
Reasoning about actions with CHRs
and Finite Domain Constraints

Michael Thielscher?

Dresden University of Technology
mit@inf.tu-dresden.de

Abstract. We present a CLP-based approach to reasoning about ac-
tions in the presence of incomplete states. Constraints expressing neg-
ative and disjunctive state knowledge are processed by a set of special
Constraint Handling Rules. In turn, these rules reduce to standard fi-
nite domain constraints when handling variable arguments of single state
components. Correctness of the approach is proved against the general
action theory of the Fluent Calculus. The constraint solver is used as
the kernel of a high-level programming language for agents that reason
and plan. Experiments have shown that the constraint solver exhibits
excellent computational behavior and scales up well.

1 Introduction

One of the most challenging and promising goals of Artificial Intelligence re-
search is the design of autonomous agents, including robots, that explore par-
tially known environments and that are able to act sensibly under incomplete
information. To attain this goal, the paradigm of Cognitive Robotics [5] is to
endow agents with the high-level cognitive capabilities of reasoning and plan-
ning: Exploring their environment, agents need to reason when they interpret
sensor information, memorize it, and draw inferences from combined sensor data.
Acting under incomplete information, agents employ their reasoning facilities to
ensure that they are acting cautiously, and they plan ahead some of their actions
with a specific goal in mind. To this end, intelligent agents form a mental model
of their environment, which they constantly update to reflect the changes they
have effected and the sensor information they have acquired.

Having agents maintain an internal world model is necessary if we want
them to choose their actions not only on the basis of the current status of their
sensors but also by taking into account what they have previously observed or
done. Moreover, the ability to reason about sensor information is necessary if
properties of the environment can only indirectly be observed and require the
agent to combine observations made at different stages. The ability to plan allows
an agent to first calculate the effect of different action sequences in order to help
it choosing one that is appropriate under the current circumstances.

? Parts of the work reported in this paper have been carried out while the author was
a visiting researcher at the University of New South Wales in Sydney, Australia.

While standard programming languages such as Java do not provide general
reasoning facilities for agents, logic programming constitutes the ideal paradigm
for designing agents that are capable of reasoning about their actions [9]. Exam-
ples of existing LP-systems deriving from general action theories are GOLOG [6,
8], based on the Situation Calculus [7], or the robot control language developed
in [10], based on the Event Calculus [4]. However, a disadvantage of both these
systems is that knowledge of the current state is represented indirectly via the
initial conditions and the actions which the agent has performed up to a point.
As a consequence, each time a condition is evaluated in an agent program, the
entire history of actions is involved in the computation. This requires ever in-
creasing computational effort as the agent proceeds, so that this concept does
not scale up well to long-term agent control [13].

An explicit state representation being a fundamental concept in the Fluent
Calculus [11], this representation formalism offers an alternative theory as the
formal underpinnings for a high-level agent programming method. In this paper,
we present a CLP approach to reasoning about actions which implements the
Fluent Calculus. Incomplete states are represented as open lists of state proper-
ties, that is, lists with a variable tail. Negative and disjunctive state knowledge
is encoded by constraints. We present a set of so-called Constraint Handling
Rules (CHRs) [2] for combining and simplifying these constraints. In turn, these
rules reduce to standard finite domain constraints when handling variable argu-
ments of single state components. Based on their declarative interpretation, our
CHRs are verified against the foundational axioms of the Fluent Calculus. The
constraint solver is used as the kernel of the high-level programming language
FLUX (for: Fluent Executor) which allows the design of intelligent agents that
reason and plan on the basis of the Fluent Calculus [12]. Studies have shown
that FLUX and in particular the constraint solver scale up well [13].

The paper is organized as follows: In Section 2, we recapitulate the basic
notions and notations of the Fluent Calculus as the underlying theory for our
CLP-based approach to reasoning about actions. In Section 3, we present a set of
CHRs for constraints expressing negative and disjunctive state knowledge, and
we prove their correctness wrt. the foundational axioms of the Fluent Calculus.
In Section 4, we embed the constraint solver into a logic program for reason-
ing about actions, which, too, is verified against the underlying semantics of
the Fluent Calculus. In Section 5, we give a summary of studies showing the
computational merits of our approach. We conclude in Section 6.

The constraint solver, the general FLUX system, the example agent program,
and the accompanying papers all are available for download at our web site
http://fluxagent.org.

2 Reasoning about states with the Fluent Calculus

Throughout the paper, we will use the following example of an agent in a dynamic
environment: Consider a cleaning robot which, in the evening, has to empty the
waste bins in the alley and rooms of the floor of an office building. The robot

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

Fig. 1. Layout of a sample office floor and a scenario in which four offices are occupied.
In the right hand side the locations are depicted in which the robot senses light.

shall not, however, disturb anyone working in late. The robot is equipped with
a light sensor which is activated whenever the robot is adjacent to a room that
is occupied, without being able to tell which direction the light comes from. An
instance of this problem is depicted in Fig. 1. The task is to program the cleaning
robot so as to empty as many bins as possible without risking to burst into an
occupied office. This problem illustrates two challenges raised by incomplete
state knowledge: Agents have to act cautiously, and they need to interpret and
logically combine sensor information acquired over time.

