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Humanoid and Android Science
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Why are we attracted to humanoids and androids? The
answer is simple: we tend to anthropomorphize nonhuman

things. Humans always anthropomorphize targets of
communication and interaction, so we expect much
from humanoids. In other words, we find a human in the
humanoid. Recently, robotics researchers have begun
shifting from traditional studies on navigation and manip-
ulation to studying interaction with robots.

The study of human-robot interaction has been neglect-
ing an issue—appearance and behavior. The interactive
robots that have been developed thus far are nonandroid
types, so the researchers who developed them didn’t focus
on the robots’ appearances. Evidently, a robot’s appear-
ance influences subjects’ impressions, and it’s an impor-
tant factor in evaluating the interaction. Although many
technical reports compare robots with different behaviors,
they haven’t focused on the robots’ appearances. There are
many empirical discussions on simplified robots, such as
dolls. However, designing a robot’s appearance, particu-
larly to make it appear humanoid, has always been the
industrial designers’ role rather than that of researchers
and engineers. This is a serious problem for developing
and evaluating interactive robots. Appearance and behav-
ior are tightly coupled.

Bridging science and engineering
One way to tackle the issue is to use a humanlike

robot—an android—to study human-robot interaction.
Figure 1a is a humanoid developed by Mitsubishi Heavy
Industry, and figure 1b shows an android that Hiroshi
Ishiguro and his colleagues developed in cooperation with
KOKORO. The android has 42 air actuators for the upper
torso, excluding fingers. During development, we deter-
mined the actuators’ positions by analyzing a human’s
movements using a precise 3D motion-capture system.
The actuators can represent unconscious movements such
as chest movements due to breathing, in addition to large,
conscious movements of the head and arms. Furthermore,
the android can generate facial expressions that are impor-
tant for interaction with humans. When we publicized the
android through the media, we were anxious about ordinary
Japanese people’s reactions. However, it wasn’t uncanny
for them; they just praised the quality and technology.

Developing androids requires contributions from both
robotics and cognitive science. To realize a more human-

Human-Inspired Robots
Silvia Coradeschi, Orebro University

Robots are just now becoming part of our everyday life and being
used by ordinary people. Future robots will work in hospitals, elder
care centers, schools, and homes. Similarity with humans can facilitate
interaction with a variety of users who don’t have robotics expertise,
so it makes sense to take inspiration from humans when developing
robots. However, humanlike appearance can also be deceiving,
convincing users that robots can understand and do much more
than they actually can. Developing a humanlike appearance must
go hand in hand with increasing robots’ cognitive, social, and per-
ceptive capabilities.

In this installment of Trends & Controversies, Hiroshi Ishiguro and
Minoru Asada present the ultimate imitation of a human’s appear-
ance: an android. Androids are robots that not only look like humans
but also move like us and have artificial skin that feels like ours.

Humanlike robots must communicate clearly using natural lan-
guage. Stuart Shapiro outlines natural language’s importance both
as a practical way to communicate and a means of encouraging
social interaction.

Cognitive abilities are important for robots interacting with humans
and acting in complex environments. Michael Thielscher presents
the field of cognitive robotics, which investigates how robots can
achieve greater autonomy and flexibility in such environments.

Social competence is also essential in natural human-robot com-
munication. Cynthia Breazeal has been a pioneer in developing
socially interactive robots, and she presents the challenges and
progress in this field.

The growing field of socially assistive robotics is becoming an
important testbed for human-inspired robots. Maja J. Matarić out-
lines the challenges of aiding people by means of social interaction
rather than through physical contact alone.

Finally, Hiroshi Ishida presents olfaction as a new sense for robots.
The ability to recognize smells will bring robots closer to humans.
This sensor offers great new possibilities but also new challenges for
robotics. —Silvia Coradeschi
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like android, knowledge from human sci-
ence (that is, from studying humans) is nec-
essary. This new interdisciplinary frame-
work between engineering and cognitive
science is called android science.1

In the past, robotics research used knowl-
edge from cognitive science, and cognitive
science research utilized robots to verify
hypotheses for understanding humans.
However, robotics’ contribution to cogni-
tive science has been inadequate. Appear-
ance and behavior couldn’t be handled sep-
arately, and nonandroid type robots weren’t
sufficient as cognitive science tools. We
expect that using androids with a human-
like appearance can solve this problem.
Robotics research based on cues from cog-
nitive science faces a similar problem, be-
cause it’s difficult to recognize whether the
cues pertain solely to a robot’s behavior,
isolated from its appearance, or to the com-
bination of its appearance and behavior. In
the framework of android science, androids
enable us to directly share knowledge be-
tween the development of androids in engi-
neering and the understanding of humans
in cognitive science.

So, android science has several major
research issues. The issues in robotics are
to develop a humanlike appearance using
silicon, humanlike movement, and human-
like perception by integrating ubiquitous
sensor systems. In cognitive science, the
issue is conscious and subconscious recog-
nition. When we observe objects, various
modules are activated in our brain. Each of
these matches the input sensory data with
our brains’ models of human faces, voices,
and so on, which affect our reactions. So,
even if we recognize that a robot is an an-
droid, we react to it as if it were human.
Android science’s goal is to find the essen-
tial factors of humanlikeness and realize a
humanlike robot.

How can we define humanlikeness?
Furthermore, how do we perceive it? That
humans have both conscious and uncon-
scious recognition is fundamental for both
the engineering and scientific approaches. It
will be an evaluation criterion in androids’
development, and it provides us cues for
understanding the human brain mechanism
of recognition.

From android science to
humanoid science

The history of intelligent robotics started
with Shakey, a robot developed at SRI in

1965. Shakey provided robotics researchers
with several important research questions.
We focused on the fundamental issues for
making Shakey more intelligent, such as
AI, computer vision, and language recogni-
tion. Since Shakey’s development, we’ve
been using these technologies to create new
humanoids and androids, which provide us
with important new research questions as
Shakey did. These questions are in interdis-
ciplinary areas among robotics, cognitive
science, neuroscience, and social science.

