,
1985], especially since it promises to be a viable method
for applications with large state spaces for which classi-
cal Belief Revision operators are not practical.

Our investigation into the logical foundations for sampling-
based belief revision will show that it satisfies six of the eight
standard AGM postulates but not Vacuity nor Subexpansion.
The intuitive reason is that when some but not all sampled
models are consistent with new observation φ, then those that
contradict φ get resampled. These new models may then in-
validate previously held beliefs despite the fact that the pres-
ence of other samples that are consistent with φ imply that the
new observation is consistent with the agent’s original beliefs.

As a simple example, consider a situation in an unspec-
ified card game where there are the 6 outstanding cards
♣2,♠2,♣3,♥3,♦3,♦4, and suppose that an agent has ran-
domly generated the following two samples for the belief
about the remaining hand (consisting of two cards) of an-
other player: K = {{♣3,♦3}, {♣2,♥3}}. Suppose further
that the player is observed not to follow suit when hearts is
played. This observation, which we shall write φ = ¬♥, ren-
ders the second model inconsistent (but not the first). If we
assume that resampling this model results in the new sample
set K ∗ φ = {{♣3,♦3}, {♠2,♦4}}, then the following can
be said about the beliefs of the agent before and after observ-
ing φ:

1. In K, the agent believes that the player has a ♣-card.
2. K is consistent with φ = ¬♥.



(AGM-1) K ∗ φ = Cn(K ∗ φ) (Closure)
(AGM-2) φ ∈ K ∗ φ (Success)
(AGM-3) K ∗ φ ⊆ K + φ (Inclusion)
(AGM-4) If ¬φ 6∈ K then K ∗ φ ⊇ K + φ (Vacuity)
(AGM-5) If φ is consistent, then K ∗ φ is consistent (Consistency)
(AGM-6) If φ ≡ ψ, then K ∗ φ = K ∗ ψ (Extensionality)
(AGM-7) K ∗ (φ ∧ ψ) ⊆ (K ∗ φ) + ψ (Superexpansion)
(AGM-8) If ¬ψ 6∈ (K ∗ φ), then K ∗ (φ ∧ ψ) ⊇ (K ∗ φ) + ψ (Subexpansion)

Figure 1: The eight AGM postulates.

3. In K ∗φ, the agent no longer believes that the player has
a ♣-card.

These three properties together violate the Vacuity postulate,
which satipulates that if φ is consistent with K, then every
belief in K should also be a belief in K ∗ φ. We will show
that for a similar reason, the Subexpansion postulate is not
satisfied either.

We will provide a representation theorem for belief revi-
sion operators that satisfy all but these two AGM postulates.
The result will be a generalisation of the classical represen-
tation theorem [Gärdenfors and Makinson, 1988] from single
to a family of faithful assignments for a given belief set.

The remainder of the paper is organised as follows. In the
next section, we recall the necessary notions and notations for
belief revision and logical reasoning about actions. In the sec-
tion that follows, we define and analyse model sampling for
belief revision in the context of the AGM framework. There-
after, we state and prove the representation result. Finally,
we apply our general concept of model sampling for belief
revision to develop a variant of the classical Situation Calcu-
lus for reasoning about actions, sensing and beliefs based on
(re-)sampling.

2 Background
We will formulate and analyse sampling-based belief revision
in the context of the classical AGM-based approach and as-
suming a logic language L generated from a finite set P of
propositions. By Cn(φ) we denote all classical logical con-
sequences of a sentence, or a set of sentences, φ. K + φ
stands for Cn(K ∪ {φ}). As usual, a propositional interpre-
tation (world) is a mapping from P to {>,⊥}. The set of all
interpretations is denoted byW . If an interpretation w truth-
functionally maps a sentence, or a set of sentences, φ to >,
then w is called a model of φ (denoted by w |= φ). Mods(φ)
denotes the set of all models of φ, and the latter is consistent
iff Mods(φ) 6= ∅. Formulas, or sets of formulas, φ and ψ are
equivalent, written φ ≡ ψ, iff Mods(φ) = Mods(ψ).