The Fluent Calculus is an axiomatic theory of actions that provides the
formal underpinnings for agents to reason about their actions [11]. Formally,
it is a many-sorted predicate logic language with four standard sorts for ac-
tions and situations (as in the Situation Calculus) and for fluents (i.e., atomic
state properties) and states. For the cleaning robot domain, for example, we
will use these four fluents (i.e., mappings into the sort fluent): At(x, y), rep-
resenting that the robot is at (x, y); Facing(d), representing that the robot
faces direction d ∈ {1, . . . , 4} (denoting, resp., north, east, south, and west);
Cleaned(x, y), representing that the waste bin at (x, y) has been emptied; and
Occupied(x, y), representing that (x, y) is occupied. We make the standard as-
sumption of uniqueness-of-names, UNA[At , Faces,Cleaned ,Occupied].1

States are built up from fluents (as atomic states) and their conjunction,
using the function ◦ : state × state 7→ state along with the constant ∅ :
state denoting the empty state. For example, the term At(1, 1)◦(Facing(1)◦z)
represents a state in which the robot is in square (1, 1) facing north while other
fluents may hold, too, summarized in the variable sub-state z.

A fundamental notion is that of a fluent to hold in a state. Fluent f is said
to hold in state z just in case z can be decomposed into two states one of
which is the singleton f . For notational convenience, we introduce the macro
Holds(f, z) as an abbreviation for the corresponding equational formula:

Holds(f, z)
def
= (∃z′) z = f ◦ z′ (1)

This definition is accompanied by the following foundational axioms of the Fluent

1 UNA[h1, . . . , hn]
def
=
∧

i 6=j
hi(~x) 6= hj(~y) ∧

∧
i
[hi(~x) = hi(~y) ⊃ ~x = ~y].

Calculus, which constitute a special theory of equality of state terms.

Definition 1. Assume a signature which includes the sorts fluent and state
such that fluent is a sub-sort of state, along with the functions ◦, ∅ of sorts
as above. The foundational axioms Σstate of the Fluent Calculus are:2

1. Associativity, commutativity, idempotence, and unit element,

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3) z ◦ z = z
z1 ◦ z2 = z2 ◦ z1 z ◦ ∅ = z

(2)

2. Empty state axiom,
¬Holds(f, ∅) (3)

3. Irreducibility and decomposition,

Holds(f1, f) ⊃ f1 = f (4)

Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨Holds(f, z2) (5)

4. State equivalence and existence of states,

(∀f) (Holds(f, z1) ≡ Holds(f, z2)) ⊃ z1 = z2 (6)

(∀P)(∃z)(∀f) (Holds(f, z) ≡ P (f)) (7)

where P is a second-order predicate variable of sort fluent.

Axioms (2) essentially characterize “◦” as the union operation with ∅ as the
empty set of fluents. Associativity allows us to omit parentheses in nested ap-
plications of “◦”. Axiom (6) says that two states are equal if they contain the
same fluents, and second-order axiom (7) guarantees the existence of a state for
any combination of fluents.

The foundational axioms can be used to reason about incomplete state spec-
ifications and acquired sensor information. Consider, e.g., the definition of what
it means for our cleaning robot to sense light in a square (x, y) in some state z:

LightPerception(x, y, z) ≡
Holds(Occupied(x+ 1, y), z) ∨Holds(Occupied(x, y + 1), z)
∨Holds(Occupied(x− 1, y), z) ∨Holds(Occupied(x, y − 1), z)

(8)

Suppose that at the beginning the robot only knows that the following loca-
tions are not occupied: its home (1, 1) (axiom (10) below), the squares in the
alley (axiom (11) below), and any location outside the boundaries of the office
floor (axioms (12),(13) below). Suppose further that the robot already went to
clean (1, 1), (1, 2), and (1, 3), sensing light in the last square only (c.f. Fig. 1).
Thus the current state, ζ , is known to be

ζ = At(1, 3) ◦ Facing(1) ◦ Cleaned(1, 1) ◦ Cleaned(1, 2) ◦ Cleaned(1, 3) ◦ z (9)

2 Throughout the paper, free variables in formulas are assumed universally quanti-
fied. Variables of sorts fluent, state, action, and sit shall be denoted by the
letters f , z , a, and s, resp. The function “◦” is written in infix notation.

for some z, along with the following axioms:

¬Holds(Occupied(1, 1), z) (10)

¬Holds(Occupied(1, 5), z) ∧ . . . ∧ ¬Holds(Occupied(1, 2), z) (11)

(∀x) (¬Holds(Occupied(x, 0), z) ∧ ¬Holds(Occupied(x, 6), z)) (12)

(∀y) (¬Holds(Occupied(0, y), z) ∧ ¬Holds(Occupied(6, y), z)) (13)

¬LightPerception(1, 1, ζ) ∧ ¬LightPerception(1, 2, ζ) (14)

