
A Multiagent Semantics for the Game Description
Language

Stephan Schiffel and Michael Thielscher

Technical University of Dresden
Dresden, Germany

{stephan.schiffel,mit}@inf.tu-dresden.de

Abstract. The Game Description Language (GDL) has been developed for the
purpose of formalizing game rules. It serves as the input language for general
game players, which are systems that learn to play previously unknown games
without human intervention. In this paper, we show how GDL descriptions can
be intepreted as multiagent domains and, conversely, how a large class of mul-
tiagent environments can be specified in GDL. The resulting specifications are
declarative, compact, and easy to understand and maintain. At the same time they
can be fully automatically understood and used by autonomous agents who intend
to participate in these environments. Our main result is a formal characterization
of the class of multiagent domains that serve as formal semantics for—and can
be described in—the Game Description Language.

1 Introduction

A novel and challenging research problem for Artificial Intelligence, General Game
Playing is concerned with the development of systems that learn to play a previously
unknown game solely on the basis of the rules. The Game Description Language (GDL)
[1] has been developed to formalize the rules of any finite, information-symmetric n-
player game in such a way that the description can be automatically processed by a
general game player [2]. As a declarative language, GDL supports specifications that
are modular and easy to develop, understand, and maintain. While the basic semantics
for GDL is grounded in standard logic, the language uses several pre-defined predicates
as keywords, whose intended meaning is only informally described in [1].

In this paper, we show that GDL can be understood as a specification language for
a large class of multiagent environments. This allows for formalizing the physics and
laws that govern an arbitrary domain in such a way that agents can automatically under-
stand the rules and thus know how to participate in this environment. There is a variety
of potential applications for machine processable descriptions of multiagent environ-
ments: the rules of an e-marketplace can be made accessible to agents, the interface of
interactive Internet platforms for software agents can be formally described, and agent
competitions can be run without revealing detailed problem specifications in advance.
In each of these cases, an autonomous agent—or a team of agents—can learn how to
participate in a new or modified environment without the need to be (re-)programmed
for each specific case. Because GDL uses a decidable subset of logic programming,

J. Filipe, A. Fred, and B. Sharp (Eds.): ICAART 2009, CCIS 67, pp. 44–55, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Multiagent Semantics for the Game Description Language 45

1

1

2

2

3

3

4

4

5

5

Ag1 Ag2

Ag3

Fig. 1. A simple multiagent domain: two “guard” agents Ag1 and Ag2 shall cooperatively try to
catch Ag3 , whose goal in turn is to escape via one of the three exits at locations (1, 1), (5, 1),
and (1, 5). All agents act synchronously and can move horizontally or vertically to an adjacent
position. Ag3 is caught when it ends up in the same location as Ag1 or Ag2 , or when it crosses
path with one of them in a simultaneous move.

autonomous agents require just a simple, standard reasoning module to be able to un-
derstand and effectively process a given set of rules. Moreover, if an agent environment
is specified in GDL, successful general game playing systems such as [3,4,5,6] can be
readily employed as intelligent agents for these environments.

The main result in this paper is the definition of a formal class of multiagent environ-
ments which can be expressed in GDL and, conversely, which can be used to provide
a semantics for any GDL game description. As a by-product we thus obtain a formal
semantics for the special, pre-defined keywords in GDL.

The rest of the paper is organized as follows. In Section 2, we formally define the
class of deterministic, synchronous multiagent environments. In Section 3, we show
how these can be axiomatically described in GDL, and in the section that follows, we
present the converse result by showing how all GDL games can be interpreted as a
deterministic, asynchronous multiagent environment. We conclude in Section 5.

2 Multiagent Environments

As the running example in this paper, we will consider the multiagent domain depicted
in Figure 1. As a discrete environment it can be formally described as a finite state
transition system. However, even though it is obviously just a toy-size example, it has
a considerably large state space, rendering an explicit encoding difficult—and prac-
tically impossible for even slightly larger environments. Fortunately it is possible to
exploit the fact that any natural and realistic multiagent environment has an internal
structure, which allows one to describe its dynamics with the help of symbols that rep-
resent individual components. Our example domain, for instance, can be formally de-
scribed using the following symbolic expressions: Ag1, Ag2, Ag3 , representing the three
agents; At(r, x, y), where r ∈ {Ag1, Ag2, Ag3} and x, y ∈ {1, . . . , 5}, representing

46 S. Schiffel and M. Thielscher

the position of each agent; and Move(d), where d ∈ {North, South, East, West}, along
with Stay and Exit, representing the possible actions.