Android science is also an interdiscipli-
nary framework, but it’s rather limited. In
addition to humanlike appearance and
movement, we must consider the internal
mechanisms, such as humanlike dynamic
and adaptive mechanisms and complicated
sensorimotor mechanisms, for more tightly
coupling engineering and science. As we
mentioned earlier, what we wish to know is
what a human is. We can understand this by
developing humanoids comprising human-
like hardware and software. We call this
extended framework humanoid science.

Our project, JST ERATO (Japan Science

and Technology Agency, Exploratory Re-
search for Advanced Technology) Asada
Synergistic Intelligence (www.jeap.org), is
based on the humanoid-science framework.
Synergistic intelligence means intelligent
behaviors that emerge through interaction
with the environment, including humans.
Synergistic effects are expected in brain
science, neuroscience, cognitive science,
and developmental psychology. Synergistic
intelligence provides a new way of under-
standing ourselves and a new design theory
of humanoids through mutual feedback
between the design of humanlike robots
and human-related science.

Synergistic intelligence adopts cognitive
developmental robotics,2 a methodology
that comprises the design of self-develop-
ing structures inside the robot’s brain and
environmental design (how to set up the
environment so that the robots embedded
therein can gradually adapt to more complex
tasks in more dynamic situations). Here, one
of the most formidable issues is nature ver-
sus nurture. To what extent should we embed
the self-developing structure, and to what
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Figure 1. Humanoid and android robots. (a) Humanoid Eveliee P1 is based on
WAKAMURU, developed by Mitsubishi Heavy Industry. (b) Android Repliee Q2 was 
developed in cooperation with KOKORO (www.kokoro-dreams.co.jp).

(a) (b)



extent should we expect the environment to
trigger development? We’re approaching
this issue using the kinds of topics in figure 2.
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Natural-Language-Competent
Robots
Stuart C. Shapiro, State University of New
York at Buffalo

Why use natural language to communi-
cate with computer systems? I’ve always
thought the answer was obvious. Because
NL is the most natural method of commu-
nication for people,1 computer systems would
be easiest to use if they understood and spoke
NL. I often get resistance to this opinion, but
the resistance almost always takes the form of
comparing current NL interfaces to current
GUIs. Current NL interfaces don’t work as well
as current GUIs because computers don’t

fully understand NL. But that just makes NL
understanding an important research topic.

Indeed, not only is NLU in general an
active research topic, so is the specific topic
of NL interfaces to robots, as evidenced by
the recent ACM Conference on Human-
Robot Interaction (HRI 2006, www.hri2006.
org). Moreover, not only are people who
describe themselves as NLU researchers
working to make NL understandable to com-
puters, the field of programming languages
can be seen as a bottom-up attack on the
same problem. Many programming lan-
guage advances, as far back as the develop-
ment of assembly languages, have been pre-
sented as letting programmers express
problems in a high-level language that’s nat-
ural for humans.

Definitions and motivations
By NL, we could be referring to text or

speech. Many NL researchers are working
on text-based systems because they’re
interested in processing information from
the Web or other documents. Others are
using text as an expedient until speech
recognition becomes easier to use. (I’m in
this group.) So, by an NL-competent robot,
I generally mean one that understands and
generates speech.

What counts as a robot? By robot, I
mean an embodied computer system that
has sensor and effector organs. I’m not
limiting the term to hardware-implemented

robots that operate in the real world. I also
include robots with simulated bodies and
sensor and effector organs that operate in
simulated or virtual reality worlds. I also
include teleoperated as well as autonomous
robots. A teleoperated robot is controlled
by a console, joystick, or other device. I
don’t, however, want to argue that users of
prosthetic limbs or master-slave manipula-
tors, such as those that manipulate objects
in toxic environments or perform micro-
surgery, would necessarily benefit from NL
communication.

R&D of NL-competent robots has at least
two motivations. One is science. Because NL
is the natural communication medium for
people, researchers attempting to achieve 
a computational understanding of human
intelligent behavior and create devices that
exhibit such behavior must include NL-
competent robots in their research agendas
(although maybe not in their personal agen-
das). The other motivation is pragmatic—
the belief that robots will be more useful if
they are NL-competent. Because I take the
scientific motivation to be inarguable, I’ll
concentrate on the pragmatics.

Speech as a command
language

It might seem that controllers of teleoper-
ated robots wouldn’t need to use NL, given
their more direct control devices. Experi-
ments have shown, however, that using 
single-word speech commands is benefi-
cial.2 This is because of both the naturalness
of speech and the ease of using it when the
operator’s hands and eyes are occupied with
the other controls. However, Manuel Ferre
and his colleagues didn’t find a more com-
plete speech-based sentence-understanding
system to be beneficial because it required
the operator to pause between words, causing
a considerable loss in fluency.2 They found
that operators don’t work comfortably if the
system’s recognition rate is under 90 percent.
This is another indication that when NL inter-
faces don’t understand fluent speech, they
don’t compete well with other interfaces.

If speech is useful for robot controllers
whose hands and eyes are occupied, it’s
even more useful for people who can’t use
their hands or eyes because of long-term
disability or short-term injury. The devel-
opment of speech interfaces for assistive
devices is therefore an active research area,
and several researchers presented papers on
the topic at HRI 2006.
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Figure 2. The JST ERATO Asada Synergistic Intelligence project is based on a humanoid-
science framework.



NL as a programming
language

Although using speech as a command
language is useful, using NL as a robot
programming language is even more use-
ful. Any robot will have a repertoire of
actions and recognizable domain features
designed or programmed into it. A robust
understanding system that lets a human
controller express these actions and fea-
tures in NL would provide a useful speech
command language. But consider situa-
tions in which a human wants to ask the
robot to perform a sequence of actions, to
do one of several actions depending on
what it perceives in its world, or to repeat
some action until it has accomplished some
effect. As we know, providing NL constructs
to express these control structures will make
NL a full-fledged programming language.
Some of these more complex procedures
might be ad hoc procedures the controller
wants done only once, but others might be
more common. If the human can conceptu-
alize these possibly parameterized proce-
dures and express them in a way acceptable
to the NL understanding system, and if the
NLU system provides a way for the human
to say something like “The way to do X is to
do Y,” then the NLU robot command lan-
guage will have all the constructs of a proce-
dural programming language. Stanislao
Lauria and his colleagues achieved this to
some extent in the context of a hardware
robot that can take directions for navigating
in a small model city.3

To use NL to instruct and command
robots, the NLU system must translate NL
inputs into some kind of robot acting pro-
gram. That is, the meaning-representation
language that the NLU system uses must
be an autonomous-agent acting language.
Unfortunately, researchers designing agent
acting languages and those designing rep-
resentation languages for the (contextually
grounded) semantics of NL mostly operate
independently of each other.