AGM Postulates Let the beliefs of an agent be represented
by a set of sentences K in L. Any new evidence is a sen-
tence φ in L, and the result of revising K with φ, denoted by
K ∗ φ, is also a belief set overL. Alchourrón et al. [1985] put
forward eight postulates for belief revision operators, which
are given in Figure 1. Readers are referred to Gärdenfors and
Makinson [1988] for a detailed discussion of the motivation
and interpretation of these postulates.

A Representation Theorem The classical representation
theorem [Gärdenfors and Makinson, 1988] characterises be-
lief revision operators that satisfy the AGM postulates with
the help of preference relations over worlds (i.e. models). A
total pre-order ≤ (possibly indexed) is a reflexive, transitive
binary relation such that either α ≤ β or β ≤ α holds for
any α, β. The strict part of ≤ is denoted by <, that is, α < β
iff α ≤ β and β 6≤ α. As usual, α = β abbreviates α ≤ β
and β ≤ α. Given any total pre-order ≤ over a set S, by
min(S,≤) we denote the set {α ∈ S : α ≤ β for all β ∈ S}.
Definition 1 A function that maps each belief set K to a to-
tal pre-order ≤K on W is called a faithful assignment if it
satisfies the following conditions.
• If w1, w2 |= K, then w1 =K w2.
• If w1 |= K and w2 6|= K, then w1 <K w2.
• If J ≡ K, then ≤J=≤K .

The intuitive meaning of w1 ≤K w2 is that w1 is at least
as plausible as w2 from the viewpoint of the agent who pos-
sesses the belief set K. The classical representation theorem
says that belief revision operators that satisfy the AGM pos-
tulates can be characterised with the help of faithful assign-
ments and vice versa.
Theorem 1 A revision operator ∗ satisfies Postulates
(AGM-1)–(AGM-8) iff there is a faithful assignment that maps
a belief set K to a total pre-order ≤K such that

Mods(K ∗ φ) = min(Mods(φ),≤K)

Reasoning About Actions Model-sampling has been suc-
cessfully used as a general technique for agents that act and
sense in a dynamic environment which they cannot fully ob-
serve. This includes the control of autonomous robots [Fox et
al., 1999; Hollinger and Sukhatme, 2014] and computer play-
ers for imperfect-information games [Frank and Basin, 1998;
Ginsberg, 2001; Richards and Amir, 2012]. Action calculi
for knowledge representation provide the logical foundations
for reasoning about actions, with the Situation Calculus being
the classical one [McCarthy, 1963]. We briefly recapitulate
the basic concepts of this calculus in a variant that uses a spe-
cial fluent to represent the knowledge of agents [Scherl and
Levesque, 2003].The Situation Calculus is a predicate logic
with a few pre-defined language elements:
• constant s0, which denotes the initial situation, along

with constructor DO(A,S) to denote the situation result-
ing from doing action A in situation S;



• predicate HOLDS(F, S), which denotes that fluent F
(i.e., an atomic state feature) is true in situation S;
• predicate POSS(A,S), which denotes that action A is

possible in situation S.
For example, a fluent HasCard(P,C, V ) may be used to in-
dicate that player P holds a card of suit C and value V .
The effect of playing a specific card, represented by the ac-
tion Play(P,C, V ), on all cards being held could then be
axiomatised by the following so-called successor state ax-
iom [Reiter, 1991] (free variables are assumed to be univer-
sally quantified):

POSS(A,S) →
( HOLDS(HasCard(P,C, V ),DO(A,S)) ↔

HOLDS(HasCard(P,C, V ), S) ∧A 6= Play(P,C, V ) )

Put in words, all cards held in situation S will also be held in
the situation after doing action A in S except for the card that
happens to have been played.

Scherl and Levesque [2003] use the special fluent
K(S′, S)—to be read as: situation S′ is accessible from sit-
uation S—in order to formally represent, and reason about,
the knowledge of an agent within the Situation Calculus:

KNOWS(Φ, S)
def
= ∀S′.K(S′, S) → Φ[S′] (1)

Here, Φ is a reified formula in which fluents are used as pred-
icates (without situation argument); and Φ[S′] is Φ with all
fluents F replaced by HOLDS(F, S′). For example,

KNOWS(∀X.¬HasCard(p,♥, X), s0)

is ∀S′.K(S′, s0) → ∀X.¬HOLDS(HasCard(p,♥, X), S′),
meaning that the agent knows player p has no ♥-card in the
initial situation as this is true for all s0-accessible situations.

