
A Declarative Agent Programming Language

Based on Action Theories

Conrad Drescher, Stephan Schiffel, and Michael Thielscher

Department of Computer Science
Dresden University of Technology

{ conrad.drescher,stephan.schiffel,mit } @inf.tu-dresden.de

Abstract. We discuss a new concept of agent programs that combines
logic programming with reasoning about actions. These agent logic pro-

grams are characterized by a clear separation between the specification
of the agent’s strategic behavior and the underlying theory about the
agent’s actions and their effects. This makes it a generic, declarative
agent programming language, which can be combined with an action
representation formalism of one’s choice. We present a declarative se-
mantics for agent logic programs along with (two versions of) a sound
and complete operational semantics, which combines the standard infer-
ence mechanisms for (constraint) logic programs with reasoning about
actions.

1 Introduction

Action theories, like the classical Situation Calculus [1], provide the foundations
for the design of artificial, intelligent agents capable of reasoning about their
own actions. Research in this area has led to mature action theories, including
the modern Situation Calculus [2] or the Event Calculus [3], which allow to
endow agents with knowledge of complex dynamic environments. Despite the
existence of elaborate action theories today, surprisingly few attempts have been
made to integrate these into actual programming languages for intelligent agents.
Existing agent programming languages such as [4–6] use nothing but a very basic
concept of reasoning about actions, where the belief base of an agent is updated
in a STRIPS-like [7] fashion upon executing an action. Moreover, the agent
programmer always has to provide this belief update as part of the behavioral
strategy, rather than having the agent use a separate, behavior-independent
action theory to reason about its actions and their effects.

Two exceptions to this notable gap between practical agent programming
languages on the one hand and elaborate action theories on the other hand, are
GOLOG [2] and FLUX [8], which have been built on top of two action theories,
namely, the Situation Calculus and the Fluent Calculus. Both languages are pro-
cedural in nature: the semantics of FLUX is defined on the basis of Prolog com-
putation trees, while GOLOG (= Algol in Logic) combines standard elements
from imperative programming with reasoning about actions. Especially for Arti-
ficial Intelligence applications, however, declarative programming languages have

2 Conrad Drescher, Stephan Schiffel, and Michael Thielscher

proved a useful alternative to the procedural programming paradigm (see, e.g.,
[9]). An open research issue, therefore, is the development of a declarative agent
programming language based on action theories.

Agent Logic Programs Action Theory Σ

Language

CLP Reasoner for Σ

System

Strategy World Dynamics

Purpose

Fig. 1. Strategic Behavior in Dynamic Worlds with Agent Logic Programs

In this paper, we investigate agent logic programs , which are obtained by com-
bining the logic programming paradigm with action theories. These programs
are characterized by a clear separation between the specification of the agent’s
strategic behavior (given as a logic program) and the underlying theory about
the agent’s actions and their effects (see Figure 1). This makes it a fully generic
agent programming language, which can be combined with a variety of action
formalisms, including the Situation-, Event-, and Fluent Calculus. Specifically,

• we give a generic, declarative semantics for agent logic programs;

• we provide a sound operational semantics which combines the standard infer-
ence mechanisms for logic programs with reasoning about actions; and

• we provide completeness results for the operational semantics by investigating
increasingly expressive classes of agent logic programs and by incorporating
concepts derived from constraint logic programming.

Agent programs can be used in two distinct ways: If executed online they di-
rectly control the behavior of an intelligent agent. By executing them offline the
agent can infer plans that achieve strategic goals. We will see that agent logic
programs go beyond established agent programming languages by being capable
of inferring conditional plans for open-world planning problems.

The rest of this paper is organized as follows. In the next section, we give
the basic formal definitions of an agent logic program and illustrate these by
means of an example that will be used throughout the paper. We then show how
the usual declarative reading of a logic program can be combined with an action
theory to provide a declarative semantics for agent logic programs. Thereafter we

A Declarative Agent Programming Language Based on Action Theories 3

present two operational semantics and prove their soundness and completeness.
In the ensuing section we discuss the use of agent logic programs for planning.
We conclude with a brief discussion of the results and future work.