A promising approach to building NL-
competent robots is to combine these re-
searchers’ efforts. For example, the repre-
sentation the robot uses to understand a
verb phrase could be a construct in the ro-
bot’s acting language that it can perform. In
this way, the robot performs according to
an imperative sentence by executing the
structure representing its understanding of
the command. By appropriately appending
a representation of itself and of the current

time to the representation of an action it
has just performed, the robot believes it has
performed the action. Giving that belief to
its NL generation routine produces an NL
report of what it has just done. My col-
leagues, students, and I have been pursuing
this approach.4

Given an NL programming language,
having an NL development environment
would also be important, and it would be
most convenient if the robot participated 
in the development process. For example,
Lauria and his colleagues’ navigation robot
uses NL generation to ask for explanations
of directions it doesn’t understand.3

Clifford Nass and Scott Brave found that
people can’t help but interpret speech in a
social context and attribute human charac-
teristics to the speaker, even if they know the
speaker is a machine.1 So, taking the social

aspects of speech into account is important
so that “users will not simply talk at and
listen to computers, nor will computers sim-
ply talk at and listen to users. Instead, peo-
ple and computers will cooperatively speak
with one another”1 [italics in original].

Future research directions
NL-competent robots aren’t here yet, but

we’re making progress, and speech inter-
faces are becoming common at call centers
and in automobiles.5 Robotics researchers
should be encouraged to include NL com-
petence among their robots’ abilities, and
NL researchers should be encouraged to
consider robots as platforms for their work.
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Cognitive Robotics
Michael Thielscher, Dresden University of
Technology

Cognitive robotics aims at modeling
human-level cognitive faculties in robots.
Thinking in abstract terms is humans’ most
distinct cognitive capability. Specifically, we
benefit from this ability when we mentally
entertain the effects of different courses of
action and then choose the one that will
likely satisfy our needs and achieve our
goals. This requires us to reflect on the ac-
tions we could take and to know what
effects they normally have. In other words,
coming up with a plan that’s suitable under
the circumstances results from our ability to
draw the right conclusions from our knowl-
edge of how the world around us functions.
This ability lets us exhibit intelligent behav-
ior in situations we haven’t encountered be-
fore and that no preprogrammed routine
deals with adequately.

In this regard, robots should greatly
profit from taking inspiration from our cog-
nitive ability to reflect on our own acts.
This doesn’t mean that cognitive robotics
must necessarily take inspiration from how
human brains implement these functions,
considering that brains are networks of
neurons. Instead, the focus is on the high-
level cognitive functions themselves—the
abilities to represent and reason about knowl-
edge to make rational decisions, devise com-
plex plans, react sensibly to unforeseen cir-
cumstances and problems, and adapt to
new environments. All these capabilities
are characteristics of human-level intelli-
gence. Today’s robots, however, can’t
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reflect on what they can do or decide on
their own whether a preprogrammed behav-
ior is sensible under given circumstances.
Most AI researchers expect that future cogni-
tive robots will be much more autonomous
and flexible than those of today.

Formalisms and applications
Cognitive-robotics research goes back to

AI’s beginning. One of the earliest knowl-
edge representation formalisms, developed
in the early 1960s, was designed specifi-
cally to provide systems with knowledge of
actions. This was accompanied by a mech-
anism for solving tasks by fully automated
reasoning. In this way, an autonomous sys-
tem would be able to compose a suitable
plan entirely on its own on the basis of pre-
dicted outcomes of actions. However, the
first implementations of this knowledge
representation formalism—known as the
situation calculus—didn’t scale up beyond
domains with a small state space and few
actions. That is, they suffered from the
frame problem, which turned out to be one
of the most interesting and challenging
formal problems in logic-based AI. While
simple to understand, it proved difficult to
solve and over the years has led to an abun-
dance of insights and results. The frame
problem was, for instance, the driving force
behind the emergence of nonmonotonic
reasoning, now a vibrant, active AI sub-
field in itself.

The first satisfactory solution to the frame
problem didn’t appear until the early ’90s,
still using the classical situation calculus as
the underlying knowledge representation
language.1 This marked the beginning of
a thriving era for the theory of cognitive
robotics. Other solutions to the frame prob-
lem emerged in quick succession using
different representation techniques, such as
the event calculus2 or the fluent calculus.3

In recent years, each of these basic solutions
has been generalized in view of the additional
challenges that autonomous systems face in
real-world environments. Examples are hy-
brid environments with both discrete and
continuous change or environments where
actions frequently fail because of unknown
or uncontrollable circumstances. These
developments show that using logic-based
representation formalisms can let us deal
with large state spaces, thanks to a high level
of abstraction, and can provide simple,
computationally efficient ways to deal with
incomplete knowledge and nondeterminism.

In addition to the emergence of increasingly
sophisticated representation formalisms,
theoretical approaches to cognitive robotics
have evolved into actual programming lan-
guages and implementations that let you
write high-level control programs for auto-
nomous systems. Examples of such gen-
eral languages are GOLOG (Algol in Logic),
based on the situation calculus; FLUX (Flu-
ent Calculus Executor), based on the fluent
calculus; and a reasoning system for cogni-
tive agents known as SNePS (Semantic Net-
work Processing System). Thanks to a high
level of abstraction paired with efficient rea-
soning mechanisms, these languages and
their implementations let you write and run
control programs for complex tasks in envi-
ronments that give rise to large state spaces.

Cognitive robotics systems have proved
to be competitive in a variety of areas. For

example, planning itself has turned into an
important AI subfield with a variety of ap-
plications and its own conferences and
organized competitions for implemented
systems. Symbolic reasoning is also an
integral part of software agents that must
interact and collaborate in heterogeneous
multiagent systems. A third example of an
application of logical reasoning about ac-
tions is general game playing, which is
concerned with the development of sys-
tems that can understand descriptions of
arbitrary games and play them well without
human intervention.