The effects of actions, including sensing, on the knowledge
state of an agent are defined by the successor state axiom for
the special fluent K [Scherl and Levesque, 2003]:

POSS(A,S) →
K(S′′,DO(A,S)) ↔
∃A′, S′. S′′ = DO(A′, S′) ∧K(S′, S)∧

∀P. SENSE(P,A, S)↔ SENSE(P,A′, S′)

(2)

Put in words, S′′ is a possible situation after action A in S
if, and only if, S′′ is obtained by doing A in a situation S′

that was conceivable in S; and the agent’s sensing result for
A′, S′ is equivalent to his sensing result for the actual A,S.1

3 Model Sampling for Belief Revision
In sampling-based approaches to decision making under un-
certainty, agents approximate their incomplete knowledge
about the state of a system with the help of a fixed, and typ-
ically small, number of sampled models that are consistent
with given observations. At any point in time, the current col-
lection of samples can be viewed as the agent’s belief about
the current state. New observations act as filters through
which only those samples are kept that are consistent with

1SENSE(P,A, S) means that P , the encoding of a potential sens-
ing result, is indeed perceived after doing action A in situation S.

the new information. Since the accuracy of the belief usually
decreases with a shrinking number of samples, it is important
that models which have been filtered out are being resampled,
that is, get replaced by new and consistent samples. The be-
lief of the agent thus gets revised. In the following, we will
formalise this very general concept of (re-)sampling in the
context of belief revision in order to analyse its underlying
properties.

Various strategies have been used for the actual process of
generating a set of models that are consistent with given ob-
servations. They vary from be highly domain-specific [Gins-
berg, 2001] to domain-independent but according to a specific
process [Richards and Amir, 2012; Schofield et al., 2012] to
purely random resampling [Fox et al., 1999]. To accommo-
date these different types of strategies in our systematic anal-
ysis of how resampling changes the beliefs of an agent, we as-
sume that models are generated in an arbitrary but fixed order,
which may have been obtained by a purely random process.
Example 1 Suppose the beliefs about the remaining two
cards of a player are generated from 6 outstanding cards
according to some, possibly purely random, sampling strat-
egy in the order shown in Figure 2. Let us assume an agent
who maintains a sample set S of size 2, then the initial set of
samples—without further information—would consist of the
first two in the series of generated models, that is,

S = {w1, w2} = {{♣3,♦3}, {♣2,♥3}} (3)
Now, consider two examples of new observations.

First, suppose we learn that the player whose hand we sam-
ple does not have a ♥-card. The first model, w1, is consistent
with this new information and hence will be retained, whereas
the second sample, w2, is not. Resampling the inconsistent
model means to consider the next world in the sequence of
generated samples that is consistent with ¬♥, which is w4.
This results in the new sample set2

S / (¬♥) = {w1, w4} = {{♣3,♦3}, {♠2,♦4}} (4)
Second, suppose we make the more specific observation

that the player does not own a ♥-card and that one of his
cards is ♦3. Again, w1 is consistent and remains in the sam-
ple set while the second sample is replaced by the next model
in sequence after w2 and consistent with the new information
¬♥ ∧ ♦3, which is w6. This results in the new sample set
S / (¬♥ ∧ ♦3) = {w1, w6} = {{♣3,♦3}, {♦3,♦4}} (5)

The beliefs of an agent who approximates the state of a sys-
tem by a set of samples are all the logical consequences of the
sample models.
Definition 2 The belief set determined by a finite set of sam-
ples S = {w1, . . . , wn} ⊆ W is given by

K|S = {α : wi |= α for all wi ∈ S} (6)
Recall, for instance, the initial sample set S given by (3) in
Example 1. It follows that ¬♥ 6∈ K|S but (♣2∨♣3) ∈ K|S .