Based on a suitable collection of symbols, multiagent domains can be formally de-
scribed as follows.

Definition 1. Let Σ be a countable set of ground (i.e., variable-free) symbolic expres-
sions. A (discrete, synchronous, deterministic) multiagent environment is a structure

(R, s1, t, l, u, g)

where

– R ⊆ Σ finite (the agents, or roles);
– s1 ⊆ Σ finite (the initial state);
– t ⊆ 2Σ (the terminal states);
– l ⊆ R × Σ × 2Σ (the action preconditions, or legality relation);
– u : (R �→ Σ) × 2Σ �→ 2Σ (the transition function, or update function);
– g ⊆ R × N × 2Σ (the utility, or goal relation).

Here, 2Σ denotes the set of all finite subsets of Σ , and for any r ∈ R and S ∈ 2Σ ,
l(r, a, S) holds for finitely many a ∈ Σ .

This definition deserves some explanation. For the sake of simplicity, the symbolic
expressions are not categorized—there is no formal distinction between symbols for
objects, state components, actions, etc. For practical purposes, it is important that states
are finitely representable; hence, while possibly infinitely many symbols give rise to
infinitely many states, a state itself is an element of the set of all finite subsets of the
given symbols. The legality relation l(r, a, S) defines a to be a legal action for agent r
in state S . Again for the sake of practical usability, it is assumed that every agent in
every state has only finitely many possible actions. The update function takes an action
for each agent and (synchronously) applies the joint actions to a current state, resulting
in the updated state. For the sake of simplicity, we take natural numbers n ∈ N as the
utility of a state S for agent r in the goal relation g(r, n, S).

For illustration, consider a formalization of the multiagent environment of Figure 1
using the symbols introduced above.

– R = {Ag1, Ag2, Ag3};
– s1 = {At(Ag1, 1, 1), At(Ag2, 5, 1), At(Ag3, 5, 5)} ;
– t contains all states

{At(Ag1, x1, y1), At(Ag2, x2, y2)}

(that is, where Ag3 has escaped) along with all states

{At(Ag1, x1, y1), At(Ag2, x2, y2), At(Ag3, x3, y3)}

in which x1 = x3 ∧ y1 = y3 or x2 = x3 ∧ y2 = y3 (that is, where Ag3 has been
caught);

A Multiagent Semantics for the Game Description Language 47

– l is defined as follows: each agent can always Stay; in every non-terminal state
each agent can Move(d) in any direction d unless this would lead outside the
physical environment; Ag3 can Exit from any of the locations (1, 1), (5, 1),
or (1, 5), provided it has not been caught.

– u is defined as follows: actions Stay, Exit, and Move(d) have the expected effects
on the individual locations of the agents, with the exception that when the paths of
Ag3 and either of Ag1 or Ag2 (or both) cross in a simultaneous move, then Ag3

ends up (caught) in the same location as Ag1 or Ag2 , respectively. For illegal
actions or states that are not reachable, u may be arbitrarily defined.

– g shall be defined as true for n = 100 and r = Ag3 in terminal states in which
this agent has escaped; conversely, g holds for n = 100 and both Ag1 and Ag2

in terminal states in which Ag3 got caught. In all other states the goal relation gives
value 0 for all three agents.

We have thus obtained a formal, symbolic description of the example multiagent en-
vironment. However, this specification is not yet amenable to automatic processing by
an autonomous agent, because it uses natural language to describe some of the compo-
nents. If this were to be translated into an explicit enumeration of the transition function,
this would again yield too large a description to be of any practical use. In the following
section, we show how the Game Description Language can be readily used to provide
a fully axiomatic, compact description of arbitrary multiagent environments; a descrip-
tion that on the one hand is declarative and easy to understand and maintain by humans,
and on the other hand can be fully automatically processed by artificial, autonomous
agent systems.

