
Controlling Semi-Automatic Systems with

FLUX

Michael Thielscher

Dresden University of Technology
mit@inf.tu-dresden.de

The programming of agents that are capable of reasoning about their actions
is a major application of logic programming in Artificial Intelligence. FLUX is
a recent, constraint logic programming-based method for designing reasoning
agents that can sense, act, and plan under incomplete information [3]. An agent
program in this language consists of a background theory, which endows the
agent with the necessary knowledge of its actions, along with a high-level act-
ing and planning strategy. The reasoning facilities are provided by a constraint
solver, which is formally based on the action theory of the fluent calculus and
its solution to the frame problem under incomplete states.

We have extended FLUX by a method that allows agents to reason, plan and
act in semi-automatic environments, in which actions can initiate whole chains
of indirect or delayed effects. Our approach addresses complex issues such as
simultaneous, additive changes of state variables under incomplete information.
As a case study, we have developed a control program for a complex dynamic
environment of a steam boiler. A model of a real system, the domain involves
uncertainty in form of varying output of the water pumps, which requires the
agent to reason and plan under incomplete information. Moreover, simple actions
in this system, such as turning off a pump, may trigger a whole chain of indirect
effects: Another pump may automatically change to high capacity, which in turn
may cause a valve to open, etc. Furthermore, every one of these changes has a
specific effect on the water level in the boiler, which in turn affects the quantity
of steam that is produced.

As an innovative and versatile way of modelling additive fluents and delayed
effects, we introduce the notion of a momentum fluent. Such a fluent describes
a property of the momentum in a physical system rather than a static property.
An action may cause several momentum fluents to become true, each of which
represents a specific contribution to the same fluent (such as the water level in
the steam boiler). Additive fluents can thus be modelled. In a similar fashion,
an action which has a delayed effect can be specified as bringing about a mo-
mentum fluent that eventually causes the actual delayed effect. Having triggered
this effect, the momentum fluent itself may either automatically terminate, or
continue to hold in case of recurring effects. On the other hand, the agent may
have at its disposal the intervening action of terminating the momentum fluent
before it produces the delayed effect.

The ramifications of an action in a semi-automatic environment are the con-
sequence of causal connections among the components. In general, the occur-
rence of an indirect effect depends on the both the current state and the ef-



fects that have already been caused. To specify the causal relations among the
components of a dynamic system, we have extended FLUX by the predicate
causes(Z1,P1,N1,Z2,P2,N2). Its intuitive meaning is that if positive and neg-
ative effects P1 and N1, respectively, have just occurred in state Z1 , then this
causes an automatic update to state Z2 with positive and negative effects P2

and N2, respectively.
On the basis of the individual causal relationships of a domain, the indirect

consequences of an action are inferred as “causal chains.” To this end, the causal
relationships together are viewed as a graph in which each node represents a
state and each edge represents the transformation from one state into another
as a consequence of a single indirect effect. Sinks in this graph are nodes which
have no outgoing edges, thus representing a stable state that admits no (further)
indirect effect. To infer all indirect effects of an action one therefore has to find
a sink, starting in the node which represents the status of the environment after
the direct effect of the respective action. To this end, we have defined the new
FLUX predicate ramify(Z1,P,N,Z2) for updating a (possibly incomplete) state
Z1 by positive and negative effects P and N, respectively, and then automatically
leading to a sink Z2 through a chain of causally triggered transitions.

The formal underpinnings of our method are given by a solution to the ram-
ification problem in the action theory of fluent calculus [2]. Using the notion
of causal propagation, this extensive solution accounts for mutually dependent
components (such as connected controls of pumps) and multiple changes of state
variables (such as needed for additive changes). In comparison with previous
approaches of modelling semi-automatic environments using solutions to the
ramification problem [4, 1], our method addresses complex issues such as simul-
taneous, additive changes of state variables and delayed effects. Moreover, our
solution has been embedded in programming language for agents that reason
about their actions and sensor information and that can plan under incomplete
information.

The full paper as well as the FLUX program for steam boiler control are
available for download at our web site

fluxagent.org

References

1. S. McIlraith. An axiomatic solution to the ramification problem (sometimes).
Artificial Intelligence, 116(1–2):87–121, 2000.

2. M. Thielscher. Ramification and causality. Artificial Intelligence, 89(1–2):317–364,
1997.

3. M. Thielscher. FLUX: A Logic Programming Method for Reasoning Agents. The-

ory and Practise of Logic Programming, 2004.
4. R. Watson. An application of action theory to the space shuttle. In Proc. of PADL,

vol. 1551 of LNCS, 290–304, 1998.