We are now in a position to formalise the concept of re-
sampling in belief revision, based on an arbitrary but fixed
strategy for the generation of sample models.

2The notation S / φ below is used to denote the result of resam-
pling a set of models S upon making a new observation expressed
by sentence φ.



{♣3,♦3} {♣2,♥3} {♥3,♦4} {♠2,♦4} {♠2,♥3} {♦3,♦4} . . . {♥3,♦3}
w1 w2 w3 w4 w5 w6 . . . w15

Figure 2: A random sequence of samples for a 2-card hand generated from the 6 outstanding cards ♣2,♠2,♣3,♥3,♦3,♦4.

Definition 3 Let S be a given sample set of size n > 0. Con-
sider an arbitrary but fixed order w1 <S w2 <S w3 <S . . .
onW \ S in which further samples are generated. Let φ be a
sentence, then resampling S for φ results in the set of worlds

S / φ = (S ∩Mods(φ)) ∪ mink(Mods(φ), <S) (7)

where
• k = n− |S ∩Mods(φ)|
• mink(Mods(φ), <S) are the m smallest worlds in
w1 <S w2 <S w3 < . . . that are models of φ but not
in S, where m = min(k, |Mods(φ)|).3

Put in words, all samples consistent with φ are retained, and
all other models are replaced by the next m generated worlds
that are consistent with φ and different from any of the re-
tained samples. If φ admits a sufficient number of models,
then the sample size n is retained (case m = k), otherwise it
is reduced to the number of remaining consistent models.

Example 2 Recall Example 1. It is easy to see that for sam-
ple size n = 2, (4) and (5) satisfy the conditions of Defi-
nition 3 wrt. the sampling order given in Figure 2. It is also
easy to see that there is only one world that satisfies ¬♣∧¬♦,
hence S / (¬♣ ∧ ¬♦) = {{♠2,♥3}} must result in a set
smaller than the original sample size of 2. Resampling for an
observation that has no model results in the empty set, e.g.
S / (♣3 ∧ ¬♣3) = ∅.

As the main result in this section, we show that sampling-
based belief revision satisfies six of the eight classical AGM
postulates but not Vacuity nor Subexpansion (cf. Figure 1).
Theorem 2 Let K|S be a belief set determined by a sam-
ple set S of size n > 0 and / the operation of resampling
wrt. any given order for generating samples. The correspond-
ing belief revision operator ∗ defined by

K|S ∗ φ = K|S/φ (8)

satisfies (AGM-1)–(AGM-3) and (AGM-5)–(AGM-7).
Proof: We prove each postulate in turn.
• (AGM-1) follows by Definition 2, equation (6).
• (AGM-2) holds by Definition 3, equation (7), which im-

plies that S/φ ⊆ Mods(φ), hence φ ∈ K|S/φ according
to equation (6).

• For (AGM-3) we observe that if α ∈ K|S ∗φ then w |= α
for all w ∈ S / φ according to (8), hence w |= α for
all w ∈ S ∩ Mods(φ) according to (7). It follows that
α ∈ K|S + φ according to (6).

• (AGM-5) holds since Mods(φ) 6= ∅ implies S / φ 6= ∅
according to (7); hence, if φ is consistent then by (8),
K|S ∗ φ is consistent too.

3If |Mods(φ)| = 0 then S = ∅, i.e., no consistent sample exists.

• (AGM-6) follows from Definition 3, equation (7), since
φ ≡ ψ implies Mods(φ) = Mods(ψ), hence S / φ =
S / ψ, which implies K|S ∗ φ = K|S ∗ ψ by (8).
• For (AGM-7), recall Definition 3, equation (7), and con-

sider any sample w ∈ S / φ that satisfies not only φ but
also ψ. By Definition 3 and because the same sampling
strategy <S is used when constructing S / (φ ∧ ψ), it
follows that w is either among the samples in S that sat-
isfy φ ∧ ψ, or is among the first m generated samples
that satisfy φ ∧ ψ, where m is given as in Definition 3.
Hence, w ∈ S/(φ∧ψ). Therefore, (S/φ)∩Mods(ψ) ⊆
S / (φ∧ψ). This implies that K|S/φ +ψ ⊇ K|S/(φ∧ψ),
hence K|S ∗ (φ∧ψ) ⊆ (K|S ∗ φ) +ψ according to (8).