2 Agent Logic Programs

The purpose of agent logic programs is to provide high-level control programs
for agents using a combination of declarative programming with reasoning about
actions. The syntax of these programs shall be kept very simple: standard (def-
inite) logic programs are augmented with just two special predicates, one —
written do(α) — to denote the execution of an action by the agent, and one
— written ?(ϕ) — to verify properties against (the agent’s model of) the state
of its environment. This model, and how it is affected by actions, is defined in
a separate action theory. This allows for a clear separation between the agent’s
strategic behavior (given by the agent logic program itself) and the underlying
theory about the agent’s actions and their effects. Prior to giving the formal
definition, let us illustrate the idea by an example agent logic program.

Example 1 Consider an agent whose task is to find gold in a maze. For the
sake of simplicity, the states of the environment shall be described by a single
fluent (i.e., state property): At(u, x) to denote that u ∈ {Agent ,Gold} is at
location x . The agent can perform the action Go(y) of going to location y ,
which is possible if y is adjacent to, and accessible from, the current location of
the agent. The fluent and action are used as basic elements in the following agent
logic program. It describes a simple search strategy based on two parameters: a
given list of locations (choice points) that the agent may visit, and an ordered
collection of backtracking points.1

explore(Choicepoints,Backtrack) :- % finished, if

?(at(agent,X)), ?(at(gold,X)). % gold is found

explore(Choicepoints,Backtrack) :-

?(at(agent,X)),

select(Y,Choicepoints,NewChoicepoints), % choose available direction

do(go(Y)), % go in this direction

explore(NewChoicepoints,[X|Backtrack]). % store it for backtracking

explore(Choicepoints,[X|Backtrack]) :- % go back one step

do(go(X)),

explore(Choicepoints,Backtrack).

select(X,[X|Xs],Xs).

select(X,[Y|Xs],[Y|Ys]) :- select(X,Xs,Ys).

1 Below, we follow the Prolog convention according to which variables are indicated
by a leading uppercase letter.

4 Conrad Drescher, Stephan Schiffel, and Michael Thielscher

Suppose we are given a list of choice points C, then the query :- explore(C,[])

lets the agent systematically search for gold from its current location: the first
clause describes the base case where the agent is successful; the second clause
lets the agent select a new location from the list of choice points and go to this
location (the declarative semantics and proof theory for do(α) will require that
the action is possible at the time of execution); and the third clause sends the
agent back using the latest backtracking point.

The example illustrates two distinct features of agent logic programs. First, an
agent strategy is defined by a logic program that may use arbitrary function and
predicate symbols in addition to the signature of the underlying action theory.
Second, and in contrast to usual BDI-style programming languages like, e.g.
AgentSpeak [6], the update of the agent’s belief according to the effects of its
actions is not part of the strategy. The formal definition of agent logic programs
is as follows.

Definition 1 Consider an action theory signature Σ , including the pre-defined
sorts action and fluent, and a logic program signature Π .

• Terms are from Σ ∪ Π .

• If p is an n-ary relation symbol from Π and t1, ...,tn are terms, then
p(t1, ...,tn) is a program atom.

• do(α) is a program atom if α is an action term in Σ .

• ?(ϕ) is a program atom if ϕ is a state property in Σ , that is, a formula
(represented as a term) based on the fluents in Σ .

• Clauses, programs, and queries are then defined as usual for definite logic
programs, with the restriction that the two special atoms cannot occur in the
head of a clause.

It is easy to verify that our example program complies with this definition given
the aforementioned action theory signature and the usual list notation.

3 Semantics: Program + Action Theory

The semantics of an agent logic program is given in two steps. First, the program
needs to be “temporalized,” by making explicit the state change that is implicit
in the use of the two special predicates, do(α) and ?(ϕ). Second, the resulting
program is combined with an action theory as the basis for evaluating these
two special predicates. The overall declarative semantics is the classical logical
semantics of the expanded program together with the action theory.

Time is incorporated into a program through macro-expansion: two argu-
ments of sort time

2 are added to every regular program atom p(x̄), and then

2 Which specific concept of time is being used depends on how the sort time is defined
in the underlying action theory, which may be branching (as, e.g., in the Situation
Calculus) or linear (as, e.g., in the Event Calculus).