LightPerception(1, 3, ζ) (15)

From (14) and (8), ¬Holds(Occupied(2, 1), ζ)∧¬Holds(Occupied(2, 2), ζ). With
regard to (9), the foundational axioms of decomposition, (5), and irreducibil-
ity, (4), along with uniqueness-of-names imply

¬Holds(Occupied(2, 1), z) ∧ ¬Holds(Occupied(2, 2), z) (16)

On the other hand, (15) and (8) imply

Holds(Occupied(2, 3), ζ) ∨Holds(Occupied(1, 4), ζ)
∨Holds(Occupied(0, 3), ζ) ∨Holds(Occupied(1, 2), ζ)

As above, with regard to (9), the foundational axioms of decomposition and
irreducibility along with uniqueness-of-names imply

Holds(Occupied(2, 3), z) ∨Holds(Occupied(1, 4), z)
∨Holds(Occupied(0, 3), z) ∨Holds(Occupied(1, 2), z)

From (13) and (11) it follows that

Holds(Occupied(2, 3), z) ∨ Holds(Occupied(1, 4), z) (17)

This disjunction cannot be reduced further, that is, at this stage the robot does
not know whether the light in (1, 3) comes from office (2, 3) or (1, 4) (or both,
for that matter). Suppose, therefore, the cautious robot goes back, turns east,
and continues with cleaning (2, 2), which it knows to be unoccupied according
to (16). Sensing no light there (c.f. Fig. 1), the new state ζ ′ is known to be
At(2, 2)◦Facing(2)◦Cleaned(1, 1)◦Cleaned(1, 2)◦Cleaned(1, 3)◦Cleaned(2, 2)◦z
for some z such that (10)–(13),(16),(17) along with ¬LightPerception(2, 2, ζ ′).
From (8), ¬Holds(Occupied(2, 3), ζ ′); hence, decomposition and irreducibility
along with uniqueness-of-names imply ¬Holds(Occupied(2, 3), z); hence by (17),
Holds(Occupied(1, 4), z), that is, now the robot knows that (1, 4) is occupied.

3 Solving State Constraints

Based on the axiomatic foundation of the Fluent Calculus, in the following we
develop a provably correct CLP-approach for reasoning about incomplete state
specifications. To begin with, incomplete states are encoded by open lists of
fluents (possibly containing variables):

Z = [F1,...,Fk | _]

It is assumed that the arguments of fluents are encoded by natural or rational
numbers, which enables the use of a standard arithmetic solver for constraints
on partially known arguments. Negative and disjunctive state knowledge is ex-
pressed by the following state constraints:

constraint semantics

not_holds(F,Z) ¬Holds(f, z)

not_holds_all(F,Z) (∀~x)¬Holds(f, z) , where ~x variables in f

or([F1,...,Fn],Z)
∨n

i=1 Holds(fi, z)

The state constraints have been carefully designed so as to be sufficiently ex-
pressive while allowing for efficient constraint solving. An auxiliary constraint
duplicate_free(Z) is used to stipulate that a list of fluents contains no multiple
occurrences, thus reflecting the foundational axiom of idempotence of “◦” in the
Fluent Calculus. As an example, the following clause encodes the specification
of state ζ of Section 2 (c.f. (9) and (8), resp.):

zeta(Zeta) :-

Zeta = [at(1,3),facing(1),cleaned(1,1),cleaned(1,2),cleaned(1,3) | Z],

not_holds(occupied(1,1),Z),

not_holds(occupied(1,5),Z), ..., not_holds(occupied(1,2),Z),

not_holds_all(occupied(_,0),Z), not_holds_all(occupied(_,6),Z),

not_holds_all(occupied(0,_),Z), not_holds_all(occupied(6,_),Z),

light_perception(1,1,false,Zeta), light_perception(1,2,false,Zeta),

light_perception(1,3,true,Zeta),

duplicate_free(Zeta).

light_perception(X,Y,Percept,Z) :-

XE#=X+1, XW#=X-1, YN#=Y+1, YS#=Y-1,

(Percept=false,

not_holds(occupied(XE,Y),Z), not_holds(occupied(X,YN),Z),

not_holds(occupied(XW,Y),Z), not_holds(occupied(X,YS),Z)

; Percept=true, or([occupied(XE,Y),occupied(X,YN),

occupied(XW,Y),occupied(X,YS)],Z)).

Here and in the following we employ a standard constraint domain, namely, that
of finite domains, which includes arithmetic constraints over rational numbers
using the equality, inequality, and ordering predicates #=,#<,#> along with the
standard functions +,-,*; range constraints (written X::[a..b]); and logical
combinations using #/\ and #\/ for conjunction and disjunction, resp.