2

Notably, the fact that sampling-based belief revision satisfies
(AGM-3) and (AGM-7) guarantees that arbitrary new beliefs,
i.e. which do not follow from K + φ or (K ∗ φ) + ψ, are not
introduced when revising a sample set. On the other hand,
it is easy to construct counterexamples to show that neither
Vacuity (AGM-4) nor Subexpansion (AGM-8) are satisfied.
Example 3 Recall S as defined in (3). For Vacuity, note, e.g.,
that (♣2 ∨ ♣3) ∈ K|S and that φ = ¬♥ is consistent with
K|S . However, according to (4), (♣2 ∨ ♣3) 6∈ K|S ∗ φ.

For Subexpansion, observe first that ♦3 is consistent with
S / ¬♥ according to (4), hence ¬♦3 6∈ K ∗ (¬♥). From (4)
we can also see that ♣3 ∈ (K ∗ (¬♥)) + ♦3. However, (5)
implies that ♣3 6∈ K ∗ (¬♥ ∧ ♦3).

4 A Representation Theorem
The classical representation theorem for AGM-based belief
revision states that any revision operator that satisfies all clas-
sical postulates can be equivalently characterised as faithful
assignments of every belief set to a specific preference rela-
tion over worlds (cf. Definition 1 and Theorem 1). We have
seen that sampling-based belief revision satisfies all but two
of the postulates. This begs the question whether the classi-
cal representation theorem can be generalised so as to charac-
terise belief revision operators that comply with the standard
postulates minus Vacuity and Subexpansion.

It turns out that indeed a suitably extended representation
theorem can be given based on the same concept of faithful
assignments and preference orderings. The necessary weak-
ening of the conditions of Theorem 1 is obtained by allowing
for multiple total pre-orders for a given belief set. This can
be intuitively explained as follows: Different possible worlds
may be characterised by different underlying assumptions,
which then lead to different preference orderings among alter-
native worlds upon revision. When revising a set of preferred
worlds in the light of a family of faithful assignments, the re-
sulting set is obtained as the combined set of minimal worlds
from all preference relations.



Definition 4 A mapping from belief sets K to collections of
total pre-orders ≤1

K , . . . ,≤nK (n ≥ 1) on W is a weakly
faithful assignment if it satisfies the following conditions.
• If w1 |= K then there is a k ∈ {1, . . . , n} such that
w1 ≤kK w2 for all w2.
• If w2 6|= K then for all k ∈ {1, . . . , n} there is some
w1 |= K such that w1 <

k
K w2.

• If J ≡ K, then ≤1
J , . . . ,≤nJ =≤1

K , . . . ,≤nK .
Put in words, every K-world is most preferred in at least one
ordering (but may be even less preferred than a non-K world
in others) while non-K worlds are never most preferred. It
is easy to verify that all faithful assignments according to
Definition 1 are also weakly faithful (with n = 1). As a
generalisation of the classical representation theorem, revi-
sion with a weakly faithful assignment can be shown to char-
acterise exactly the belief revision operators that satisfy all
AGM-postulates except Vacuity and Subexpansion.
Theorem 3 A revision operator ∗ satisfies Postulates
(AGM-1)–(AGM-3) and (AGM-5)–(AGM-7) iff there is a weakly
faithful assignment ≤1

K , . . . ,≤nK such that

Mods(K ∗ φ) =
⋃
k

min(Mods(φ),≤kK) (9)

Proof (sketch): The “only-if” direction can be proved by con-
structing, for a given ∗ andK, assignments≤iK , one for each
wi ∈ Mods(K), as follows:
• wi <iK w′ for all w′ ∈ W \ {wi}.
• w′ ≤iK w′′ if w′ ∈ Mods(K ∗ form(w′, w′′)),4 for all
w′, w′′ ∈ W \ {wi}.