More than 40 years of research have led
to significant progress, and cognitive robot-
ics is now a vibrant, active field that plays a
major role at all large AI conferences. Sur-
prisingly (and disappointingly) enough, the
progress has been mostly restricted to
theory and simulation; little progress has

occurred with regard to endowing actual
robots in real-world environments with
cognitive functions. One exception is the
control program of a robotic museum
guide, which employs GOLOG to compose
high-level tour plans according to visitors’
interests.4 Another is a high-level control
module for unmanned airborne vehicles
(helicopters), which observes traffic sce-
narios on the ground, predicts what traffic
will do in the near future, and plans the
helicopters’ actions.5

However, these real-world systems use
only a limited form of symbolic reasoning
specifically targeted to the application at
hand. Cognitive-robotics research hasn’t
achieved its main goal, which is to signifi-
cantly enhance robots’ autonomy and flexi-
bility with the help of high-level reasoning
capabilities. Why not?

Challenges and future work
In comparison to devising software agents

that live in pure virtual environments, con-
trolling actual robots that move in the physi-
cal world poses two major additional chal-
lenges: First, the symbols that form the
basis for the cognitive processes must be
grounded in the real world. Second, an
autonomous physical system’s actions are
far less reliable than those of a program in
a simulated world.

The symbol-grounding problem arises
because high-level reasoning is based on
abstract terms and concepts, but a robot
processes nothing but raw sensory data.
How to map these data onto a single sym-
bol that expresses as complex an entity as,
say, “Sandra’s coffee mug” is a largely
unsolved problem. Lacking a sufficiently
general solution, the relationships between
symbols and sensory data must be pre-
defined in every detail, causing a signifi-
cant loss in the flexibility and autonomy of
high-level reasoning.

With regard to the problem of unreliable
actuators and sensors in real-world envi-
ronments, established solutions are all
based on probabilistic approaches. Specifi-
cally, robust algorithms for the basic tasks
of self-localization and navigation for
autonomous robots require a robot to main-
tain probability distributions as its internal
world model, which is updated according
to probabilistic knowledge of its actions’
effects. Contemporary theories of cognitive
robotics, however, still lack a tight integra-
tion of logical and probabilistic reasoning.
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high-level control programs for
autonomous systems.
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Recently, researchers have looked into
combining probability theory with knowl-
edge representation languages such as the
situation or fluent calculus. But so far, no
competitive implementation combines the
exactness of probabilistic calculations with
the power of logical reasoning when it
comes to coping with large state spaces
containing diverse information.

Significant advances toward cognitive
robotics’ actual goal will therefore require
a new generation of theories and imple-
mentations, which will emerge from suffi-
ciently general solutions to the symbol-
grounding problem and novel combinations
of logical and probabilistic reasoning. This
would pave the way toward a new genera-
tion of autonomous robots. High-level rea-
soning is a key aspect of truly intelligent
behavior, which emerges from the ability to
make rational decisions and to devise plans
for complex tasks, as well as to exhibit a
great deal of flexibility dealing with unfore-
seeable circumstances. Probabilistic reason-
ing alone won’t be enough to reach this level
of intelligence because it doesn’t allow for
the high degree of abstraction needed to cope
with a large body of diverse information.
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Human-Robot Partnership
Cynthia Breazeal, MIT Media Lab

What kind of future do you envision with
robots? The science fiction stories and
movies that fascinated me as a child shape
my dream. There are the mechanical droids
R2-D2 and C-3PO from the movie Star

Wars. There are many wonderful examples
in the short stories of Isaac Asimov, such as
Robbie. And more recently, there’s Teddy
from the movie Artificial Intelligence.

These sci-fi robots differ dramatically
from today’s autonomous mobile robots.
We generally view modern autonomous
robots as tools that human specialists use to
perform hazardous tasks in remote environ-
ments (such as sweeping minefields, inspect-
ing oil wells, mapping mines, and exploring
other planets). In contrast, my favorite sci-
ence fiction robots aren’t tools that do things
for us. Rather, they’re socially savvy partners
that do things with us.

Recent commercial applications are
motivating research into building robots
that play a beneficial role in ordinary peo-
ple’s daily lives (see Maja J. Matarić’s fol-
lowing essay on socially assistive robots).
This new breed of social (or sociable) robot
must be natural and intuitive enough for the
average consumer to interact and commu-
nicate with, work with as partners, and
teach new capabilities.

One of the best known social (or socia-
ble) robots is Kismet—the first autonomous
robot explicitly designed to explore face-to-
face interactions with people.1 Kismet is
considered humanoid because of its expres-
sive anthropomorphic face, even though it
doesn’t have a humanoid body (see figure
3). The research with Kismet focused on
exploring the origins of social interaction
and communication in people, namely that

which occurs between caregiver and infant,
through extensive computational modeling
guided by insights from psychology and
ethology.

In particular, Kismet was one of the earli-
est works to explore socio-emotive interac-
tion between humans and robots. Inspired
by our earliest infant-caregiver exchanges,
which are heavily grounded in the regula-
tion of emotion and its expression, Kismet
used its emotion system and corresponding
expressive modalities to communicate inter-
nal affective states reflecting the degree
to which its drives and goals were being
met. Internally, Kismet’s emotion models
interacted intimately with its cognitive sys-
tems to influence behavior and goal arbitra-
tion. In effect, Kismet socially negotiated
its interaction with people via its emotive
responses so that humans would help it
achieve its goals and satiate its drives. The
scientific literature on emotion theory, social
cognition, and its development through
infancy and childhood has inspired and
guided the development of several socially
interactive robots.2

Challenges and progress in
social robotics

As with any emerging area of inquiry,
the fundamental scientific questions that
social robotics pursues distinguish it from
other areas.1,2 A few challenges of social
robotics that I’m particularly interested in
include these three:

Figure 3. Cynthia Breazeal and her collaborators developed Kismet at the MIT Artificial
Intelligence Lab in the 1990s.
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• Robots with social-cognitive skills.
Whereas research with modern autono-
mous robots has largely focused on their
ability to interact with inanimate objects,
socially intelligent robots must under-
stand and interact with people. They must
understand people in social-psychological
terms to appreciate the goals, beliefs,
feelings, motives, and other mental states
underlying our behavior.