Our approach is based on so-called Constraint Handling Rules, which support
the declarative programming of constraint solvers [2]. CHRs are of the form

H1,...,Hm <=> G1,...,Gk | B1,...,Bn.

where the head H1, . . . ,Hm are constraints (m ≥ 1); the guard G1, . . . , Gk are
Prolog literals (k ≥ 0); and the body B1, . . . , Bn are constraints (n ≥ 0). An

not_holds(_,[]) <=> true. %1

not_holds(F,[F1|Z]) <=> neq(F,F1), not_holds(F,Z). %2

not_holds_all(_,[]) <=> true. %3

not_holds_all(F,[F1|Z]) <=> neq_all(F,F1), not_holds_all(F,Z). %4

not_holds_all(F,Z) \ not_holds(G,Z) <=> instance(G,F) | true. %5

not_holds_all(F,Z) \ not_holds_all(G,Z) <=> instance(G,F) | true. %6

duplicate_free([]) <=> true. %7

duplicate_free([F|Z]) <=> not_holds(F,Z), duplicate_free(Z). %8

neq(F,F1) :- or_neq(exists,F,F1).

neq_all(F,F1) :- or_neq(forall,F,F1).

or_neq(Q,Fx,Fy) :- Fx =.. [F|ArgX], Fy =.. [G|ArgY],

(F=G -> or_neq(Q,ArgX,ArgY,D), call(D) ; true).

or_neq(_,[],[],(0#\=0)).

or_neq(Q,[X|X1],[Y|Y1],D) :-

or_neq(Q,X1,Y1,D1),

(Q=forall, var(X) ->

(binding(X,X1,Y1,YE) -> D=((Y#\=YE)#\/D1) ; D=D1) ;

D=((X#\=Y)#\/D1)).

binding(X,[X1|ArgX],[Y1|ArgY],Y) :- X==X1 -> Y=Y1

; binding(X,ArgX,ArgY,Y).

Fig. 2. CHRs for negation and multiple occurrences. The notation H1 \ H2 <=> G | B is
an abbreviation for H1,H2 <=> G | H1,B.

empty guard is omitted; the empty body is denoted by True . The declarative
interpretation of a CHR is given by the formula

(∀~x) (G1 ∧ . . . ∧Gk ⊃ [H1 ∧ . . . ∧Hm ≡ (∃~y) (B1 ∧ . . . ∧Bn)])

where ~x are the variables in both guard and head and ~y are the variables which
additionally occur in the body. The procedural interpretation of a CHR is given
by a transition in a constraint store: If the head can be matched against elements
of the constraint store and the guard can be derived, then the constraints of the
head are replaced by the constraints of the body.

3.1 Handling Negation

Fig. 2 depicts the first part of the constraint solver, which contains the CHRs and
auxiliary clauses for the two negation constraints and the auxiliary constraint

on multiple occurrences. In the following, these rules are proved correct wrt. the
foundational axioms of the Fluent Calculus.

To begin with, consider the auxiliary clauses, which define a finite domain
constraint that expresses the inequality of two fluent terms. By or neq inequal-
ity of two fluents with arguments ArgX = [X1, . . . , Xn] and ArgY = [Y1, . . . , Yn]
is decomposed into the arithmetic constraint X1 6= Y1∨ . . .∨Xn 6= Yn. Two cases
are distinguished depending on whether the variables in the first term are ex-
istentially or universally quantified. In the latter case, a simplified disjunction
is generated, where the variables of the first fluent are discarded while possi-
bly giving rise to dependencies among the arguments of the second fluent. E.g.,
neq all(f(, a,), f(U, V, W)) reduces to a 6= V and neq all(f(X, X, X), f(U, V, W))
reduces to U 6= V ∨ V 6= W. To formally capture the universal quantification, we
define the notion of a schematic fluent f = h(~x,~r) where ~x denotes the vari-
able arguments in f . The following observation implies the correctness of the
constraints generated by the auxiliary clauses.

Observation 2 Consider a set F of functions into sort fluent. Consider a
fluent f1 = g(r1, . . . , rm), a schematic fluent f2 = g(x1, . . . , xk, rk+1, . . . , rm),
and a fluent f = h(t1, . . . , tn). Then

1. if g 6= h, then UNA[F] |= f1 6= f and UNA[F] |= (∀~x) f2 6= f ;
2. if g = h, then m = n and UNA[F] |= f1 6= f ≡ r1 6= t1 ∨ . . . ∨ rm 6= tn

and UNA[F] |= (∀x) (f2 6= f ≡ rk+1 6= tk+1∨. . .∨rm 6= tn∨
∨

i 6=j
xi =xj

ti 6= tj).

CHRs 1–4 for negation constraints can then be justified by the foundational
axioms of the Fluent Calculus, as the following proposition shows.

Proposition 3. Σstate entails,

1. ¬Holds(f, ∅); and
2. ¬Holds(f, f1 ◦ z) ≡ f 6= f1 ∧ ¬Holds(f, z).

Likewise, if f = g(~x,~r) is a schematic fluent, then Σstate entails,

3. (∀~x)¬Holds(f, ∅); and
4. (∀~x)¬Holds(f, f1 ◦ z) ≡ (∀~x) f 6= f1 ∧ (∀~x)¬Holds(f, z).