3 Axiomatizing Multiagent Environments as Game Descriptions

The Game Description Language (GDL) has been developed to formalize the rules of
any finite game with complete information in such a way that the description can be
automatically processed by a general game player. In this section, we first recapitulate
the GDL syntax from [1] and then show how the multiagent environments defined in
the preceding section can be formally described in this language.

3.1 General GDL Syntax

GDL is based on the standard syntax of logic programs, including negation. A logic
program is a set of clauses according to the following definition (see, for example, [7]).

Definition 2.

– A term is either a variable, or a function symbol applied to terms as arguments (a
constant is a function symbol with no argument);

– An atom is a predicate symbol applied to terms as arguments;
– A literal is an atom or its negation;
– A clause is an implication h ⇐ b1 ∧ . . . ∧ bn where head h is an atom and body

b1 ∧ . . . ∧ bn a conjunction of literals (n ≥ 0).

48 S. Schiffel and M. Thielscher

Table 1. GDL keywords

role(R) R is a player
init(P) P holds in the initial position
true(P) P holds in the current position

legal(R, M) player R has legal move M
does(R, M) player R does move M
next(P) P holds in the next position
terminal the current position is terminal
goal(R, N) player R gets goal value N in the current position

We adopt the Prolog convention according to which variables are denoted by uppercase
letters and predicate and function symbols start with a lowercase letter. (The interested
reader may take a peek at Figure 2 at this point to see some example clauses, which in
fact constitute a complete GDL axiomatization of our running example domain.) GDL
imposes some general restrictions on a set of clauses, with the intention to ensure finite
derivability.

Definition 3. The dependency graph for a set G of clauses is a directed, labeled graph
whose nodes are the predicate symbols that occur in G and where there is a positive
edge p +→ q if G contains a clause p(s) ⇐ . . .∧q(t)∧ . . ., and a negative edge p −→ q
if G contains a clause p(s) ⇐ . . . ∧ ¬q(t) ∧

To constitute a valid GDL specification, a set of clauses G and its dependency
graph Γ must satisfy the following.

1. There are no cycles involving a negative edge in Γ (this is also known as being
stratified [8,9]);

2. Each variable in a clause occurs in at least one positive atom in the body (this is
also known as being allowed [10]);

3. If p and q occur in a cycle in Γ and G contains a clause

p(s1, . . . , sm) ⇐ b1(t1) ∧ . . . ∧ q(v1, . . . , vk) ∧ . . . ∧ bn(tn)

then for every i ∈ {1, . . . , k},
– vi is variable-free, or
– vi is one of s1, . . . , sm, or
– vi occurs in some tj (1 ≤ j ≤ n) such that bj does not occur in a cycle with

p in Γ .

Stratified logic programs are known to admit a specific standard model; we refer to [8]
for details and just mention the following properties.

1. To obtain the standard model, clauses with variables are replaced by their (possibly
infinitely many) ground instances.

2. Clauses are interpreted as reverse implications.
3. The standard model is minimal while interpreting negation as non-derivability (the

“negation-as-failure” principle [11]);

The second and third restriction in Definition 3 essentially guarantee that a logic pro-
gram entails a finite number of ground atoms via its standard model. This is necessary
to enable agents to make effective use of a set of game rules.

A Multiagent Semantics for the Game Description Language 49

3.2 GDL Keywords

As a tailor-made specification language, GDL uses a few pre-defined predicate symbols.
These are shown in Table 1 together with their informal meaning. A further, standard
predicate is distinct(X, Y) to express (syntactic) inequality of two terms.1

GDL imposes additional restrictions on the use of these keywords.

Definition 4. A valid GDL specification is a set of clauses G that, in addition to the
restrictions in Definition 3, satisfies the following conditions.

– role only appears in the head of clauses that have an empty body;
– init only appears as head of clauses and is not connected, in the dependency

graph for G, to any of true, legal, does, next, terminal, goal;
– true only appears in the body of clauses;
– does only appears in the body of clauses and is not connected, in the dependency

graph for G, to any of legal, terminal, goal;
– next only appears as head of clauses.