• Robots that collaborate with people as
full-fledged partners. Socially intelligent
robots work alongside humans as peers,
communicate with us in human-centric
terms, and participate in successful rela-
tionships with people that provide bene-
fits over an extended period of time.

• Robots as social learners that learn from
people. Socially intelligent robots engage
in rich forms of social learning with peo-
ple, such as imitation and tutelage, to
learn new skills, knowledge, and tasks
while on the job.

Promisingly, there have been initial and
ongoing strides in all of these areas.2–4

This article briefly surveys my own
group’s research at the MIT Media Lab and
our ongoing progress on these three chal-
lenges (see http://robotic.media.mit.edu).
Leonardo is the expressive full-body
humanoid robot that serves as our experi-
mental platform (see figure 4). We study
and evaluate the robot’s performance from a
technical perspective to assess its ability to
communicate with, collaborate with, and

learn from people in situated task scenarios.
Additionally, we conduct human subject stud-
ies to assess whether the robot’s performance
is cognitively and behaviorally synergistic
for people and to confirm that the human-
robot team is more effective as a whole.

Robots with social-cognitive
skills

Our computational models are deeply
informed by scientific theories of human
and animal social cognition to endow our
robots with useful social-cognitive skills
that are also human compatible. In particu-
lar, recent experimental data from neuro-
science and psychology provide empirical
evidence that human social cognition is
deeply embodied.5 Simulation theory, for
instance, posits that we use our own body
and cognitive and affective processes to
simulate the mental processes of others—
to take their mental perspective to infer
their intents, beliefs, affect, motives, and so
on.6 Inspired by this work, we’ve been
developing a simulation theoretic frame-
work to endow our robot with mental per-
spective-taking skills. For instance, we’ve
demonstrated the robot’s ability to learn
affective appraisals of novel objects via
social referencing or to reason about and
infer its human partner’s goals, attention,
beliefs, and affect from their observable
behavior in various initial tests, such as the
false-belief task. (The false-belief task,
which determines whether a person can
appreciate that others can have beliefs that

differ from his or her own, is used as a
diagnostic tool in developmental psychol-
ogy.) These skills play an important role in
robots that collaborate with humans as
teammates and learn from human teachers.

Robots and people as full-
fledged partners

Collaborative discourse theory has pro-
vided a rich theoretical framework to un-
derstand and model human-style collabora-
tion for human-robot teams. Researchers
have developed sophisticated discourse
models to support human-computer collab-
oration where the human and computer
establish and maintain shared beliefs, goals,
and plans to coordinate joint action through
natural language. Human-robot teamwork
introduces an important nonverbal dimen-
sion where physical actions communicate
mental states (for example, gaze direction
communicates attention, facial expression
communicates emotion, and actions com-
municate intentions). These mental and
body states must be coordinated between
human and robot to successfully collaborate
on a physical task in a shared space.

We’ve demonstrated our robot’s ability
to apply its social-cognitive skills to com-
pare and reason about how its human
partner’s goal and belief states (as com-
municated through verbal and nonverbal
behavior) relate to its own “mental” states
to provide the person with informational
and instrumental support. For example, in
the case of informational support, the robot
can relate its own beliefs about the state of
the shared workspace to those of the human
on the basis of the visual perspective of
each. If a visual occlusion prevents the hu-
man from knowing important information
about that region of the workspace, the
robot knows to direct the human’s attention
to bring that information into common
ground. On the basis of the principles of
the joint intention and speech act theories,
the robot uses a versatile range of nonver-
bal behaviors to coordinate effective, effi-
cient teamwork. In the case of instrumental
support (that is, performing an action to
help someone achieve a task-oriented goal),
the robot can infer the human’s intent (that
is, a desired effect on the workspace) from
observing the person’s behavior. If the hu-
man fails to achieve his or her goal, the
robot can reason about how it might help
the human by either performing a direct
action that achieves that goal or by execut-

Figure 4. Leonardo, (a) with and (b) without cosmetic finishing, is being developed at
the MIT Media Lab (aesthetic design by Stan Winston Studio). (images courtesy of Sam
Ogden Photography)

(a) (b)



ing a complementary action that enables the
human to achieve the goal (for example, the
robot might disengage the lock on a device
to help the human activate that device).

Robots as social learners
The ability to learn new tasks and skills

quickly and effectively from real-time in-
teraction with everyday people is critical
for socially situated robots. I believe this
entails understanding how people naturally
want to teach robots and then using these
constraints to design learning algorithms
and architectures to support the teaching-
learning interaction.

We’ve carried out human subject studies
to explicitly study how people teach robotic
agents. Our results empirically support the
popular assumption that people want robots
to engage in social forms of learning (such as
by demonstration, imitation, verbal instruc-
tion, or animal training). In particular, people
want to guide exploration, motivate the
learner, and adapt their instruction to be
appropriate for the learner.

Given our findings, we’re developing a
learning framework called socially guided
machine learning. In SG-ML, the robot is
intrinsically motivated to learn and explore
on its own and is socially motivated to lever-
age its interactions with people to learn new
skills, goals, and tasks. Importantly, we view
the teaching-learning interaction as a collab-
oration in which the human teacher guides
the robot’s exploration process and the robot
communicates its internal state (such as what
it understands and where it’s confused) back
to the teacher to help guide teaching. By
making its learning process transparent to
the human, the robot actively improves its
own learning environment by helping the
human better tune their instruction for the
robot. We’ve demonstrated this bidirectional
process whereby the quality of the human’s
guidance improves and the robot becomes a
more efficient and effective learner.