Proof. Claim 1 follows by the empty state axiom. Regarding claim 2 we prove
that Holds(f, f1 ◦ z) ≡ f = f1 ∨ Holds(f, z). The “⊃” direction follows by
foundational axioms (5) and (4). For the “⊂” direction, if f = f1, then f1 ◦ z =
f ◦z, hence Holds(f, f1◦z). Likewise, if Holds(f, z), then z = f ◦z′ for some z′,
hence f1 ◦ z = f1 ◦ f ◦ z′, hence Holds(f, f1 ◦ z). The proof of 3 and 4 is similar.

Correctness of CHRs 5 and 6, which remove subsumed negative constraints,
is obvious as (∀~x)¬Holds(f1, z) implies ¬Holds(f2, z) and (∀~y)¬Holds(f2, z),
resp., for a schematic fluent f1 and a fluent f2 such that f1θ = f2 for some θ.
Finally, CHRs 7 and 8 for the auxiliary constraint on multiple occurrences are
correct since the empty list contains no duplicate elements and a non-empty list
contains no duplicates iff the head does not occur in the tail and the tail itself
is free of duplicates.

or([F],Z) <=> F\=eq(_,_) | holds(F,Z). %9

or(V,Z) <=> \+ (member(F,V),F\=eq(_,_)) %10

| or_and_eq(V,D), call(D).

or(V,[]) <=> member(F,V,W), F\=eq(_,_) | or(W,[]). %11

or(V,Z) <=> member(eq(X,Y),V), %12

or_neq(exists,X,Y,D), \+ call(D) | true.

or(V,Z) <=> member(eq(X,Y),V,W), %13

\+ (and_eq(X,Y,D), call(D)) | or(W,Z).

not_holds(F,Z) \ or(V,Z) <=> member(G,V,W), F==G | or(W,Z). %14

not_holds_all(F,Z) \ or(V,Z) <=> member(G,V,W), %15

instance(G,F) | or(W,Z).

or(V,[F|Z]) <=> or(V,[],[F|Z]). %16

or(V,W,[F|Z]) <=> member(F1,V,V1), \+ F\=F1 %17

| (F1==F -> true ; F1=..[_|ArgX], F=..[_|ArgY],

or(V1, [eq(ArgX,ArgY),F1|W], [F|Z])).

or(V,W,[_|Z]) <=> append(V,W,V1), or(V1,Z). %18

and_eq([],[],(0#=0)).

and_eq([X|X1],[Y|Y1],D) :- and_eq(X1,Y1,D1), D=((X#=Y)#/\D1).

or_and_eq([],(0#\=0)).

or_and_eq([eq(X,Y)|Eq],(D1#\/D2)) :- or_and_eq(Eq,D1), and_eq(X,Y,D2).

member(X,[X|T],T).

member(X,[H|T],[H|T1]) :- member(X,T,T1).

Fig. 3. CHRs for the disjunctive constraint.

3.2 Handling Disjunction

Fig. 3 depicts the second part of the constraint solver, which contains the CHRs
and auxiliary clauses for the disjunctive constraint. Internally, a disjunctive con-
straint may contain, besides fluents, atoms of the form eq(~r,~t) where ~r and ~t
are lists of equal length. Such a general disjunction or([δ1, . . . , δk], Z) means

k∨
i=1

{
Holds(F, Z) if δi is fluent F
~x = ~y if δi is eq(~x, ~y)

(18)

CHR 9 in Fig. 3 simplifies singleton disjunctions according to (18). CHR 10
reduces a pure equational disjunction to a finite domain constraint. Its correct-
ness follows directly from (18), too. CHR 11 simplifies a disjunction applied to
the empty state. It is justified by the empty state axiom, (3), which entails

[Holds(f, ∅) ∨ Ψ] ≡ Ψ

for any formula Ψ . CHRs 12 and 13 apply to disjunctions which include a de-
cided equality. If the equality is true, then the entire disjunction is true, else
if the equality is false, then the disjunction gets simplified. Correctness follows
from

~x = ~y ⊃ [~x = ~y ∨ Ψ ≡ True] and ~x 6= ~y ⊃ [~x = ~y ∨ Ψ ≡ Ψ]

The next two CHRs, 14 and 15, constitute unit resolution steps. They are justi-
fied by

¬Holds(f, z) ⊃ [Holds(f, z) ∨ Ψ ≡ Ψ]
(∀~x)¬Holds(f1, z) ⊃ [Holds(f2, z) ∨ Ψ ≡ Ψ]

given that f1θ = f2 for some θ,
Finally, CHRs 16-18 in Fig. 3 are used to propagate a disjunction through a

non-variable state. Given the constraint or(δ, [F | Z]), the basic idea is to infer
all possible bindings of F with fluents in δ. The rules use the auxiliary con-
straint or(δ, γ, [F | Z]) with the intended semantics or(δ, [F | Z]) ∨ or(γ, Z), that
is, δ contains the fluents that have not yet been evaluated against the head F

of the state list, while γ contains those fluents that have been evaluated. As
an example, consider the constraint or([f(a,V),f(W,b)],[f(X,Y)|Z]) which,
upon being processed, yields

or([f(a,V),f(W,b),eq([a,V],[X,Y]),eq([W,b],[X,Y])], Z)

The rules are justified by the following proposition.