According to the informal semantics given in [1], a GDL specification G is to be
understood as follows. The derivable instances of role(R) define the players. The
initial state is composed of the derivable instances of init(P). In order to determine
the legal moves of a player in any given state, this state has to be encoded first, using
the keyword true. More precisely, let S = {p1, . . . , pn} be a state (e.g., the derivable
instances of init(P) at the beginning), then G is extended by the clauses

true(p1) ⇐
. . .
true(pn) ⇐

(1)

Those instances of legal(R, A) which are derivable from this extended program define
all legal actions A for player R in state S . In the same way, the clauses for terminal
and goal(R, N) define termination and goalhood (of value N for player R) relative
to the encoding of a given state. Determining a state transition, finally, requires the
encoding of the current state along with clauses representing a joint move. Specifically,
if players r1, . . . , rn make moves a1, . . . , an , then

does(r1, a1) ⇐
. . .
does(rn, an) ⇐

(2)

must be added to G, and then the derivable instances of next(P) compose the updated
state.

1 The semantics of this predicate is given by tacitly assuming the addition of the clause

distinct(s, t) ⇐
for every pair s, t of syntactically different ground terms.

50 S. Schiffel and M. Thielscher

3.3 Multiagent Environments in GDL

GDL provides all necessary features for declarative, formal descriptions of arbitrary
multiagent environments as defined in Section 2. Of course there are many possible
ways in which any specific environment can be axiomatized. We therefore define two
sets of GDL clauses as logically equivalent if for any finite set of ground clauses (1)
and (2) added, the two standard models of the two resulting logic programs agree on the
interpretation of all GDL keywords. Before we can show how to formalize multiagent
environments in GDL, we need the following syntactic definitions.

For any finite subset S = {p1, . . . , pn} ⊆ Σ of a set of ground terms, the following
conjunction axiomatizes S as the current state:

Strue def= true(p1) ∧ . . . ∧ true(pn) ∧ ¬pS (3)

Here, pS is an auxiliary predicate, one for every finite S ⊆ Σ , whose purpose is to
ensure that the conjunction does not hold for states that are strict supersets of S :

pS ⇐ true(X)∧
distinct(X, p1) ∧ . . . ∧ distinct(X, pn) (4)

Hence, pS is true for any state in which at least one state component X is true that
differs syntactically from any of p1, . . . , pn, that is, the elements of S . This ensures
that the conjunction defined in (3) is an exact axiomatization of state S .

Furthermore, for any function A : {r1, . . . , rn} �→ Σ , where r1, . . . , rn ∈ Σ , the
following conjunction axiomatizes A as a joint action:

Adoes def= does(r1, A(r1)) ∧ . . . ∧ does(rn, A(rn)) (5)

We are now ready to show how GDL can be used to axiomatize multiagent domains.

Definition 5. Let E = (R, s1, t, l, u, g) be a multiagent environment based on ground
symbolic expressions Σ , then any valid set of GDL clauses is an axiomatic description
of E if it is logically equivalent to the following.

– role(r) ⇐ for each r ∈ R;
– init(p) ⇐ for each p ∈ s1;
– terminal⇐ Strue for each S ∈ t;
– legal(r, a) ⇐ Strue for each (r, a, S) ∈ l;
– next(p) ⇐ Adoes ∧ Strue for each p ∈ u(A, S) and A : R �→ Σ , S ⊆ Σ;
– goal(r, n) ⇐ Strue for each (r, n, S) ∈ g .

It is important to realize that this direct axiomatization, where all relations and functions
are encoded explicitly, is used solely to define the intended semantics. In practice, of
course, a domain can be described in a much more compact manner, using variables,
logical equivalence, and possibly auxiliary predicates. As an example, Figure 2 depicts
a complete GDL specification of the multiagent environment introduced in Section 2.
It is not too difficult to verify that this is a valid set of clauses according to Definition 3
and 4 and that it is indeed a correct axiomatic description of this domain according to
Definition 5.

