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Abstract. As a novel, grand AI challenge, General Game Playing is
concerned with the development of systems that understand the rules of
unknown games and play these games well without human intervention.
In this paper, we show how Answer Set Programming can assist a general
game player with the special class of single-player games. To this end,
we present a translation from the general Game Description Language

(GDL) into answer set programs (ASP). Correctness of this mapping
is established by proving that the stable models of the resulting ASP
coincide with the possible developments of the original GDL game. We
report on experiments with single-player games from past AAAI General
Game Playing Competitions which substantiate the claim that Answer
Set Programming can provide valuable support to general game playing
systems for this type of games.

1 Introduction

General Game Playing is concerned with the development of systems that under-
stand the rules of previously unknown games and play these games well without
human intervention. Identified as a new grand AI challenge, this endeavor re-
quires to combine methods from a variety of a sub-disciplines, such as Knowledge
Representation and Reasoning, Search, Game Playing, Planning, and Learning
[1,2,3,4,5]. The annual AAAI General Game Playing contest has been established
in 2005 to foster research in this area and to evaluate general game playing sys-
tems in a competitive setting [6]. During the competition, participating systems
receive the rules of hitherto unknown games. The contestants get some time to
“contemplate” about the game (typically 5 to 20 minutes) and then start playing
against each other with a further time limit for each move (typically 20 to 60
seconds). All this takes place without human interference.

General game playing requires to formalize the rules of arbitrary games in
such a way that they can be processed by machines. The Game Description
Language (GDL) [7] serves this purpose by allowing one to describe any finite
and information-symmetric n-player game. GDL uses the syntax of normal logic
programs, and its semantics is given by a formal game model [8] on the basis of
the standard model of stratified programs as defined in [9]. Due to the closeness



of GDL rules to Answer Set Programs, in both syntax and semantics, the ques-
tion naturally arises whether this programming paradigm can provide valuable
support to a general game playing system.

In this paper, we give a positive answer to this question by showing that
Answer Set Programming can assist general game players with the special class
of single-player games. This type of games provides for an indirect competition:
independent of the others, each player tries to achieve the best possible outcome
according to the rules. Examples from previous AAAI competitions are the well-
known game of Peg Jumping, where the goal is to end up with as few pegs as
possible on a given board, or Knight’s Tour, where the goal is to visit as many
squares as possible on a checkerboard of a given size.

Successful general game playing systems, such as [2,3,4], use automatically
generated heuristics in combination with search. A well-known technique in game
playing is endgame search (see, e.g., [10]), which means to perform a depth-
restricted, complete forward search from the current position in order to see
whether a winning position has been reached. In this paper, we show how An-
swer Set Programming can be used for this purpose in General Game Playing.
Inspired by existing approaches of using satisfiability techniques for planning
problems [11,12,13], we first map any (single- or multi-player) GDL specification
onto an ASP in such a way that the stable models coincide with the possible
developments of the original game. We then show how Answer Set Programming
can be used to perform a complete, depth-restricted forward search during game
play in case of single-player games. Experiments with a variety of single-player
games from past AAAI General Game Playing Competitions [6] show that for
most games, Answer Set Programming clearly outperforms the techniques for
complete forward search that are built into the currently best general game
players and thus provides a valuable addition to any such system.

The rest of the paper is organized as follows. In the next section, we recapitu-
late the basic syntax and semantics of GDL. In the section that follows, we map
GDL descriptions onto “temporally extended” answer set programs and prove
that the stable models for the resulting program coincides with the possible
developments of the original game. In Section 4, we present a provably correct
method of applying this result to perform endgame search in single-player games
using Answer Set Programming. In Section 5, we give an overview of successful
experiments with an off-the-shelf ASP system [14] for a variety of single-player
games taken from the past AAAI General Game Playing Competitions. We con-
clude in Section 6. For the rest of the paper, we assume that the reader is familiar
with the basic concepts of answer sets, as can be found, e.g., in [15].

2 Game Description Language

The Game Description Language (GDL) has been developed to formalize the
rules of any finite game with complete information in such a way that the de-
scription can be automatically processed by a general game player. Due to lack



role(R) R is a player
init(F) F holds in the initial position

true(F) F holds in the current position
legal(R,M) player R has legal move M

does(R,M) player R does move M

next(F) F holds in the next position

terminal the current position is terminal
goal(R,N) player R gets goal value N

Table 1. The GDL keywords.

of space, we can give just a very brief introduction to GDL and have to refer
to [7] for details.