A Declarative Agent Programming Language Based on Action Theories 5

p(x̄, s1, s2) is understood as restricting the truth of the atom to the temporal in-
terval between (and including) s1 and s2 . The two special atoms receive special
treatment: atom ?(ϕ) is re-written to Holds(ϕ, s), with the intended meaning
that ϕ is true at s; and do(α) is mapped onto Poss(α, s1, s2), meaning that
action α can be executed at s1 and that its execution ends in s2 . The formal
definition is as follows.

Definition 2 For a clause H :- B1,...,Bn (n ≥ 0), let s1, . . . , sn+1 be variables
of sort time.

• For i = 1, . . . , n, if Bi is of the form

– p(t1,...,tm), expand to P (t1, . . . , tm, si, si+1) .

– do(α), expand to Poss(α, si, si+1) .

– ?(ϕ), expand to Holds(ϕ, si) and let si+1 = si.
3

• The head atom H = p(t1,...,tm) is expanded to P (t1, . . . , tm, s1, sn+1).

• The resulting clauses are understood as universally quantified implications.

Queries are expanded exactly like clause bodies, except that

• a special constant S0 — denoting the earliest time-point in the underlying
action theory — takes the place of s1 ;

• the resulting conjunction is existentially quantified.

Example 1 (continued) The example program of the preceding section is
understood as the following axioms:

(∀)Explore(c, b, s, s) ⊂ Holds(At(Agent , x), s) ∧ Holds(At(Gold , x), s)
(∀)Explore(c, b, s1, s4) ⊂ Holds(At(Agent , x), s1) ∧ Select(y, c, c′, s1, s2)∧

Poss(Go(y), s2, s3) ∧ Explore(c′, [x|b], s3, s4)
(∀)Explore(c, [x|b], s1, s3) ⊂ Poss(Go(x), s1, s2) ∧ Explore(c, b, s2, s3)
(∀)Select(x, [x|x′], x′, s, s) ⊂ true
(∀)Select(x, [y|x′], [y|y′], s1, s2) ⊂ Select(x, x′, y′, s1, s2)

The resulting theory constitutes a purely logical axiomatization of the agent’s
strategy, which provides the basis for logical entailment. For instance, macro-
expanding the query :- explore(C,[]) from the above example results in the
temporalized formula (∃s)Explore(C, [], S0, s) . If this formula follows from the
axioms above, then that means that the strategy can be successfully executed,
starting at S0 , for the given list of choice points C . Whether this is actually
the case of course depends on the additional action theory that is needed to
evaluate the special atoms Holds and Poss in a macro-expanded program.

Macro-expansion provides the first part of the declarative semantics of an agent
logic program; the second part is given by an action theory in form of a logical
axiomatization of actions and their effects. The overall declarative semantics

3 Setting si+1 = si is a convenient way of saying that the expansion of ?(ϕ) “con-
sumes” only one time variable, in which case less than n + 1 different variables for
a clause with n body atoms are needed.

6 Conrad Drescher, Stephan Schiffel, and Michael Thielscher

of agent logic programs is given by the axiomatization consisting of the action
theory and the expanded program.

In principle, agent logic programs can be combined with any action formal-
ism that features the predicates Poss(a, s1, s2) and Holds(φ, s) . However, in the
formal definitions we make some assumptions that existing action formalisms ei-
ther already satisfy or can be made to satisfy: We stipulate that action theories
are based on many-sorted first order logic with equality and the four sorts time,
fluent, object, and action.4 Fluents are reified, and the standard predicates
Holds(f, s) and Poss(a, s1, s2) are included. For actions, objects, and fluents
unique name axioms have to be included. We abstract from a particular time
structure: an axiomatization of the natural or the positive real numbers (pro-
viding the linear time structure of e.g. the Event Calculus), or of situations (the
branching time structure of Situation and Fluent Calculus) can be included.

Definition 3 [Action Theory Formula Types] We stipulate that the following
formula types are used by action theories:

– State formulas express what is true at particular times: A state formula Φ[s̄]
in s̄ is a first-order formula with free variables s̄ where
• for each occurrence of Holds(f, s) we have s ∈ s̄ ;
• predicate Poss does not occur.

– A state property φ is an expression built from the standard logical connec-
tives and terms F (x̄) of sort fluent. With a slight abuse of notation, by
Holds(φ, s) we denote the state formula obtained from state property φ by
replacing every occurrence of a fluent f by Holds(f, s) .5 State properties
are used by agent logic programs in ?(Phi) atoms.