A Multiagent Semantics for the Game Description Language 51

role(ag1) ⇐
role(ag2) ⇐
role(ag3) ⇐

init(at(ag1, 1, 1)) ⇐
init(at(ag2, 5, 1)) ⇐
init(at(ag3, 1, 5)) ⇐

terminal ⇐ true(at(ag1,X,Y)) ∧ true(at(ag3,X,Y))
terminal ⇐ true(at(ag2,X,Y)) ∧ true(at(ag3,X,Y))
terminal ⇐ ¬remain

remain ⇐ true(at(ag3,X,Y))

legal(R, stay) ⇐ true(at(R, X, Y))
legal(ag3, exit) ⇐ ¬terminal ∧ true(at(ag3, 1, 1))
legal(ag3, exit) ⇐ ¬terminal ∧ true(at(ag3, 5, 1))
legal(ag3, exit) ⇐ ¬terminal ∧ true(at(ag3, 1, 5))
legal(R, move(D)) ⇐ ¬terminal ∧ true(at(R, U, V)) ∧ adjacent(U, V, D, X, Y)

adjacent(X, Y1, north, X, Y2) ⇐ co(X) ∧ succ(Y1, Y2)
adjacent(X, Y1, south, X, Y2) ⇐ co(X) ∧ succ(Y2, Y1)
adjacent(X1, Y, east, X2, Y) ⇐ co(Y) ∧ succ(X1, X2)
adjacent(X1, Y, west, X2, Y) ⇐ co(Y) ∧ succ(X2, X1)

co(1) ⇐ co(2) ⇐ co(3) ⇐ co(4) ⇐ co(5) ⇐
succ(1, 2) ⇐ succ(2, 3) ⇐ succ(3, 4) ⇐ succ(4, 5) ⇐

next(at(R, X, Y)) ⇐ does(R, stay) ∧ true(at(R, X, Y))
next(at(R, X, Y)) ⇐ does(R, move(D)) ∧ true(at(R, U, V)) ∧ adjacent(U, V, D, X, Y)∧

¬capture(R)
next(at(ag3, X, Y)) ⇐ true(at(ag3, X, Y)) ∧ capture(ag3)

capture(ag3) ⇐ true(at(ag3, X, Y)) ∧ true(at(R, U, V)) ∧ does(ag3, move(D1))∧
does(R, move(D2)) ∧ adjacent(X, Y,D1, U, V) ∧ adjacent(U, V,D2, X, Y)

goal(R, 0) ⇐ role(R) ∧ ¬terminal
goal(R, 0) ⇐ role(R) ∧ distinct(R,ag3) ∧ terminal ∧ ¬remain
goal(R, 100) ⇐ role(R) ∧ distinct(R,ag3) ∧ terminal ∧ true(at(ag3, X, Y))
goal(ag3, 0) ⇐ terminal ∧ true(at(ag3, X, Y))
goal(ag3, 100) ⇐ terminal ∧ ¬remain

Fig. 2. A complete, formal description of the multiagent environment of Figure 1

The specification of the Game Description Language in [1] lacks a fully formal def-
inition of the intended meaning of a specification. This is why there are no formal
grounds on which it could actually be proved that Definition 5 yields a correct descrip-
tion of a multiagent environment. In fact, we can and will use our formal concept of a

52 S. Schiffel and M. Thielscher

multiagent domain to provide just this precise semantics for GDL in terms of a transi-
tion system.

4 A Multiagent Semantics for GDL

In the preceding section, we have shown how GDL provides a declarative, compact
language to formally describe a large class of multiagent environments in a machine
processable fashion. In this section, we show how the abstract model of a multiagent
environment can in turn be used to provide a formal semantics for GDL in terms of a
transition system. In this way we make precise what is only informally described in [1].

Any valid game description G in GDL contains a finite set of function symbols, in-
cluding constants, which implicitly determines a (usually infinite) set of ground terms.
This set constitutes the symbol base Σ in the transition-based semantics for G. The syn-
tactic restrictions in GDL ensure finite derivability, so that each state, the set of roles, etc.
are all finite subsets of Σ . The following definition of the semantics of a GDL description
is straightforwardly obtained by reversing the mapping from a multiagent environment
into GDL (cf. Definition 5). To this end, we redefine the abbreviations Strue and Adoes

as logic program facts (rather than conjunctions as in (3) and (5)). This allows to add
them to G in order to determine terminal states, legal moves, updates, and goalhood:

Strue def= { true(p1) ⇐
. . .
true(pn) ⇐ }

Adoes def= { does(r1, A(r1)) ⇐
. . .
does(rn, A(rn)) ⇐ }

It is worth mentioning that auxiliary predicate pS (cf. (4)) is not needed in the axioma-
tization of a state as a set of facts, because the principle of negation-as-failure and Strue

imply ¬true(p) for any p
∈ S .