Proposition 4. Consider a Fluent Calculus signature with a set F of func-
tions into sort fluent. Foundational axioms Σstate and uniqueness-of-names
UNA[F] entail each of the following:

1. Ψ ≡ [Ψ ∨
∨0

i=1 Ψi];
2. [Holds(f(~x), f(~y) ◦ z) ∨ Ψ1] ∨ Ψ2 ≡ Ψ1 ∨ [~x = ~y ∨Holds(f(~x), z) ∨ Ψ2];
3. if

∧n
i=1 fi 6= f , then [

∨n
i=1 Holds(fi, f ◦ z) ∨ Ψ] ≡ [

∨n
i=1 Holds(fi, z) ∨ Ψ].

Proof. Claim 1 is obvious. Claims 2 and 3 follow from the foundational axioms
of decomposition and irreducibility.

This completes the constraint solver. As an example, running the specification
from the beginning of this section results in

?- zeta(Zeta).

Zeta=[at(1,3),facing(1),cleaned(1,1),cleaned(1,2),cleaned(1,3) | Z]

Constraints:

or([occupied(1,4),occupied(2,3)], Z)

...

Adding the information that there is no light in (2, 2), the system is able to infer
that (4, 1) must be occupied:

?- zeta(Zeta), light_perception(2,2,Zeta,false).

Zeta=[at(1,3),facing(1),cleaned(1,1),cleaned(1,2),cleaned(1,3),

occupied(4,1) | Z]

Constraints:

not_holds(occupied(2,3), Z)

...

While the FLUX constraint system is sound, it may not enable agents to
draw all conclusions that follow logically from a state specification because the
underlying standard arithmetic solver trades completeness for efficiency. This is
due to the fact that a conjunction or a disjunction is evaluated only if one of its
atoms has been decided. The advantage of so doing is that the computational
effort of evaluating a new constraint is linear in the size of the constraint store
while a complete solver would require exponential time for this task.

4 Reasoning About Actions

In this section, we embed our constraint solver into a logic program for rea-
soning about the effects of actions based on the Fluent Calculus. Generalizing
previous approaches [3, 1], the Fluent Calculus provides a solution to the fun-
damental frame problem in the presence of incomplete states [11]. The solution
is based on a rigorously axiomatic characterizations of addition and removal of
(finitely many) fluents from incompletely specified states. The following defini-
tion introduces the macro equation z1 − τ = z2 with the intended meaning
that state z2 is state z1 minus the fluents in the finite state τ . The compound
macro z2 = (z1 − ϑ−) + ϑ+ means that state z2 is state z1 minus the fluents
in ϑ− plus the fluents in ϑ+ :

z1 − ∅ = z2
def
= z2 = z1

z1 − f = z2
def
= (z2 = z1 ∨ z2 ◦ f = z1) ∧ ¬Holds(f, z2)

z1 − (f1 ◦ f2 ◦ . . . ◦ fn) = z2
def
= (∃z) (z = z1 − f ∧ z2 = z − (f2 ◦ . . . ◦ fn))

(z1 − ϑ−) + ϑ+ = z2
def
= (∃z) (z = z1 − ϑ− ∧ z2 = z ◦ ϑ+)

where both ϑ+, ϑ− are finitely many fluent terms connected by “◦”. The
crucial item is the second one, which defines removal of a single fluent f using a
case distinction: Either z1− f equals z1 (which applies in case ¬Holds(f, z1)),
or z1 − f plus f equals z1 (which applies in case Holds(f, z1)).

Fig. 4 depicts a set of clauses which encode the solution to the frame problem
on the basis of the constraint solver for the Fluent Calculus. The program culmi-
nates in the predicate Update(z1, ϑ

+, ϑ−, z2), by which an incomplete state z1
is updated to z2 according to positive and negative effects ϑ+ and ϑ−, resp.
The first two clauses in Fig. 4 encode macro (1). Correctness of this definition
follows from the foundational axioms of decomposition and irreducibility. The
ternary Holds(f, z, z′) encodes Holds(f, z) ∧ z′ = z − f . The following propo-
sition implies that the definition is correct wrt. the macro definition of fluent
removal, under the assumption that lists are free of duplicates.

holds(F,[F|_]).

holds(F,Z) :- nonvar(Z), Z=[F1|Z1], \+ F==F1, holds(F,Z1).

holds(F,[F|Z],Z).

holds(F,Z,[F1|Zp]) :- nonvar(Z), Z=[F1|Z1], \+ F==F1, holds(F,Z1,Zp).

minus(Z,[],Z).

minus(Z,[F|Fs],Zp) :- (\+ not_holds(F,Z) -> holds(F,Z,Z1) ;

\+ holds(F,Z) -> Z1 = Z ;

cancel(F,Z,Z1), not_holds(F,Z1)),

minus(Z1,Fs,Zp).

plus(Z,[],Z).

plus(Z,[F|Fs],Zp) :- (\+ holds(F,Z) -> Z1=[F|Z] ;

\+ not_holds(F,Z) -> Z1=Z ;

cancel(F,Z,Z2), Z1=[F|Z2], not_holds(F,Z2)),

plus(Z1,Fs,Zp).

update(Z1,ThetaP,ThetaN,Z2) :- minus(Z1,ThetaN,Z), plus(Z,ThetaP,Z2).