Furthermore, we’ve found that the robot’s
teamwork and perspective-taking skills also
play an important role in making teaching-
learning interactions more robust to the mis-
communications or misunderstandings that
inevitably arise even in human-human tute-
lage. As the robot observes the human’s
demonstrations, it internally simulates “what
might I be trying to achieve were I perform-
ing these demonstrations in the human’s
context?” The robot therefore interprets and
hypothesizes the intended concept being

taught not only from its own perspective
but also from the human teacher’s visual
perspective. Through this process, the
robot successfully identifies ambiguous or
confusing demonstrations given by the
human instructor and clarifies the human’s
intent. After disambiguating these prob-
lematic demonstrations, the robot correctly
learns the intended task.

My goal
Unlike AI’s original goal—to create a

technological system with human-equiva-
lent intelligence—my goal is to create
robots that are synergistic and compatible
with humans. Specifically, they bring value
to us and are valued by us because they’re
different from us in ways that enhance and
complement our strengths and abilities.
The goal of creating robots that can engage

us as full-fledged partners is as challenging
and deep as AI’s original goal because it
requires scientists of the natural and artifi-
cial to deeply understand human intelli-
gence, behavior, and nature across multiple
dimensions (that is, cognitive, affective,
physical, and social). It also requires scien-
tists to understand the dynamics of the hu-
man-with-robot system. This fascinating
area of technological and multidisciplinary
scientific inquiry has the potential to transi-
tion the robots of today into our sci-fi robot
sidekicks of tomorrow.
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Socially Assistive Robotics
Maja J. Matarić, University of Southern
California

Five decades into its development, ro-
botics is finally on the brink of entering
our daily lives. Having transitioned from
success in factory automation (auto assem-
bly) and high-precision laboratory work
(aiding DNA sequencing and medication
delivery), it is now poised to move into
much messier, less structured, and more
uncertain human-inhabited environments.
While simple robot vacuum cleaners are
already at work in over a million homes,
robotics researchers are eagerly develop-
ing much more complex and intelligent
robots that will work with and for people
in hospitals, elder care centers, schools,
and homes.

What happens when intelligent robots
and people share an environment and even
goals? This question is at the heart of
human-robot interaction, an inherently
interdisciplinary research endeavor. HRI
brings together engineering and social sci-
ence, cognitive science, neuroscience,
ethics, and the disciplines directly related
to the application domains the robot tech-
nology would operate in, such as health-
care and education. HRI is as much a study
of people as it is of robots; it requires us to
gain insight into a new and dynamically
changing relationship between humans and
intelligent machines.

Within the larger context of HRI, the
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research in my Interaction Lab focuses on
socially assistive robotics, which aims to
aid people by means of social interaction
rather than physical contact. SAR brings
together HRI and assistive robotics, which
has demonstrated successes in hands-on
rehabilitation through the use of high-pre-
cision but low-autonomy and low-interac-
tivity systems. Consequently, SAR presents
an entirely new set of research challenges,
as we strive to understand how robots can
interact with people to effectively and mea-
surably help in the difficult processes of
convalescence, rehabilitation, socialization,
training, and education.

Using physical robots for social assistance
might seem counterintuitive. After all, why
not use software agents or devices such as
PDAs endowed with intelligent interfaces?
The answer rests on the fundamentally
human tendency to socially engage with
and attribute lifelike properties to machines,
especially embodied ones such as robots,
which exhibit sufficient (often quite simple)
attributes of biological-like movement or
appearance. Researchers have shown the
human projection of intentions, goals, and
emotions to such embodied devices to be
inescapable, culture independent (although
featuring culture-specific responses), unin-
hibited by sophistication of knowledge and
familiarity with the details of the technol-
ogy, and resistant to change over time or
with repeated encounters. This means that
people cannot help but respond to engaging
physical machines.

Our research builds on this human char-
acteristic to develop a novel robot-assisted
research paradigm with two distinct but
interrelated goals:

• to study human social and performance-
related behavior to better understand
those phenomena and their underlying
mechanisms and

• to elicit sustained productive goal-driven
behavior as part of the diagnostic, thera-
peutic, or educational process.

We’re motivated by the vision of using assis-
tive technology as a tool for both scientific
discovery and societally relevant application
of assistive robots.

From the basic-science perspective,
SAR presents a unique new tool for scien-
tific inquiry. Machines have long been
used in research, but usually as passive (if
sophisticated) tools. Through socially

aware robots, we can introduce a funda-
mentally new type of machine into the
research realm: one that can detect, moni-
tor, and respond to user behavior in a
physically shared context. As tools of sci-
entific inquiry, robots can have both their
form and behavior manipulated in a fully
controllable manner. We can carefully
design the information that we share with
participants about the robot to attempt to
control their beliefs and biases. Using that
experimental paradigm, we can measure
participants’ responses, both voluntary
and involuntary, ranging from observable
behavior (such as gaze, posture, move-
ment patterns, and linguistic interactions)
to physiological responses (such as heart
rate, body temperature, and galvanic skin
response). We can also combine robot
experiments with functional brain imag-

ing, aiming toward structural insights
about relevant social and learning mecha-
nisms. As a result, we can ask scientific
questions that we could not previously ask
or experimentally answer. By perfectly
tuning how lifelike, humanlike, believ-
able, socially engaging, and intelligent
robots are, we can probe into human so-
cial behavior and use the insights to de-
sign social interaction toward measurably
improved therapeutic, educational, and
training outcomes.

The robot’s physical embodiment is a
critical means of eliciting the richness of
the user’s response, both in the context of
scientific discovery and in real-world ap-
plications. Properties and implications of
embodiment present rich avenues for re-
search into both human nature and assistive
human-robot interaction. Such properties
include

• how the robot looks (Is humanlike or
animal-like appearance important and
desirable? Should the robot match the user
in approximate size and, if humanoid,
apparent age?),

• how the robot behaves (How expressive
should the robot be relative to its user?
What means of expression are most
effective? How far do physical embodi-
ment and embodied cues go in convey-
ing information, and what is the appro-
priate balance between nonlinguistic and
linguistic interaction? Should the robot
have a detectable personality? If so, what
should it be?), and

• how the robot relates to its niche (How
does the hospital environment differ
from school or home? How should the
robot handle different types of users in
an environment, such as doctors, nurses,
therapists, patients, and family at the
hospital?).