Definition 6. Let G be a valid GDL specification, whose signature determines the set
of ground terms Σ . The semantics of G is the multiagent environment (R, s1, t, l, u, g)
where2

– R = {r ∈ Σ : G |= role(r)};
– s1 = {p ∈ Σ : G |= init(p)};
– t = {S ∈ 2Σ : G ∪ Strue |= terminal};
– l = {(r, a, S) : G ∪ Strue |= legal(r, a)}, where r ∈ R, a ∈ Σ , and S ∈ 2Σ ;
– u(A, S) = {p ∈ Σ : G ∪ Adoes ∪ Strue |= next(p)}, for all A : (R �→ Σ) and

S ∈ 2Σ ;
– g = {(r, n, S) : G ∪ Strue |= goal(r, n)}, where r ∈ R, n ∈ N, and S ∈ 2Σ .

This definition provides a formal semantics for GDL in terms of abstract multi-
agent environments. Finite derivability in valid GDL specifications implies that the

2 Below, entailment (|=) is via the standard model of a set of clauses.

A Multiagent Semantics for the Game Description Language 53

entailment relation is decidable, which in turn ensures that the definition of the se-
mantics is effective.

In the preceding section we have seen that one and the same multiagent environment
can be axiomatically described in many different ways. With the help of Definition 6
it is now easy to verify that two logically equivalent GDL descriptions (as defined in
Section 3.3) describe exactly the same environment.

Proposition 1. The semantics of two logically equivalent, valid GDL descriptions co-
incide.

Proof. By definition, two logically equivalent GDL descriptions agree on the interpre-
tation of all GDL keywords for all finite additions of clauses (1) and (2). It is easy to
see, then, that the various components of their semantics according to Definition 6 must
be identical.

Based on this result it is also straightforward to prove that Definition 6 indeed provides
the complement to the encoding of a multiagent environment in GDL.

Proposition 2. Let E be a multiagent environment and G any axiomatic description
thereof, then the semantics of G is E .

Proof. Consider the generic encoding of E given in Definition 5. It is easy to verify
that the standard model for this set of clauses, augmented by any finite set of facts
about relations true and does (cf. clauses (1) and (2), respectively, in Section 3.2),
determines a semantics (R, s1, t, l, u, g) via Definition 6 which equals E . The claim
follows from Proposition 1 and the fact that any GDL encoding for E is logically
equivalent to the generic clauses given in Definition 5.

5 Discussion

We have shown how the Game Description Language, developed in the context of Gen-
eral Game Playing, can be understood as a declarative language to provide compact and
machine processable specifications of a large class of multiagent environments. This
can be applied to formalize the rules, for example, of an e-marketplace, of publicly
accessible agent platforms on the Internet, of problem domains used in agent compe-
titions, etc. By automatically processing these specifications, autonomous agents can
fully automatically learn how to participate in a new or modified environment with-
out the need to be (re-)programmed. Moreover, successful off-the-shelf general game
playing systems can be readily employed as intelligent agents for these environments.

It is interesting to note that GDL has been originally developed as problem specifica-
tion language for a competition [2], much like the Planning Domain Description Lan-
guage (PDDL) [12], which today is a quasi standard for the specification of planning
domains. GDL can be viewed as a generalization of PDDL to domains with multiple
agents, because solving a planning problem can be understood as playing a single-
player game. Indeed, most features of current versions of PDDL can be expressed in
GDL, though with one notable exception: sensing actions are not included in the current
version of GDL. Although a GDL specification leaves agents with uncertainty about

54 S. Schiffel and M. Thielscher

how the world evolves (an agent can decide on its own actions but not on those of all
other agents), the language has been written for games without information asymmetry.
An important research issue for the near future is to extend the Game Description Lan-
guage so as to support descriptions of games with asymmetric information and sensing
actions, which is a typical feature of card games, for instance. This would then provide
a suitable formalization language for an even larger class of multiagent environments
than considered in this paper.