GDL is based on the standard syntax of normal logic programs. We adopt
the Prolog convention according to which variables are denoted by uppercase
letters and predicate and function symbols start with a lowercase letter. As a
tailor-made specification language, GDL uses a few pre-defined predicate sym-
bols shown in Table 1. A further standard predicate is distinct(X,Y), which
means syntactic inequality of the two arguments.
GDL imposes the following restrictions on the use of these keywords in a set of
clauses describing a game.

– role only appears in facts;
– init and next only appear as head of clauses, and init is not connected

(in the dependency graph for the set of clauses) to any of true, legal,
does, next, terminal, or goal;

– true and does only appear in clause bodies, and does is not connected
to any of legal, terminal, or goal.

As an example, Figure 1 shows a complete set of GDL rules for the following,
simple single-player game. Starting with eight coins in a row,

• • • • • • • •
a b c d e f g h

jump with any coin forming a singleton stack over two coins onto another single
coin. Repeat until you end up with as few as possible (ideally, zero) single coins.1

GDL imposes some further, general restrictions on a set of clauses with the
intention to ensure finiteness of the set of derivable predicate instances. Specif-
ically, the program must be stratified [9,16] and allowed [17]. Stratified logic
programs are known to admit a specific standard model as defined in [9]. Based

1 For instance, you may first jump with the coin in a over the coins in b and c onto
the coin in d. Next, you can take the single coin in c and jump over the two coins
which are now in position d, landing on the coin in e. But then no further move
will be possible, which according to the rules in Figure 1 means goal value 0.



role(player).

succ(a,b).

. . .
succ(g,h).

init(cell(a,single)).

init(cell(Y,single)) :- succ(X,Y).

legal(P,jump(X,Y)) :- true(cell(X,single)), true(cell(Y,single)),

twobetween(X,Y).

legal(P,jump(X,Y)) :- true(cell(X,single)), true(cell(Y,single)),

twobetween(Y,X).

next(cell(X,nocoin)) :- does(player,jump(X,Y)).

next(cell(X,double)) :- does(player,jump(Y,X)).

next(cell(X,Number)) :- true(cell(X,Number)), does(player,jump(Y,Z)),

distinct(X,Y), distinct(X,Z).

terminal :- not continuable

continuable :- legal(player,Move).

goal(player,100) :- not lonelycoin.

goal(player, 50) :- lonelycoin, not threelonelycoins.

goal(player, 0) :- threelonelycoins.

lonelycoin :- true(cell(X,single)).

threelonelycoins :- true(cell(X,single)), true(cell(Y,single)),

true(cell(Z,single)), distinct(X,Y),

distinct(X,Z), distinct(Y,Z).

twobetween(X,Y) :- succ(X,Z), true(cell(Z,nocoin)), twobetween(Z,Y).

twobetween(X,Y) :- succ(X,Z), true(cell(Z,single)), onebetween(Z,Y).

twobetween(X,Y) :- succ(X,Z), true(cell(Z,double)), nilbetween(Z,Y).

onebetween(X,Y) :- succ(X,Z), true(cell(Z,nocoin)), onebetween(Z,Y).

onebetween(X,Y) :- succ(X,Z), true(cell(Z,single)), nilbetween(Z,Y).

nilbetween(X,Y) :- succ(X,Z), true(cell(Z,nocoin)), nilbetween(Z,Y).

nilbetween(X,Y) :- succ(X,Y).

Fig. 1. A complete GDL description for the coin game. The positions are encoded using
the feature cell(X, Y ), where X ∈ {a, . . . , h} and Y ∈ {nocoin , single, double}.

on this concept of a standard model, a set of GDL rules can be understood as a
description of a formal game model—a state transition system—as follows [8].

To begin with, any valid game description G in GDL contains a finite set
of function symbols, including constants, which implicitly determines a set of
ground terms Σ . This set constitutes the symbol base Σ in the formal semantics
for G. The players and the initial position of a game can be directly determined
from the clauses for, respectively, role and init in G. In order to determine
the legal moves, update, termination, and goalhood for any given position, this
position has to be encoded first, using the keyword true. To this end, for any
finite subset S = {f1, . . . , fn} ⊆ Σ of a set of ground terms, the following set



of logic program facts encodes S as the current position.