Fig. 4. The foundational clauses for reasoning about actions.

Proposition 5. Axioms Σstate ∪ {z = f1 ◦ z1 ∧ ¬Holds(f1, z1)} entails

Holds(f, z) ∧ z′ = z − f ≡
f = f1 ∧ z′ = z1
∨ (∃z′′) (f 6= f1 ∧Holds(f, z1) ∧ z′′ = z1 − f ∧ z′ = f1 ◦ z′′)

Proof. Suppose f = f1. If Holds(f, z) ∧ z′ = z − f , then z′ = (f1 ◦ z1) − f1
since z = f1 ◦ z1 ; hence, z′ = z1 since ¬Holds(f1, z1). Conversely, if z′ = z1,
then z′ = (f1 ◦ z1)− f1 = z− f , and Holds(f, z) since z = f1 ◦ z1 and f1 = f .

Suppose f 6= f1. If Holds(f, z) and z′ = z − f , then Holds(f, z1) and
z′ = (f1◦z1)−f ; hence, there is some z′′ such that z′′ = z1−f and z′ = f1◦z′′.
Conversely, if Holds(f, z1) ∧ z′′ = z1 − f ∧ z′ = f1 ◦ z′′, then Holds(f, z) and
z′ = (f1 ◦ z1)− f ; hence, Holds(f, z) ∧ z′ = z − f .

Removal and addition of finitely many fluents is defined recursively. The
recursive clause for minus says that if ¬Holds(f, z) is unsatisfiable (that is, f
is known to hold in z), then subtraction of f is given by the definition of the
ternary Holds predicate. Otherwise, if Holds(f, z) is unsatisfiable (that is, f
is known to be false in z), then hence z− f equals z. If, however, the status of
the fluent is not entailed by the state specification at hand for z , then partial
knowledge of f in Φ(z) may not transfer to the resulting state z−f and, hence,
needs to be cancelled. Consider, for example, the partial state specification

Holds(F (y), z) ∧ [Holds(F (A), z) ∨Holds(F (B), z)] (19)

cancel(F,Z1,Z2) :- var(Z1) -> cancel(F,Z1), cancelled(F,Z1), Z2=Z1 ;

Z1=[G|Z], (F\=G -> cancel(F,Z,Z3), Z2=[G|Z3]

; cancel(F,Z,Z2)).

cancel(F,Z) \ not_holds(G, Z) <=> \+ F\=G | true.

cancel(F,Z) \ not_holds_all(G, Z) <=> \+ F\=G | true.

cancel(F,Z) \ or(V,Z) <=> member(G,V), \+ F\=G | true.

cancel(F,Z), cancelled(F,Z) <=> true.

Fig. 5. Auxiliary clauses and CHRs for canceling partial information about a fluent.

This formula does not entail Holds(F (A), z) nor ¬Holds(F (A), z). So what can
be inferred about the state z − F (A)? Macro expansion of “−” implies that
Σstate ∪ {(19)} ∪ {z1 = z − F (A)} entails ¬Holds(F (A), z1). But it does not
follow whether F (y) holds in z1 or whether F (B) does, since

Σstate ∪ {(19)} ∪ {z1 = z − F (A)} |=
[y = A ⊃ ¬Holds(F (y), z1)] ∧
[y 6= A ⊃ Holds(F (y), z1)] ∧
[¬Holds(F (B), z) ⊃ ¬Holds(F (B), z1)] ∧
[Holds(F (B), z) ⊃ Holds(F (B), z1)]

Therefore, in the clause for miunus all partial information concerning f in
the current state z is cancelled prior to asserting that f does not hold in the
resulting state. The definition of cancellation of a fluent f is given in Fig. 5.
In the base case, all negative and disjunctive state information affected by f is
cancelled via the constraint cancel(f, z). The latter is resolved itself by the aux-
iliary constraint cancelled(f, z), indicating the termination of the cancellation
procedure. In the recursive clause for cancel(f, z1, z2), each atomic, positive
state information that unifies with f is cancelled.

In a similar fashion, the recursive clause for plus says that if Holds(f, z)
is unsatisfiable (that is, f is known to be false in z), then f is added to z;
otherwise, if ¬Holds(f, z) is unsatisfiable (that is, f is known to hold in z),
then z + f equals z. But if the status of the fluent is not entailed by the
state specification at hand for z , then all partial information about f in z is
cancelled prior to adding f to the state and asserting that f does not hold in
the tail.