In the second part of the paper, we have used the concept of a multiagent environ-
ment to provide a formal, transition-based semantics for GDL. With this we have made
precise what is only informally described in [1]. Our semantics for GDL in terms of
multiagent environments is related to an existing formal characterization of GDL by a
game structure [13]. The main difference of the latter in comparison to our work are:

– It is restricted to propositional GDL;
– It puts further restrictions on GDL, such as not allowing predicate init to occur

in clause with non-empty bodies;
– It uses an inductive definition of the set of all states in order to obtain only those

which are reachable from the initial state. Since it is possible to give valid GDL
specifications of games that do not terminate, this definition would be undecidable
in the general setting.3

These restrictions have been imposed because the focus in [13] lies on the use of Tem-
poral Logic for the purpose of verifying properties of games, such as termination or
winnability. In contrast to this, the semantics given in the present paper covers full
GDL.

Acknowledgements. This research was partially supported by Deutsche Forschungs-
gemeinschaft under Contract TH 541/16-1.

References

1. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game Playing:
Game Description Language Specification. Technical Report LG–2006–01, Stanford Logic
Group, Computer Science Department, Stanford University, 353 Serra Mall, Stanford, CA
94305 (2006), games.stanford.edu

2. Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI competi-
tion. AI Magazine 26, 62–72 (2005)

3 It is worth noting that this does not contradict the finite derivability property of valid GDL
specifications, which just implies that all local reasoning problems are decidable. More specif-
ically, given a particular state it is decidable whether an action is possible, and given a joint
action it is also decidable what properties hold in the updated state, etc. On the other hand,
GDL is expressive enough to describe any Turing machine as a “game” using clauses like

init(head(0)) ⇐
next(head(succ(X))) ⇐ true(head(X))∧

does(tm, move forward)

Hence, reachability of states is generally undecidable in GDL.

games.stanford.edu

A Multiagent Semantics for the Game Description Language 55

3. Kuhlmann, G., Dresner, K., Stone, P.: Automatic heuristic construction in a complete general
game player. In: Proceedings of the AAAI National Conference on Artificial Intelligence, pp.
1457–1462. AAAI Press, Boston (2006)

4. Clune, J.: Heuristic evaluation functions for general game playing. In: Proceedings of the
AAAI National Conference on Artificial Intelligence, Vancouver, pp. 1134–1139. AAAI
Press, Menlo Park (2007)

5. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: Proceedings of
the AAAI National Conference on Artificial Intelligence, Vancouver, pp. 1191–1196. AAAI
Press, Menlo Park (2007)

6. Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing. In: Pro-
ceedings of the AAAI National Conference on Artificial Intelligence, Chicago, pp. 259–264.
AAAI Press, Menlo Park (2008)

7. Lloyd, J.: Foundations of Logic Programming, 2nd extended edn. Series Symbolic Compu-
tation. Springer, Heidelberg (1987)

8. Apt, K., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Minker,
J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan
Kaufmann, San Francisco (1987)

9. van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Proceedings of
the 8th Symposium on Principles of Database Systems, ACM SIGACT-SIGMOD, pp. 1–10
(1989)

10. Lloyd, J., Topor, R.: A basis for deductive database systems II. Journal of Logic Program-
ming 3, 55–67 (1986)

11. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp.
293–322. Plenum Press (1978)

12. McDermott, D.: The 1998 AI planning systems competition. AI Magazine 21, 35–55 (2000)
13. van der Hoek, W., Ruan, J., Wooldridge, M.: Strategy logics and the game description lan-

guage. In: Proceedings of the Workshop on Logic, Rationality and Interaction, Bejing, China
(2007)

	A Multiagent Semantics for the Game Description Language
	Introduction
	Multiagent Environments
	Axiomatizing Multiagent Environments as Game Descriptions
	General GDL Syntax
	GDL Keywords
	Multiagent Environments in GDL

	A Multiagent Semantics for GDL
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