Strue def

= {true(f1)., . . . , true(fn).}

The legal moves for each player r in position S can then be determined as
the derivable instances of legal(r, M). Similarly, the fact whether S is terminal
is determined by whether terminal is derivable, in which case the derivable
instances of goal(r, N) determine the goal values for the individual players.

Finally, for any function A : {r1, . . . , rn} 7→ Σ that assigns a move to each
player r1 ∈ Σ, . . . , rn ∈ Σ , let the following set of facts encode A as joint move.

Adoes def

= {does(r1, A(r1))., . . . , does(rn, A(rn)).}

The derivable instances of next(F) then determine the position resulting from
joint move A in the current position encoded by Strue. All this is summarized
in the following definition.

Definition 1. [8] Let G be a GDL specification whose signature determines
the set of ground terms Σ . The semantics of G is the state transition sys-
tem (R, S1, T, l, u, g) where 2

– R = {r ∈ Σ : G |= role(r)} (the players);
– S1 = {f ∈ Σ : G |= init(f)} (the initial position);
– T = {S ∈ 2Σ : G ∪ Strue |= terminal} (the terminal positions);
– l = {(r, a, S) : G ∪ Strue |= legal(r, a)}, where r ∈ R, a ∈ Σ , and S ∈ 2Σ

(the legality relation);
– u(A, S) = {f ∈ Σ : G ∪ Strue ∪ Adoes |= next(f)}, for all A : (R 7→ Σ) and

S ∈ 2Σ (the update function);
– g = {(r, n, S) : G ∪ Strue |= goal(r, n)}, where r ∈ R, n ∈ N, and S ∈ 2Σ

(the goal relation).

For example, given the game rules in Figure 1 it is easy to see that the initial
state is

S1 = {cell(a, single), . . . , cell (d, single), . . . , cell(h, single)}

The addition of Strue

1 to the game rules shows that (player , jump(a, d), S1) ∈ l,
and the resulting position (with A = {player 7→ jump(a, d)}) is

u(A, S1) = {cell(a,nocoin), . . . , cell (d, double), . . . , cell(h, single)}

Definition 1 provides a formal semantics by which a GDL description is inter-
preted as an abstract n-player game: in every position S , starting with S1 , each
player r chooses a move a that satisfies l(r, a, S). As a consequence the game
state changes to u(A, S), where A is the joint move. We introduce the following

2 Below, entailment |= is via the aforementioned standard mode as defined in [9], and
2Σ denotes the finite subsets of Σ .



notation for possible developments in a game. Consider two finite sequences of,
respectively, joint moves A1, . . . , Ak and states S2, . . . , Sk+1 (k ≥ 0). Then

S1

A1−→ S2

A2−→ . . .
Ak−1

−→ Sk

Ak−→ Sk+1 (1)

if for each i = 1, . . . , k we have

– Si 6∈ T ,
– (r, Ai(r), Si) ∈ l for each r ∈ R, and
– Si+1 = u(Ai, Si).

The game ends when a position in T is reached, and then g determines the
outcome for each player. The syntactic restrictions in GDL (see [7] for details)
ensure that entailment wrt. the standard model is decidable and that only finitely
many instances of each predicate are entailed. This guarantees that the definition
of the semantics is effective.

3 Mapping GDL to a Logic Program with Time

The semantics for GDL according to Definition 1 shows that the plain game rules
need to be repeatedly applied when determining the legal moves and their effects
for different positions. Therefore, in order to be able apply logic programming
techniques to directly reason about the evolution of a game position, the rules
need to be “temporalized” in a way that is common for encodings of temporal
domains as logic programs (see, e.g., [11,12,18]). In the following, we use the new
predicate holds(F,T) to denote that feature F holds in the game position at
time T. Time shall be encoded by natural numbers starting with 1.

Definition 2. Let G be a set of GDL rules, then the temporal extension of G,
written ext(G), is the set of logic program clauses obtained from G as follows.

1. Each occurrence of init(ϕ) is replaced by holds(ϕ,1), and each atom
p(t1, . . . , tn) in the body of a clause for init is replaced by p(t1, . . . , tn, 1),
provided that p 6= distinct.

2. Each occurrence of true(ϕ) is replaced by holds(ϕ,T), and each next(ϕ)
by holds(ϕ,T+1).

3. Each occurrence of each atom p(t1, . . . , tn) is replaced by p(t1, . . . , tn, T),
provided that p 6∈ {init, true, next, role, distinct} , and distinct(t1, t2)
is replaced by not t1=t2.