The definitions for minus and plus imply that a fluent to be removed or
added does not hold or hold, resp., in the resulting state. Moreover, by definition
cancellation does not affect the parts of the state specification which do not unify
with the fluent in question. Hence, these parts continue to hold in the resulting
state after the update. The correctness of this encoding of update follows from
the main theorem of the Fluent Calculus, which says that the axiomatization of
state update by the macros for “−” and “+” solves the frame problem [11]: A

fluent holds in the updated state just in case it either holds in the original state
and is not subtracted, or it is added.

In the accompanying paper [12], it is shown how this CLP-based approach to
reasoning about actions can be used as the kernel for a high-level programming
method which allows to design cognitive agents that reason about their actions
and plan. Thereby, agents use the concept of a state as their mental model of the
world when conditioning their own behavior or when planning ahead some of
their actions with a specific goal in mind. As they move along, agents constantly
update their world model in order to reflect the changes they have effected.
This maintaining the internal state is based on the definition of so-called state
update axioms for each action, which in turn appeal to the definition of update as
developed in Section 4. Thanks to the extensive reasoning facilities provided by
the kernel of FLUX and in particular the constraint solver, the language allows
to implement complex strategies with concise and modular agent programs.

5 Computational Behavior

Experiments have shown that FLUX scales up well. In the accompanying pa-
per [13], we report on results with a special variant of FLUX for complete states
applied to a robot control program for a combinatorial mail delivery problem.
The experiments show that FLUX can compute the effects of hundreds of ac-
tions per second. The computational behavior of FLUX and the constraint solver
in the presence of incomplete states has been analyzed with an agent program
for the office cleaning domain, by which the robot systematically explores its
partially known environment and acts cautiously under incomplete information.
The results show that there is but a linear increase in the action computation
cost as the knowledge of the environment grows. Notably, due to the state-based
paradigm, action selection and update computation never depends on the history
of actions. Therefore, FLUX scales up effortlessly to arbitrarily long sequences
of actions. This result has been compared to GOLOG [6], where the curve for
the computation cost suggests a polynomial increase over time [13].

6 Summary

We have presented a CLP-based approach to reasoning about actions in the pres-
ence of incomplete states based on Constraint Handling Rules and finite domain
constraints. Both the constraint solver and the logic program for state update
have been verified against the action theory of the Fluent Calculus. The experi-
ments reported in [13] have shown that the constraint solver scales up well. This
is particularly remarkable since the agent needs to constantly perform theorem
proving tasks when conditioning its behavior on what it knows about the envi-
ronment. Linear performance has been achieved due to a careful design of the
state constraints supported in our approach; the restricted expressiveness makes

theorem proving computationally feasible. Future work will be to gradually ex-
tend the language, e.g., by constraints expressing exclusive disjunction, without
loosing the computational merits of the approach.

References

1. Wolfgang Bibel. A deductive solution for plan generation. New Generation Com-
puting, 4:115–132, 1986.

2. Thom Frühwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, 37(1–3):95–138, 1998.

3. Steffen Hölldobler and Josef Schneeberger. A new deductive approach to planning.
New Generation Computing, 8:225–244, 1990.

4. Robert Kowalski and M. Sergot. A logic based calculus of events. New Generation
Computing, 4:67–95, 1986.

5. Yves Lespérance, Hector J. Levesque, Fangzhen Lin, D. Marcu, Ray Reiter, and
Richard B. Scherl. A logical approach to high-level robot programming—a progress
report. In B. Kuipers, editor, Control of the Physical World by Intelligent Agents,
Papers from the AAAI Fall Symposium, pages 109–119, New Orleans, LA, Novem-
ber 1994.

6. Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl. GOLOG: A logic programming language for dynamic domains.
Journal of Logic Programming, 31(1–3):59–83, 1997.

7. John McCarthy. Situations and Actions and Causal Laws. Stanford Artificial
Intelligence Project, Memo 2, Stanford University, CA, 1963.

8. Raymond Reiter. Logic in Action. MIT Press, 2001.
9. Murray Shanahan. Solving the Frame Problem: A Mathematical Investigation of

the Common Sense Law of Inertia. MIT Press, 1997.
10. Murray Shanahan and Mark Witkowski. High-level robot control through logic.

In C. Castelfranchi and Y. Lespérance, editors, Proceedings of the International
Workshop on Agent Theories Architectures and Languages (ATAL), volume 1986
of LNCS, pages 104–121, Boston, MA, July 2000. Springer.

11. Michael Thielscher. From Situation Calculus to Fluent Calculus: State update
axioms as a solution to the inferential frame problem. Artificial Intelligence, 111(1–
2):277–299, 1999.

12. Michael Thielscher. Programming of reasoning and planning agents with FLUX.
In D. Fensel, D. McGuinness, and M.-A. Williams, editors, Proceedings of the In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR), pages 435–446, Toulouse, France, April 2002. Morgan Kaufmann.

13. Michael Thielscher. Pushing the envelope: Programming reasoning agents. In
Chitta Baral and Sheila McIlraith, editors, AAAI Workshop on Cognitive Robotics,
Edmonton, Canada, July 2002. AAAI Press.