(We note that this shows how to determine a corresponding
system of spheres for an operator obtained from a given or-
dering of samples as per Definition 3.) Proving this to be
weakly faithful is akin to the proof for a similarly constructed
single assignment to be faithful in case of classical belief re-
vision [Katsuno and Mendelzon, 1992].

For the “if” direction, we assume a revision operator given
by (9) and prove that it satisfies each postulate in turn.

(AGM-1) follows from the definition of K ∗ φ as the set of
formulas whose models are given by (9).

(AGM-2) follows from Mods(K ∗ φ) ⊆ Mods(φ) by (9).
(AGM-3): If w ∈ Mods(K ∪ {φ}) then w ∈ Mods(K) ∩

Mods(φ), hence w ∈ min(Mods(K),≤kK) ∩ Mods(φ) for
some k ∈ {1, . . . , n} by the first condition in Definition 4.
Therefore,

⋃
k min(Mods(φ),≤kK)⊇Mods(K ∪{φ}), which

implies K ∗ φ ⊆ K + φ.
(AGM-5) holds since consistency of φ, i.e. Mods(φ) 6= ∅,

implies that min(Mods(φ),≤kK) 6= ∅ for all 1 ≤ k ≤ n,
hence Mods(K ∗ φ) 6= ∅.

(AGM-6) follows from the fact that whenever φ ≡ ψ then
Mods(φ) = Mods(ψ), which for all 1 ≤ k ≤ n implies
min(Mods(φ),≤kK) = min(Mods(ψ),≤kK).

(AGM-7): To show that
⋃
k min(Mods(φ),≤kK)∩Mods(ψ)

is a subset of
⋃
k min(Mods(φ ∧ ψ),≤kK), consider an ar-

bitrary world w ∈
⋃
k min(Mods(φ),≤kK) ∩ Mods(ψ), then

4form(w′, w′′) denotes an arbitrary propositional formula whose
only models are w′ and w′′ [Katsuno and Mendelzon, 1992].

≤1
K ≤2

K ≤3
K

Mods(φ)

Figure 3: Revision with multiple systems of spheres [Grove,
1988]: If the three inner circles together are the models for the
current belief,K, then the worlds in the shaded areas together
are the models for the revised belief set K ∗ φ.

w ∈ Mods(φ ∧ ψ). Suppose that for this world we have that
w 6∈

⋃
k min(Mods(φ∧ψ),≤kK), then for all 1 ≤ k ≤ n there

must be a world w′
k ∈ Mods(φ∧ψ) such that w′

k <
k
K w, con-

tradicting the assumption w ∈
⋃
k min(Mods(φ),≤kK). 2

The principle of combining the minimal φ-models from
multiple systems of spheres is graphically illustrated in Fig-
ure 3: Even in case some K-worlds are consistent with the
new observation (here, some of the most preferred worlds in
≤1
K), the revised set may include new models determined by

an alternative preference relation (here, ≤2
K and ≤3

K). This
is the defining characteristic of operators that do not satisfy
Vacuity or Subexpansion but all other AGM postulates.

A justification for the use of more than one faithful assign-
ment can be that a belief may have been formed by consider-
ing alternative hypotheses, as in the following example.
Example 4 We know that when John goes out for dinner, he
always chooses between Asian (A) and Western (W ) cuisine.
He prefers to have the former in Thai Town (T ) and the lat-
ter elsewhere (¬T ). We also know that he usually goes for
dessert (D) in a Western but not in an Asian restaurant. There
is a notable exception with one of his favourite Asian restau-
rants, however, where he usually does have dessert. This
restaurant happens not to be in Thai Town.