As an example, consider the temporal extension of the game rules in Figure 1.

role(player).

succ(a,b,T).

...

succ(g,h,T).

holds(cell(a,single),1).

holds(cell(Y,single),1) :- succ(X,Y,1).



legal(P,jump(X,Y),T) :- holds(cell(X,single),T),

holds(cell(Y,single),T),

twobetween(X,Y,T).

legal(P,jump(X,Y),T) :- holds(cell(X,single),T),

holds(cell(Y,single),T),

twobetween(Y,X,T).

holds(cell(X,nocoin),T+1) :- does(player,jump(X,Y),T).

holds(cell(X,double),T+1) :- does(player,jump(Y,X),T).

holds(cell(X,Number),T+1) :- holds(cell(X,Number),T),

does(player,jump(Y,Z),T),

not X=Y, not X=Z.

terminal(T) :- not continuable(T).

continuable(T) :- legal(player,Move,T).

goal(player,100,T) :- not lonelycoin(T).

goal(player, 50,T) :- lonelycoin(T), not threelonelycoins(T).

goal(player, 0,T) :- threelonelycoins(T).

lonelycoin(T) :- holds(cell(X,single),T).

threelonelycoins(T) :- holds(cell(X,single),T),

holds(cell(Y,single),T),

holds(cell(Z,single),T),

not X=Y, not X=Z, not Y=Z.

twobetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,nocoin),T),

twobetween(Z,Y,T).

twobetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,single),T),

onebetween(Z,Y,T).

twobetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,double),T),

nilbetween(Z,Y,T).

onebetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,nocoin),T),

onebetween(Z,Y,T).

onebetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,single),T),

nilbetween(Z,Y,T).

nilbetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,nocoin),T),

nilbetween(Z,Y,T).

nilbetween(X,Y,T) :- succ(X,Y,T).

It is easy to see that the resulting program can be made more efficient by omitting
the time argument in any predicate that

1. is not among the GDL keywords, and
2. does not depend on true in the original game description.

Thus, for instance, predicate succ(x, y) in our example need not carry the time
argument because its extension does not depend on the current game position.



This independence can be easily computed from the dependency graph for a set
of GDL rules.

The ease with which GDL descriptions can be mapped onto a logic program
with explicit time is the major reason for the expectation that Answer Set Pro-
gramming can be a valuable addition to a general game playing system. The
temporalized GDL rules allow us to encode the fact that at time t the players
choose a joint legal move A : R 7→ Σ (where R = {r1, . . . , rn} are the roles in
the game and Σ the symbol base) by the following additional facts.

Adoes(t)
def

= {does(r1, A(r1), t)., . . . , does(rn, A(rn), t).}

With this, the mapping of a GDL description to a logic program with time can
be proved correct with regard to the semantics of GDL according to Definition 1.

Theorem 1. Let G be a valid GDL description and (R, S1, T, l, u, g) its se-
mantics. For any finite sequence of legal joint moves and states, we have that

S1

A1−→ S2

A2−→ . . . Sk

Ak−→ Sk+1

if and only if the standard model M of ext(G)∪Adoes

1 (1)∪. . .∪Adoes

k
(k) satisfies

the following.

– Si = {f ∈ Σ : M |= holds(f, i)} for each 1 ≤ i ≤ k + 1 and
– M |= legal(r, Ai(r), i) for each r ∈ R and each 1 ≤ i ≤ k.

Proof. By induction. For k = 1 the claim follows from

– the replacement of init(ϕ) by holds(ϕ, 1) in ext(G), and by the construc-
tion of S1 in Definition 1;

– the replacement of legal(̺, α) and true(ϕ) by, respectively, legal(̺, α, T)
and holds(ϕ, T) in ext(G), and by the construction of l in Definition 1.

The induction step follows from

– the replacement of next(ϕ), true(ϕ), and does(̺, α) by holds(ϕ, T+ 1),
holds(ϕ, T), and does(̺, α, T), respectively, in ext(G), and by the construc-
tion of u in Definition 1;

– the replacement of legal(̺, α) and true(ϕ) by, respectively, legal(̺, α, T)
and holds(ϕ, T) in ext(G), and by the construction of l in Definition 1.