Situated at the intersection of science
and technology, SAR research aims to help
solve major societal challenges, focusing
specifically on the growing aging popula-
tion, rising costs of medical care and edu-
cation, and shortages of social programs
for education and training of persons with
disabilities. To aid people in need, robots
will have to perform truly challenging tasks
in both structured environments (hospitals,
elder care facilities, and schools) and
unstructured settings (homes, cities, road-
ways, and rubble piles).

An outstanding challenge for SAR is the
robots’ need to be both useful and engag-
ing. The most popular human nurses are
not known to be the most effective; it is
hard indeed to compel a person to do some-
thing painful, difficult, or dull in a sustained
manner, such as exercising six hours daily
post-stroke, breathing into a spirometer 10
times an hour after cardiac surgery, or per-
forming months of vocabulary and pronun-
ciation drills. The socially assistive robot
must remain appealing as well as effective
over a long period, whether months in
stroke rehabilitation, years in special educa-
tion, or, potentially, a lifetime. This presents
a novel, compelling challenge for both ro-
botics and AI. Effective human teachers,
coaches, nurses, and therapists are all too rare
yet too important to do without. Those short-
ages serve as motivators for SAR research,
whose goal is not to replace humans but to
fill in large gaps where attentive and individ-
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new type of machine: one that can
detect, monitor, and respond to
user behavior in a physically
shared context.
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ualized human care is diminishing or entirely
unavailable.

Embarking on assistive robotics involves
being not only curiosity-driven but also
problem-driven, and facing complex scien-
tific and technological challenges in messy,
noisy, and sensitive real-world domains that
involve interactions with vulnerable users.
We have placed simple robots with stroke
patients (see figure 5), cardiac patients, and
children (see figure 6) in special education
classrooms. Our research has demonstrated
positive and promising results,1–5 as well as
pointed toward a plethora of fascinating
research questions. SAR’s rich potential for
gaining novel insights into human cognition
and social behavior, and for improving
human quality of life for populations that
most need it, represents one of the most
exciting and uniquely compelling topics in
modern robotics.
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Do Androids Dream of the
Sweet Smell of Roses?
Hiroshi Ishida, Tokyo University of Agri-
culture and Technology

Robotics and intelligent systems re-
search have historically aimed to make

machines that can replace human work-
ers, that can do jobs that humans can’t
do, or both. Industrial robots, for exam-
ple, are designed to more quickly and
accurately accomplish tasks that human
workers formerly did. In this context,
robots must do their jobs autonomously
with minimal interaction with and super-
vision from human users. However,
human-machine interaction has become
significantly more important as the appli-
cation areas of robots and intelligent sys-
tems have expanded. Home care robots
for the elderly, for example, must be able
to understand users’ demands and to tell
them what actions the robots are about 
to take.

This is one reason that robotics research-
ers are eager to implement olfactory
sensing capabilities in robotic and intelli-
gent systems. It’s desirable for robots
working with humans to share sensory
information with human users. If the robot
can see the world and hear sound exactly as
the human user does, it can perceive the
situation similarly, and working coopera-
tively with the human will become much
easier. However, this won’t be enough.
Although most people don’t appreciate the
value of olfaction in our daily lives, our
noses play essential roles in various scenar-
ios, such as enjoying meals and detecting
danger. A robot cook that can’t discrimi-
nate old milk with a nasty smell, a security
robot that can’t detect the smell of burning,
or a nanny android that can’t smell that it’s
time to change diapers all lack an impor-
tant functionality.

Figure 5. A stroke patient interacting with a socially assistive robot from Maja Matarić’s lab that is monitoring, coaching, and 
motivating prescribed exercise therapy.

Figure 6. A child-sized humanoid robot,
which Maja J. Matarić and her colleagues
developed, interacts with a child. The
robot works from a desktop or on a
mobile platform and is an example of the
research toward robots that can help in
the education and socialization of
children with special needs.



Taking inspiration from
humans or other animals

For robots that work closely with humans,
the ultimate goal would be an olfactory
capability that reproduces human olfac-
tion. We sense odors when chemical com-
pounds stimulate the olfactory receptor
cells at the nasal cavity’s roof.1 What makes
olfaction a distinctive sensing modality is
the diversity in the stimuli. Several hun-
dreds of thousands of different chemical
substances are known to elicit odor sensa-
tion. Moreover, what we perceive as a sin-
gle smell is often the result of a mixture of
a number of chemical substances. The
vapor emanating from a cup of coffee
includes more than 400 chemicals that
have odors.

Such complexity and diversity is the
result of the olfactory system’s huge num-
ber of sensors. The human nose has 10
million olfactory receptor cells. Genetic-
engineering advances have revealed that
those cells are classified by their receptor
proteins into approximately 400 types.
The levels of interactions between odorant
molecules and the receptor proteins deter-
mine the cells’ response levels. Each class
of cells responds to a wide spectrum of
chemical substances, but in a slightly dif-
ferent way from the cells of the other
classes. So, exposing the cells to a single
puff of a smell produces a response pat-
tern unique to that smell. We discriminate
odors by recognizing the cells’ response
patterns.

Human olfaction isn’t the only model for
building artificial olfactory sensing systems.
Many animals have keener olfaction than
humans. We might use such “supersenses”
as a model to enable our robots to do things
that humans can’t do. Dogs are famous for
their ability to track trace scents. It’s said
that trained dogs outperform metal detectors
in landmine detection. Dog noses are both
more sensitive and more selective than
human noses. However, the basic olfaction
mechanism—that is, recognition of the
receptor cells’ response patterns—seems to
be common not only to all mammals but
also to a wide variety of animal species.
The main difference between human and
dog noses is that a dog nose has more olfac-
tory receptor cells with a greater variety of
receptor proteins.

Another famous example of super olfac-
tion is male moths that track airborne sex-
ual pheromones released by conspecific

females over long distances. To achieve
such feats, the olfactory sensors must be
able not only to detect extremely diluted
target odors but also to discriminate target
odors from any background odors. Moths
have solved this problem by developing,
through evolution, receptor cells more sensi-
tive than humans’. A male moth’s pheromone
receptor cell responds even to a single mole-
cule of the sexual pheromone, but shows little
response to any other chemical substances.
Despite their efforts, researchers don’t yet
fully understand how the pheromone receptor
cell differs from the mammalian olfactory
receptor cell.