– An action precondition axiom is of the form (∀)Poss(A(x̄), s1, s2) ≡ πA[s1] ,
where πA[s1] is a state formula in s1 with free variables among s1, s2, x̄ .

– Effect axioms have to be of the form Poss(A(x̄), s1, s2) ⊃ φ[x̄, s1, s2] . This
assumption is implicit in the macro-expansion of do(A) to Poss(a, s1, s2) .

For illustration, the following is a background axiomatization for our example
scenario. Essentially it is a basic Fluent Calculus theory in the sense of [10], with
a simple syntactic modification to meet the requirements just given.

Example 1 (continued)

• Initial state axiom

Holds(At(Agent , 1), S0) ∧ Holds(At(Gold , 4), S0)

• Precondition axiom

Poss(Go(y), s1, s2) ≡ (∃x)(Holds(At(Agent , x), s1) ∧ (y = x + 1 ∨ y = x − 1))
∧ s2 = Do(Go(y), s1)

4 By convention variable symbols s , f , x , and a are used for terms of sort time,
fluent, object, and action, respectively.

5 In an expanded program Π we always treat Holds(φ, s) as atomic.

A Declarative Agent Programming Language Based on Action Theories 7

• Effect axiom

Poss(Go(y), s1, s2) ⊃

(∃x)(Holds(At(Agent , x), s1) ∧

[(∀f)Holds(f, s2) ≡ (Holds(f, s1) ∨ f = At(Agent , y)) ∧ f 6= At(Agent , x)]).

Given this (admittedly very simple, for the sake of illustration) specification of
the background action theory, the axiomatization of the agent’s strategy from
above entails, for example, (∃s)Explore([2, 3, 4, 5], [], S0, s) , because the back-
ground theory allows to conclude that

Holds(At(Agent , 4), S) ∧ Holds(At(Gold , 4), S),

where S denotes the situation term Do(Go(4),Do(Go(3),Do(Go(2), S0))) . It
follows that Explore([5], [3, 2, 1], S, S) according to the first clause of our ex-
ample ALP. Consider, now, the situation S′ = Do(Go(3),Do(Go(2), S0)) , then
action theory and strategy together imply

Holds(At(Agent , 3), S′) ∧ Select(4, [4, 5], [5], S′, S′) ∧ Poss(Go(4), S′, S)

By using this in turn, along with Explore([5], [3, 2, 1], S, S) from above, we obtain
Explore([4, 5], [2, 1], S′, S) , according to the second program clause. Continuing
this line of reasoning, it can be shown that

Explore([3, 4, 5], [1],Do(Go(2), S0), S)
and hence, Explore([2, 3, 4, 5], [], S0, S)

This proves the claim that (∃s)Explore([2, 3, 4, 5], [], S0, s) . On the other hand
e.g. the query (∃s)Explore([2, 4], [], S0, s) is not entailed under the given back-
ground theory: Without location 3 among the choice points, the strategy does
not allow the agent to reach the only location that is known to house gold.

The example illustrates how an agent logic program is interpreted logically
by first adding an explicit notion of time and then combining the result with a
suitable action theory. As indicated above, most action formalisms can be used
directly or can be extended to serve as a background theory. Languages like the
Planning Language PDDL [11] or the Game Description Language GDL [12]
require the addition of a time structure before they can be employed.

4 Generic Proof Calculus

In this section, we provide an operational counterpart to the declarative se-
mantics given in the preceding section, beginning with the simple integration of
reasoning about actions with standard SLD-resolution.

8 Conrad Drescher, Stephan Schiffel, and Michael Thielscher

4.1 Elementary Case: LP(D)

The basic proof calculus for agent logic programs is obtained as an adaptation
of SLD-resolution: for action domain D , expanded agent logic program Π and
query (∃)Γ , we prove that D∪Π |= (∃)Γ by proving unsatisfiability of D∪Π∪
{(∀)¬Γ} . As a fully generic proof calculus, for the two special atoms in queries
and clause bodies the inference steps D � Holds(ϕ, s) and D � Poss(α, s1, s2)
are treated as atomic, which allows to integrate any reasoner for D .