This result shows that the temporally extended logic program can be used to
infer the evolution of the game position given a sequence of joint moves. As an
example, consider the addition of the sequence of moves (cf. Footnote 1)

does(player,jump(a,d),1).

does(player,jump(c,e),2).

to the temporalized extension of the game description in Figure 1. It is easy to
verify that the standard model for the resulting logic program includes each of
the following.



legal(player,jump(a,d),1) legal(player,jump(c,e),2)

holds(cell(a,nocoin),3) holds(cell(b,single),3)

holds(cell(c,nocoin),3) holds(cell(d,double),3)

holds(cell(e,double),3) holds(cell(f,single),3)

holds(cell(g,single),3) holds(cell(h,single),3)

terminal(3) goal(player,0,3)

4 Using ASP for Single-Player Games

Theorem 1 lays the foundation for the use of Answer Set Programming to
perform endgame search for single-player games, that is, a complete, depth-
restricted search starting in the current game position with the aim to find a
winning sequence of moves within the given horizon. Because the standard model
of a stratified program coincides with its only answer set (see, e.g., [15]), ASP
can be used directly to determine the legality of a sequence of moves and the
result from any current position. The basic idea, then, is to take the temporal
extension of the GDL rules for a single-player game and to search for a sequence
of moves that satisfies the following conditions.

1. Exactly one move is made at every point in time unless a terminal position
has been reached.

2. Each move is legal when being played.
3. A terminal position is eventually reached.
4. The terminal position determines the intended goal value.

Any answer set that satisfies these constraints provides a solution to the game,
that is, a sequence of moves that leads from the current position to a terminal
position with the intended goal value.

In order to implement this search in a general game player, we need two
common additions that have been defined for ASP [19]: a weight atom

m { p : d } n

means that an answer set contains at least m and at most n different instances
of atom p for which condition d holds (in the answer set). A constraint is a rule
of the form :- b1, . . . , bk and excludes any answer set that satisfies all literals
b1, . . . , bk .

With the help of weight atoms and constraints, endgame search is performed
by augmenting a temporally extended GDL specification for a single-player game
by the clauses

1 : 1 {does(r,M,T) : move domain(M)} 1 :- not terminated(T).

terminated(T) :- terminal(T).

terminated(T+1) :- terminated(T).

2: :- does(r,M,T), not legal(r,M,T).

3: :- 0 {terminated(T) : time domain(T)} 0.
4: :- terminated(T), not terminated(T-1), not goal(r,gmax,T).

:- terminated(1), not goal(r,gmax,1).

(2)



Here, r is assumed to be the (only) constant for which the game rules include
the clause role(r), and natural number gmax stands for the goal value the
game player is aiming for. These additional clauses provide a formal encoding of
the four aforementioned conditions on the answer sets to provide a solution to
the single-player game.

1: Predicate terminated(t) is used to indicate that a terminal position has been
reached at (or before) time t. This auxiliary predicate is used to restrict the
requirement for a legal move to every position before reaching a terminal
one.

2: No answer set can stipulate a move that is not legal.

3: No answer set can have zero instances of terminated(t).

4: The state at the exact time of termination must have the desired goal value.
(The last clause deals with the very special case that the game is already
terminated at time 1.)

The ASP clauses in (2) require the definition of the domain of moves (using
the predicate move domain) according to the underlying game description. A
suitable definition can be easily computed on the basis of the dependency graph
for the given game description; see Section 5 for details. A similar definition is
required for the domain of time, which is assumed to be given as {1, . . . , n + 1}
where n is the intended horizon for the endgame search.

If clauses (2) are added to the temporal extension of a GDL game according to
Definition 2, then this amounts to a complete, depth-restricted search right from
the initial position. Aiming instead at endgame search from the current position
during game play, this can be easily achieved by substituting the collection of
holds(f, 1) facts, which result from the given init(f) clauses, by a collection
of similar facts using the features that constitute the current position.

As an example, recall from the preceding section the temporal extension of
the GDL rules of Figure 1. Let these be augmented by

coordinate(a).

...

coordinate(h).

move_domain(jump(X,Y)) :- coordinate(X), coordinate(Y).

1 { does(player,M,T) : move_domain(M) } 1 :- not terminated(T).

terminated(T) :- terminal(T).

terminated(T+1) :- terminated(T).

:- does(player,M,T), not legal(player,M,T).