Suppose John tells us that he went out for dinner last night,
then we may represent uncertainty about his choice of cui-
sine by considering two hypotheses based on his preferred
choices (A ∨W ): on the one hand, if he decided in favour
of Asian food, then he would have gone to Thai Town and
skipped dessert, so we believe in the conditionalA→T∧¬D;
on the other hand, he could have had Western food else-
where, including dessert, so we also believe in the conditional
W →¬T ∧D. Altogether our belief is characterised by

(A ∧ T ∧ ¬D) ∨ (W ∧ ¬T ∧D) (10)
Now, suppose we subsequently learn that John had in fact

dessert, then we may reconsider both principled hypotheses
in turn: while the second (W ) is consistent with the addi-
tional observation, the first (A) is not. Rather than dropping
this hypothesis, however, we may choose to select the clos-
est world according to John’s preferences in case of Asian
cuisine, which means to consider the possibility that he went
to his preferred Asian restaurant that is not in Thai Town
where he usually has dessert. Our revised belief will be
(A ∧ ¬T ∧ D) ∨ (W ∧ ¬T ∧ D), which entails ¬T ∧ D
but not W , contrary to Vacuity applied to (10) ∈ K, φ = D.



5 Axiomatising Model Sampling for
Reasoning About Actions and Sensing
An interesting application of sampling-based logical reason-
ing about beliefs and how to revise them can be found in gen-
eral theories of actions and sensing, aiming at a practically
viable method to handle large domains in which agents have
highly incomplete knowledge. A point in case are existing
implementations of the Situation Calculus with sensing that
attempt to maintain a complete description of the knowledge
state, such as Reiter’s [2001] use of prime implicants, which
do not scale well due to the high theoretical complexity of ex-
ecuting knowledge-based plans [Lang and Zanuttini, 2012].

In the following, we develop a formal axiomatisation of
model sampling in the Situation Calculus as an alternative
way of reasoning about knowledge and akin to the modelling
of classical belief revision in this calculus [Shapiro et al.,
2000]. To this end, we replace Scherl and Levesque’s [2003]
special epistemic fluent K(S′, S) (to express that situa-
tion S′ is accessible from situation S) by an alternative fluent
S(S′, S) whose intuitive meaning is that of situation S′ being
a sample obtained for the actual situation S.

It is of course not always the case that the actual situation
is among the sampled ones. In fact this is very unlikely in
practice. Hence, the axiom of reflexivity ∀S.K(S, S), which
is a foundational axiom in the Situation Calculus with knowl-
edge [Scherl and Levesque, 2003], does not translate into an
axiom ∀S.S(S, S). As a consequence, unlike fluent K which
axiomatises knowledge (cf. (1)), fluent S axiomatises belief.
This is reflected in the following definition:

BEL(Φ, S)
def
= ∀S′.S(S′, S) → Φ[S′] (11)

The adaptation of the successor state axiom for the knowl-
edge fluent (cf. (2)) to the sampling fluent requires to ax-
iomatise the concept of resampling. This can be formally
captured by an auxiliary fluent SR(S′′, S′, T ) meaning that
situation S′′ is a sample of situation S′ obtained through re-
sampling in situation T . The third argument is necessary be-
cause, for example, a situation s′0 can be a valid sample for s0
when the agent is in that situation, but after sensing the agent
may know enough to rule out that he could have been in s′0
initially. The following axioms for S and SR formalise the
relation among samples between successor situations:

POSS(A,S) →
S(S′′,DO(A,S)) →
∃A′, S′. S′′ = DO(A′, S′) ∧ S(S′, S)∧

∀P. SENSE(P,A, S)↔ SENSE(P,A′, S′)
∨ SR(S′′,DO(A′, S′),DO(A′, S′))

POSS(A,S) →
SR(S′′,DO(A,S), T ) →
∃A′, S′. S′′ = DO(A′, S′) ∧ SR(S′, S, T )∧

∀P. SENSE(P,A, S)↔ SENSE(P,A′, S′)

(12)

In words, a sample S′′ must be

• the result of updating a sample S′ from the previous sit-
uation such that the sensing result coincides with what
is sensed in the actual situation S;

• or the result of re-sampling in the resulting situa-
tion DO(A,S).

Moreover, in order for a situation S′′ to be the result of resam-
pling situation DO(A,S) in situation T , S′′ must be obtained
from a sample S′ of S obtained through resampling in the
same situation T .

We note that axioms (12) do not account for a specific sam-
pling strategy; they rather define the range of all possible
ways in which an agent can sample situations. Hence, (12)
provides a mere schema from which actual successor state
axioms (with the usual bi-implication [Reiter, 1991]) can be
obtained by strengthening each right-hand side with a for-
mula characterising a particular resampling strategy. This
may include a limit on the sample size for each situation, e.g.
to just two via the axiom S(S1, S)∧ S(S2, S) ∧ S(S3, S)→
S1 = S2 ∨ S1 = S3 ∨ S2 = S3.