Definition 4 The proof calculus is given by two inference rules on states , which
are of the form 〈 ¬Γ, θ 〉 :

• Normal Goals (with Gi different from Holds and Poss):

〈 (¬G1 ∨ . . . ∨ ¬Gi−1 ∨ ¬Gi ∨ ¬Gi+1 ∨ . . . ∨ ¬Gn), θ1 〉

〈 (¬G1 ∨ . . . ∨ ¬Gi−1 ∨
∨

j=1..m ¬Bj ∨ ¬Gi+1 ∨ . . . ∨ ¬Gn)θ2, θ1θ2 〉

where H ⊂ B1 ∧ . . . ∧ Bm is a fresh variant of a clause in Π such that Gi

and H unify with most general unifier θ2 .

• Special Goals (Gi = Holds(ϕ, s) or Poss(α, s1, s2)):

〈 (¬G1 ∨ . . . ∨ ¬Gi−1 ∨ ¬Gi ∨ ¬Gi+1 ∨ . . . ∨ ¬Gn), θ1 〉

〈 (¬G1 ∨ ¬Gi−1 ∨ ¬Gi+1 ∨ ¬Gn)θ2, θ1θ2 〉

such that D � (∀)Giθ2 with substitution θ2 on the variables in Gi .

For illustration, the reader may verify that the agent logic program in Example 1,
together with the background theory given in the preceding section, admits
a derivation starting from 〈 ¬Explore([2, 3, 4, 5], [], S0, s), ε 〉 and ending with
〈 @, θ 〉 6 such that the replacement s/Do(Go(4),Do(Go(3),Do(Go(2), S0))) is
part of the resulting substitution θ .

Under the assumption that the underlying reasoning about actions is sound,
soundness of the basic proof calculus follows easily from the corresponding result
in standard logic programming (see, e.g., [9]).

Proposition 1 (Soundness). Let Π be an expanded agent logic program,
D a background domain axiomatization, and (∃)Γ an expanded query. If there
exists a derivation starting from 〈 (∀)¬Γ, ε 〉 and ending in 〈 @, θ 〉 , then
Π ∪ D � (∀)Γθ .

While being sound, the use of standard SLD-resolution in combination with
reasoning about actions is incomplete in general. This can be illustrated with a
simple example, which highlights the influence of the background action theory
on the existence of computed answers to queries for an agent logic program.

Example 2 Suppose we are given the following disjunctive knowledge of the
initial state:

Holds(At(Gold , 4), S0) ∨ Holds(At(Gold , 5), S0) (1)

6 The symbols @ and ε stand for the empty query and the empty substitution.

A Declarative Agent Programming Language Based on Action Theories 9

Consider the query :- ?(at(gold,X)), corresponding to the question whether
(∃x)Holds(At(Gold , x), S0) is entailed. This is obviously the case given (1), but
there is no answer substitution θ such that Holds(At(Gold , x), S0)θ is implied.
The same phenomenon can be observed in the presence of state knowledge that
is merely “de dicto,” as in (∃y)Holds(At(Gold , y), S0) in place of (1).

In case of classical logic programming, the computational completeness of SLD-
resolution hinges on the fact that whenever a program Π entails (∃)Q then
there also exists a substitution θ such that Π � (∀)Qθ . For this reason, we
introduce the following restricted class of background action theories.

Definition 5 An action domain axiomatization D is query-complete if and only
if D � (∃)Q implies that there exists a substitution θ such that D � (∀)Qθ ,
for any Q of the form Holds(ϕ, s) or Poss(α, s1, s2) .

Under the assumption that the underlying reasoning about actions is complete
and that the background action theory is query-complete, the basic proof cal-
culus for agent logic programs can be shown to be complete.

Definition 6 A computation rule is a function selecting an atom from a non-
empty negated query to continue the derivation with.

Proposition 2 (Completeness). Let Π be an expanded agent logic pro-
gram, D a background domain axiomatization, and (∃)Γ an expanded query.
If Π ∪ D � (∀)Γθ1 for some θ1 , then there exists a successful derivation via
any computation rule starting with 〈 ¬(∃)Γ, ε 〉 and ending in 〈 @, θ2 〉 . Fur-
thermore, there is a substitution θ3 such that Γθ1 = Γθ2θ3 .