:- 0 { terminated(T) : time_domain(T) } 0.

:- terminated(T), not terminated(T-1), not goal(player,100,T).

:- terminated(1), not goal(player,100,1).

The answer sets for this program coincide with the solutions to the original
game; an example is the answer that includes the following atoms.



does(player,jump(d,g),1) does(player,jump(f,b),2)

does(player,jump(c,a),3) does(player,jump(e,h),4)

terminal(5) goal(player,100,5)

The correctness of the method to solve single-player games with the help of
Answer Set Programming is given by the following two theorems.

Theorem 2. Consider a GDL description G with semantics (R, S1, T, l, u, g)
such that R = {r} for some r. Let α1, . . . , αn and S2, . . . , Sn+1 be two se-
quences (n ≥ 0) such that

– S1

{α1}
−→ . . .

{αn}
−→ Sn+1,

– Sn+1 ∈ T , and
– (r, gmax , Sn+1) ∈ g.

Then ext(G) ∪ (2) admits an answer set in which

does(r, α1, 1) . . . does(r, αn, n) (3)

are exactly the positive instances of predicate does.

Proof. From Theorem 1 and the fact that the only answer set for ext(G) coin-
cides with its standard model, and given that none of S1, . . . , Sn is terminal,3

it follows that there is an answer set for ext(G) augmented by the first three
clauses in (2) that includes (3) as the only instances of predicate does. This is
also an answer set for the entire program ext(G) ∪ (2) since

– (r, αi, Si) ∈ l for each i = 1, . . . , n,
– Sn+1 ∈ T , and
– (r, gmax , Sn+1) ∈ g and either Sn 6∈ T or n = 0.

Theorem 3. Consider a GDL description G with semantics (R, S1, T, l, u, g)
such that R = {r} for some r. If A is an answer set for ext(G) ∪ (2), then
there exists n ≥ 0 such that

does(r, α1, 1) . . . does(r, αn, n) (4)

are exactly the positive instances of predicate does in A, and there are states
S2, . . . , Sn+1 such that

– S1

{α1}
−→ . . .

{αn}
−→ Sn+1,

– Sn+1 ∈ T , and
– (r, gmax , Sn+1) ∈ g.

Proof. Since ext(G) ∪ (2) contains only one clause with does in the head,
the clauses labeled ‘1:’ and ‘3:’ in (2) ensure the existence of a finite sequence
α1, . . . , αn (where n ≥ 0) such that (4) are the only positive instances of does

in A. From Theorem 1 and the clauses labeled ‘2:’ and ‘3:’ in (2) it follows that
there are states S2, . . . , Sn+1 such that

S1

{α1}
−→ . . .

{αn}
−→ Sn+1 and Sn+1 ∈ T

Finally, the constraints labeled ‘4:’ in (2) ensure that (r, gmax , Sn+1) ∈ g.

3 which follows from S1

{α1}
−→ . . . Sn

{αn}
−→ Sn+1 ; cf. the conditions stated below (1)



jump,1

jump,2

cell,1

succ,2

a

b

h

legal,2 jump

Fig. 2. An excerpt of a dependency graph for calculating domains of functions and
predicates. Ellipses denote argument positions of functions or predicates, respectively,
while rectangles denote function symbols themselves (including constants).

5 Experimental Results

We have implemented the ASP-based endgame search for single-player games
using Clingo [14] as an off-the-shelf answer set solver in combination with the
general game playing system described in [4]. The answer set programs are au-
tomatically generated from the game description. This requires to first compute
the domain of moves as used in predicate move domain(M) in clauses (2). The
domains, or more precisely supersets thereof, of predicates and functions in a
given game description can, in general, be computed by generating a dependency
graph from the rules. The graph contains one node for every argument position
of every function and predicate symbol, and one node for each function symbol
itself (including each constant). An edge is added between an argument node
and a function symbol node if the latter appears in the respective argument of
a function or predicate in a rule of the game. An edge between two argument
position nodes is added if there is a rule in the game in which the same variable
appears in both arguments. Argument positions in each connected component
of the graph share a domain, and the constants and function symbols in the con-
nected components are the domain elements. Specifically, we take as the overall
domain of the moves that of the second argument of legal.

Figure 2 shows a small excerpt of the dependency graph for our running
example game. The first argument of jump and the first argument of cell are
connected because they share variable X in the game rule

next(cell(X,nocoin)) :- does(player,jump(X,Y)).