Electronic noses and their
applications in robotics

The first research on an artificial sensing
system able to discriminate different odors
using mammalian olfaction as a model was

published in 1982.2 Since then, researchers
have done extensive research on developing
electronic noses. Typically, an electronic nose
consists of an array of chemical sensors with
partial specificity and a pattern-recognition
system just like its model’s. Unfortunately,
no engineered replica of olfactory receptor
cells exists. The most popular sensor in
electronic noses is a metal-oxide semicon-
ductor gas sensor. The sensing element is
generally made of sintered tin dioxide par-
ticles, which show variation in conductivity
on exposure to reducing gases. Although
originally made for flammable gas leak
detectors, the sensor responds to a wide
range of volatile organic compounds. The
sensitivity to different gases can be tuned
to some extent in several ways, such as
changing the operating temperature and
doping the sensor with small amounts of
catalytic materials. Sensors that use organic
materials are expected to be more compati-

ble with human olfactory receptor cells.
Adsorption of gas molecules onto organic
materials is detectable—for example, by
measuring the mass increase or swelling of
the polymer matrix. Typically, an electronic-
nose system has only eight to 32 sensors
because fabricating numerous sensors with
different selectivities into a single array is
difficult.

Despite current sensor technologies’
limitations, electronic noses have been
tested in a variety of contexts. A typical
electronic nose setup stores sensor response
patterns for a repertoire of odors into the
computer memory in the learning phase.
The electronic nose recognizes odors by
finding the best match between the mea-
sured and the stored response patterns. For
example, it can estimate the freshness of a
piece of fish by comparing its smell with
those of meat samples with different levels
of rottenness. Researchers have success-
fully demonstrated electronic noses’ odor-
discrimination capabilities in applications
ranging from quality control of cosmetic
products to food process monitoring and
medical diagnosis.1 Some electronic-nose
instruments are commercially available.

For these applications, electronic noses
are designed to have odor discrimination
capabilities similar to human olfaction.
However, artificial olfaction can have dif-
ferent selectivities to odors by using differ-
ent sensors, just as in animals’ supersenses.
To date, supersensitive gas sensors have
been developed without a specific animal
as a model because the mechanisms under-
lying animal olfaction are still open ques-
tions. One key to realizing highly sensitive
sensors is a built-in signal-amplification
mechanism. For example, Nomadics’ land-
mine detector has sensitivity comparable
to dog noses in detecting vapor emanating
from explosives.1 The key element is a
fluorescent conjugated polymer film that
has a high affinity for trinitrotoluene.
Adsorption of a single TNT molecule
quenches the whole polymer chain’s fluo-
rescence, causing significant variation in
the sensor output.

In robotic applications, detecting and dis-
criminating a specific odor might be just a
part of the whole task. If a security robot with
artificial olfaction detects a flammable gas
leaking in a factory, an appropriate action
would be to find the leak by tracking the gas
plume to its source. This task isn’t as easy as
it seems. Because molecular diffusion is slow,
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A security robot that can’t detect
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even a slight airflow greatly affects gas dis-
persal. The flows we encounter in the real
world are almost always turbulent. Because
the gas plume becomes patchy and mean-
dering, tracking the gas-concentration gra-
dient often fails to locate the gas source. To
help solve this problem, researchers have
tried to develop mobile robots that mimic
moths’ instinctive behavior.3 Male moths
predictably steer upwind when they come in
contact with a plume of sexual pheromone.
The basic feature of plume-tracking behav-
ior was implemented into a robot equipped
with gas sensors and airflow sensors. Suc-
cessful demonstrations have been provided
on tracking gas plumes formed in indoor
environments.4

Outlook
The major problem in the development

of artificial olfaction is that no sensor as
versatile as odor receptor cells exists. Each
sensor has certain advantages and disad-
vantages, so users must select a set of sen-
sors appropriate for their applications.
Because the methodology for systematic
sensor selection hasn’t yet been established,
selection often involves much trial and
error. Moreover, all gas sensors show drift
in their response over time, and frequent
recalibration is laborious. Human olfaction
involves both sensors of many different
types and many sensors of the same type.
The former makes our noses versatile; the
latter appears to help alleviate drift. Olfac-
tory receptor cells regenerate in four to
eight weeks. Although at least some sen-
sors are always being replaced, we can still
recognize the same odors as before the
sensor replacement.

Recently, research has been initiated to
exploit olfactory receptor proteins them-
selves as the ultimate sensing materials.5

Challenges include how to keep receptor
activity on a sensor chip, how to prepare
receptor proteins for mass production, and
how to measure with high sensitivity the
adsorption of odor molecules onto the
receptors. Once these problems are solved,
we’ll obtain a large family of artificial sen-
sors with selectivities closely matched to
human olfaction. If we could somehow add
the self-generating function to those sensors,
we should be able to equip our androids
with versatile, drift-free artificial olfaction.

On the software side of artificial olfac-
tion, an interesting issue is how to deal
with unknown odors. So far, electronic

noses merely report which smell in their
learned repertoire elicits the sensor response
pattern that best matches the one being mea-
sured, even if the repertoire doesn’t include
the measured odor and the match is far from
perfect. Some electronic noses can recog-
nize an unlearned odor as “unlearned,” but
this might not be enough. A robot that
works closely with humans should be able
to tell human users what smell it’s detect-
ing and, if the smell is unfamiliar, how it
smells. However, when you try to explain
an unfamiliar smell to someone else, you
realize the difficulty of describing smells.
Our language system seems to be built to
describe what we see. Logically describing
a perceived smell’s features isn’t always
possible. This is partly because odor per-
ception involves not only conscious odor
recognition but also subconscious evoca-
tion of memories and emotions. We don’t
know yet what features in the response
pattern of our olfactory receptor cells make
us feel sweet when we smell roses. Some
researchers are attempting to make robots
explain the smells they detect in terms of
abstracted descriptions, such as herbal,
oily, or fragrant.6 In theory, if we succeed
in providing an array of sensors compati-
ble with human noses, we should be able
to let our robots appreciate the sweet smell
of roses.
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