Proof. The claim can be proved by a straightforward adaptation of Stärk’s proof
of the completeness of plain SLD-resolution [13]: his concept of an implication
tree is extended by allowing instances of the two special atoms, Holds and Poss ,
to occur as leaves just in case they are entailed by the background theory. The
base case in the completeness proofs then follows for these two atoms from the
assumption of a query-complete theory.

It is worth pointing out that the restriction to query-completeness is not
the same as the following, more common notion: A first-order theory is called
complete iff for every sentence φ either φ or ¬φ is in the theory. Referring to
Example 2, say, if the initial state axiom does not contain any information at
all concerning the location of gold, then this theory is query-complete (while it
is not complete in the above sense). Thus the completeness of the basic proof
calculus does extend to action domains with incomplete information.

On the other hand, query-complete action domains cannot express disjunctive
or mere existential information. Because this is exactly one of the strong-points
of general action calculi, we next present a proof theory for agent logic programs
that is suitable for the general case.

10 Conrad Drescher, Stephan Schiffel, and Michael Thielscher

4.2 General Case: CLP(D)

We address the problem of incompleteness of the basic proof calculus by mov-
ing to the richer framework of constraint logic programming [14]. Denoted by
CLP(X) , constraint logic programming constitutes a family of languages where,
in addition to the syntax of standard logic programs, special constraints are used
and evaluated against the background constraint theory X . We instantiate this
general framework to CLP(D) —constraint logic programming over action do-
mains D —where the two special atoms of agent logic programs, Poss(α, s1, s2)
and Holds(ϕ, s) , are taken as constraints.

As illustrated by Example 2, it is the lack of a most general answer sub-
stitution that causes the incompleteness of the basic proof calculus in case of
domains that are not query-complete. This motivates the use of the following,
more expressive notion of answer substitutions (see, e.g., [15]).

Definition 7 A disjunctive substitution is a set Θ = {θ1, . . . , θn} of substi-
tutions. The application of a disjunctive substitution Θ to a clause c re-
sults in the disjunction

∨
i=1,...,n cθi . The composition Θ1Θ2 of two disjunc-

tive substitutions is defined as {θiθj | θi ∈ Θ1 and θj ∈ Θ2} . A substitution
Θ1 = {θ1, . . . , θk} is more general than a substitution Θ2 = {θk+1, . . . , θl} if
for every θi ∈ Θ1 there exist θj ∈ Θ2 and θ such that θiθ = θj .

Every disjunctive substitution Θ determines a formula in disjunctive normal
form consisting of equality atoms. With a little abuse of notation we will denote
this formula by Θ , too; e.g. we treat Θ = {{x/3}, {x/4}} and x = 3 ∨ x =
4 interchangeably. These equational formulas, together with Holds and Poss
atoms, constitute the elements of the constraint store, which replaces the simple
substitutions in the derivation states used in LP(D) .

In CLP(X) , the derivation rule that handles constraint atoms G is based
on the logical equivalence G∧S ≡ S′ , where S and S′ denote the constraint
store prior to and after the rule application, respectively. In our setting CLP(D) ,
where G is either Holds or Poss , the resulting constraint store S′ is obtained
based on the following equivalences:

• if there is a substitution Θ such that D � (∀)
∨

θ∈Θ Gθ then we can exploit
that

D � (G ∧ S) ≡ ((G ∧ Θ) ∧ S); and (2)

• if D does not entail that the constraint is unsatisfiable (i.e. D 2 ¬S ∧G) we
can use the following trivial equivalence

D � G ∧ S ≡ G ∧ S. (3)

Prior to defining the CLP-based proof calculus for agent logic programs, let
us discuss how disjunctive substitutions are applied. Most CLP(X) -languages
come with an additional Solve transition, which maps derivation states into
simpler, equivalent ones. A typical example is the application of substitutions,
which, for instance, allows to transform the state 〈 ¬P (x), x = 1 〉 into the
simpler 〈 ¬P (1), true 〉 .