Similarly, the second argument of jump and the first argument of cell are
connected because they share variable X in the game rule

next(cell(X,double)) :- does(player,jump(Y,X)).

The init rules along with the succ facts then imply that the first and sec-
ond argument of jump and the first argument of cell all share the domain



Game ASP search time Fluxplayer Solution length

asteroids 0.11 2.60 10
asteroidsparallel 0.72 97.19 10

blocksworldparallel 9.78 1.80 3
duplicatestatelarge 0.16 17.54 14

eightpuzzle 77.11 ∗ 30
factoringaperturescience 0.28 3.86 4

factoringdeterminate 0.05 2.14 5
knightmove (8×8-board) ∗ ∗ (64)
knightstour (6×5-board) 7.33 117.70 30

peg ∗ 9.53 31
ruledepthlinear 0.19 9.60 49

ruledepthquadratic ∗ 12.70 44
statespacelarge 0.27 343.38 14

wargame01 ∗ 39.53 48

Table 2. Results of a complete search for a variety of single-player games, with times
given in seconds. Experiments were run on a 1.66GHz processor. Symbol ∗ indicates
that the ASP system was aborted because it used more than 1 GB RAM, while Flux-
player was aborted after not finding a complete solution within 30 minutes. (We en-
forced these rather strict limits in view of practical play, as endgame search is only one
of several tasks during the contemplation phase or when deciding on the next move.)

{a, . . . , h} . The dependency graph also contains a link from the second argu-
ment of legal to function jump . This is a consequence of the clause

legal(P,jump(X,Y)) :- true(cell(X,single)), ... .

Hence, the domain of moves in this game contains every possible instance of
jump(X, Y ) with X, Y ∈ {a, . . . , h}.

In addition to the domain of moves, the intended maximal depth for an
endgame search defines the domain for the additional time variable which is
used in the temporally extended program as well as in the clauses (2). Given
domain restrictions for all variables, any existing answer set programming system
can be employed to carry out the endgame search for single-player games.

We conducted experiments with all single-player games that were available
at the time of publication through the online repository games.stanford.edu.
Most of these games were used in past AAAI General Game Playing Compe-
titions [6]. For the sake of reproducibility, we only report on the experiments
where ASP search was applied straight away to the initial position. The results
are shown in Table 2. It turns out that most of the games can actually be solved
completely in reasonable, often very short, time that would have allowed a gen-
eral game player to pre-compute a winning strategy during the “contemplation”
phase. The results also show that in most cases the ASP search clearly outper-
forms the previously used forward search in our Fluxplayer—which over the
past competitions proved to be the overall best performing system on single-
player games [4].



6 Conclusion

We have shown how any game specified in the general Game Description Lan-
guage can be mapped onto a normal logic program with time, and we have proved
the correctness of this mapping against the formal game semantics for GDL. On
this basis, we have illustrated how Answer Set Programming can be successfully
deployed as a search method to assist general game players with tackling single-
player games. Due to the closeness between GDL and ASP—in both syntax and
semantics—the latter is ideally suited for performing blind search as part of a
general strategy to solve single-player games.

We have substantiated this claim by reporting on experimenting with single-
player games from past AAAI General Game Playing Competitions. The results
show that actually most of these games could have been solved right from the
start by an off-the-shelf ASP system. As games become more complex, they
cannot be expected to be tackled by blind search alone, but still an ASP-based
component constitutes a valuable addition to any general game playing system
when it comes to performing depth-limited endgame search during game play.

The main limitation for the deployment of current ASP systems is the re-
quired grounding of the program, which easily becomes too large to be of prac-
tical use. Fortunately, a general game playing system can use the sizes of the
domains for each variable to give an estimate of the size of the fully grounded,
temporally extended game rules. On this basis, the system can easily decide on
the fly whether or not it should execute the ASP-based endgame search in the
current position.

For future work, we intend to investigate ways to use ASP for endgame search
in multi-player games on the basis of Theorem 1. This will not be a straightfor-
ward extension of the method presented in this paper, because a single answer
set determines a winning joint strategy for all players rather than a winning
strategy against one or more opponents. Another direction of future work con-
sists in investigating whether the very recently developed method of first-order
Answer Set Programming [20] can be used to help a general game playing system
perform endgame search in cases where grounding is too expensive.
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