6 Conclusion
Motivated by the success of sampling technique in different
domains in which agents have to reason and make decisions
under uncertainty, we have examined the logical foundations
of sampling-based belief revision. It turned out that operators
based on this principle satisfy six of the eight standard AGM
postulates but not Vacuity nor Subexpansion. The reason is
that resampling may result in new models that invalidate pre-
viously held beliefs even in cases where a new observation
is consistent with the agent’s original beliefs. Hence, even
if new information is consistent with currently held beliefs,
nonetheless some of these beliefs may get dropped. But our
analysis also shows that arbitrary new beliefs (i.e., which do
not follow from the previously held beliefs and the new infor-
mation) can never be introduced through model resampling.
A corresponding representation theorem adapts the classical
result from single to multiple systems of spheres for a given
belief set. As an application of our general framework for
sampling-based belief revision, we have adapted a formal Sit-
uation Calculus axiomatisation to provide an alternative way
of reasoning about actions and beliefs using (re-)sampling.

A practically viable method for belief revision, model sam-
pling enriches the suite of traditional operators based on the
AGM postulates, especially for domains where maintaing a
full set of models (explicitly or implicitly represented) is
practically impossible due to large information sets. These
properties provide important insights into the side-effects of
resampling on the beliefs of a decision-making agent that rea-
sons based on sampled models. This insight follows from the
analysis of resampling as single-step revision, which covers
the essence of the operation performed by the agent when
processing new information. Nonetheless for future work
it would be interesting to formally investigate iterated revi-
sion in this context [Darwiche and Pearl, 1997]. We are also
interested in looking at other applications of belief revision
in which the sampling-based technique may provide an in-
teresting alternative to classical operators. Another question
for future work is to analyse the formal relation between our
axiomatisation of sampling-based reasoning in the Situation
Calculus and the existing axiomatisation of AGM-style belief
revision in this calculus [Shapiro et al., 2000].
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tini. Knowledge-based programs as plans — the complex-
ity of plan verification. In L. De Raedt, C. Bessière, D.

Dubois, P. Doherty, P. Frasconi, F. Heintz, and P. Lucas,
editors, Proceedings of the European Conference on Ar-
tificial Intelligence (ECAI), pages 504–509, Montpellier,
France, August 2012. IOS Press.

[McCarthy, 1963] John McCarthy. Situations and Actions
and Causal Laws. Stanford Artificial Intelligence Project,
Memo 2, Stanford University, CA, 1963.

[Reiter, 1991] Ray Reiter. The frame problem in the situa-
tion calculus: A simple solution (sometimes) and a com-
pleteness result for goal regression. In V. Lifschitz, editor,
Artificial Intelligence and Mathematical Theory of Com-
putation, pages 359–380. Academic Press, 1991.

[Reiter, 2001] Ray Reiter. On knowledge-based program-
ming with sensing in the situation calculus. ACM Trans-
actions on Computational Logic, 2(4):433–457, 2001.

[Richards and Amir, 2012] Mark Richards and Eyal Amir.
Information set generation in partially observable games.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, Toronto, 2012.

[Scherl and Levesque, 2003] Richard Scherl and Hector
Levesque. Knowledge, action, and the frame problem. Ar-
tificial Intelligence, 144(1):1–39, 2003.

[Schofield et al., 2012] Michael Schofield, Timothy
Cerexhe, and Michael Thielscher. HyperPlay: A
solution to general game playing with imperfect informa-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 1606–1612, Toronto, July 2012. AAAI
Press.

[Shapiro et al., 2000] Steven Shapiro, Maurice Pagnucco,
Yves Lespérance, and Hector Levesque. Iterated be-
lief change in the situation calculus. In A. Cohn, F.
Giunchiglia, and B. Selman, editors, Proceedings of
the International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), pages 527–538,
Breckenridge, April 2000. Morgan Kaufmann.