A Declarative Agent Programming Language Based on Action Theories 11

The application of a disjunctive substitution Θ = {θ1, . . . , θk} is a bit more
involved: In the definition of our CLP(D) calculus, if we have obtained a dis-
junctive substitution Θ = {θ1, . . . , θn} for special atom G , we employ rea-
soning by cases: we split the current substate of the derivation into a disjunc-
tion of substates, one for each θi . We extend the substates by an additional
argument C (the case store), for recording the case G ∧ θi . In a substate
< Negative Clause,S, C > special atoms are evaluated against the action theory
augmented by the respective case — D ∪ {C} . It is crucial to observe that the
disjunction of the action theories Di augmented by the respective cases Ci is
equivalent to the original D .

A derivation state in CLP(D) is a disjunction, denoted by ∨̇ , of sub-states
〈 ¬G1 ∨ . . .∨¬Gn,S, C 〉 . The derivation rules of the proof calculus are depicted
in Figure 2. Due to lack of space, we omit the straightforward rule for regular
program atoms. A derivation of a query Γ starts with 〈 ¬Γ, true, true 〉 and,
if successful, ends in a state 〈 @,S1, C1 〉∨̇ . . . ∨̇〈 @,Sm, Cm 〉 , (m ≥ 1). The
formula S1 ∨ . . . ∨ Sm is the computed answer . A failed derivation ends with a
sub-state to which none of the rules can be applied.

Substitution Rule:

< (¬G1 ∨ . . . ∨ ¬Gj−1 ∨ ¬Gj ∨ ¬Gj+1 ∨ . . . ∨ ¬Gn),S , C >

< ˙W
i
< (¬G1 ∨ . . . ∨ ¬Gj−1 ∨ ¬Gj+1 ∨ . . . ∨ ¬Gn),S ∧ Gj ∧ θi, C ∧ Gj ∧ θi >

where D ∪ {C} � (∀)
W

θi∈Θ Gjθi with most general disjunctive substitution Θ

Constraint Rule:

< (¬G1 ∨ . . . ∨ ¬Gj−1 ∨ ¬Gj ∨ ¬Gj+1 ∨ . . . ∨ ¬Gn),S , C >

< (¬G1 ∨ . . . ∨ ¬Gj−1 ∨ ¬Gj+1 ∨ . . . ∨ ¬Gn),S ∧ Gj , C >

if D ∪ {C} 2 ¬(∃) S ∧ Gj .

Fig. 2. Inference rules for CLP(D) (the given rules operate on single sub-states).

Example 2 (continued) Recall that this action domain contains the initial
state axiom Holds(At(Gold , 4), S0) ∨ Holds(At(Gold , 5), S0) . Further, consider
the simple program clause

p(Y) :- ?(at(gold,Y)). (4)

12 Conrad Drescher, Stephan Schiffel, and Michael Thielscher

along with the query :- ?(at(gold,X)), p(X). Obviously there exists x such
that Holds(At(Gold , x), S0) and P (x, S0, S0) . This is a successful derivation:7

〈 ¬Holds(At(Gold , x), S0) ∨ ¬P (x, S0, s), true 〉
7→

〈 ¬P (4, S0, s),Holds(At(Gold , x), S0) ∧ x = 4 〉
∨̇ 〈 ¬P (5, S0, s),Holds(At(Gold , x), S0) ∧ x = 5 〉

7→
〈 ¬Holds(At(Gold , 4), S0),Holds(At(Gold , 4), S0) ∧ θ1 〉

∨̇ 〈 ¬Holds(At(Gold , 5), S0),Holds(At(Gold , 5), S0) ∧ θ2 〉
7→

〈 @,Holds(At(Gold , 4), S0) ∧ θ1 〉
∨̇ 〈 @,Holds(At(Gold , 5), S0) ∧ θ2 〉

where θ1 is x = 4∧s = S0 , and θ2 is x = 5∧s = S0 . This example illustrates
the necessity of reasoning by cases: in both sub-states, the last step would not be
possible without adding the case store to the domain axioms prior to verifying
the respective Holds instance.

Piggybacking on the general proofs for CLP(X) , and based on the equiv-
alences in (2) and (3), the CLP(D) approach is sound and complete in the
following sense, provided that the underlying reasoning about actions is sound
and complete. In the following, let Π be an expanded agent logic program, D
a background domain axiomatization, and Γ an expanded query.

Theorem 1 (Soundness of CLP(D)). If Γ has a successful derivation with
computed answer

∨
i=1..k Si , then Π ∪D � (∀)

∨
i=1..k Si ⊃ Γ .

Theorem 2 (Completeness of CLP(D)). If Π ∪ D � (∀)S ⊃ Γ and S is
satisfiable wrt. D , then there are successful derivations for Γ with computed
answers S1, . . . ,Sn such that D � (∀)(S ⊃ (S1 ∨ . . . ∨ Sn)) .

5 Planning with ALPs

Agent logic programs can be used to solve two complementary tasks: They can be
used to control an intelligent agent online; or the agent may use them to infer a
plan that helps it achieve its goals. For online agent control it is a sound strategy
to non-deterministically pick one path in the proof tree of agent logic programs,
restricted to non-disjunctive substitutions. Essentially, this is the same as what
is being done in GOLOG and FLUX. In this section we consider how agent logic
programs can be utilized by agents for offline deliberation on planning problems.

5.1 Inferring Plans

It is surprisingly easy to formulate a generic agent logic program for arbitrary
planning problems:

7 We only show one of the constraint and case store (always identical in this example).

A Declarative Agent Programming Language Based on Action Theories 13

Example 3 [Generic ALP for Planning] The following is the generic ALP for
planning problems, where Phi shall denote the respective goal description:

plan :- ?(Phi).

plan :- do(A), plan.

Put in words, we execute arbitrary actions until the goal φ is reached.

The soundness and completeness results from the previous section assure us that
the query ?-plan. can be proved if and only if it is entailed by this ALP together
with the action theory. Somewhat surprisingly, there remains the question on
how the inferred plan — if it exists — can be communicated to the programmer.
The usual notion of a computed answer in logic programming does not provide
any information concerning the plan inferred by deriving this query. In situation-
based action theories D we could simply print out the final situations. If the
natural or the real numbers serve as time structures this does not work, though.

For solving planning problems the sequence of the evaluated Poss(a, s1, s2)
atoms provides the programmer with the desired information (or, in the case
of disjunctive plans, the corresponding tree does). The construction of such a
planning tree is easily included into our proof calculi: In the case of CLP(D)
the constraint stores already contain this information, and in the case of query
complete domains the calculus is easily extended to construct this sequence.

5.2 Planning Completeness

The soundness and completeness results from the previous section assure us that
a query can be proved if and only if it is entailed by the ALP together with the
action theory. In this section we consider the following question: Assume that the
action theory entails that some goal is achievable. Does the ALP from example
3 allow to infer a plan achieving this goal? It turns out that, unfortunately, in
general the query ?-plan. need not have a successful derivation, even if the
action theory entails that the goal is achievable, i.e. D � (∃s)Holds(φ, s) . We
next identify a number of natural conditions on action theories that will preclude
this kind of situation.

Definition 8 [Properties of Action Theories] An action theory with precondi-
tion axioms DPoss and time structure axiomatization DTime is

– progressing if DPoss ∪ DTime |= Poss(a, s1, s2) ⊃ s1 < s2 .
– sequential if it is progressing and no two actions overlap; that is

DPoss ∪ DTime |= Poss(a, s1, s2) ∧ Poss(a′, s′1, s
′

2) ⊃
(s2 < s′2 ⊃ s2 ≤ s′1) ∧ (s2 = s′2 ⊃ a = a ∧ s1 = s′1).

– temporally determined if all precondition axioms are of the form

Poss(A(x̄), s1, s2) ≡ πA[s1] ∧
∨

i

ϕi, (5)

where πA[s1] does not mention s2 , and each ϕi is an equality atom equat-
ing the time variable s2 to a function with arguments among s1 and x̄ .

14 Conrad Drescher, Stephan Schiffel, and Michael Thielscher

– anytime if it is sequential and action applicability is not tied to a specific
time-point; that is DPoss ∪ DTime entail

(∀)(∃s2)(Poss(a, s1, s2)∧ [Holds(f, s1) ≡ Holds(f, s′1)])⊃(∃s′2)Poss(a, s′1, s
′

2).

Let us illustrate the last two of these notions by the following example:

Example 4 [Properties of Action Theories] A precondition axiom is not tem-
porally determined if it is e.g. of the form (∀)Poss(A, s1, s2) ≡ s2 > s1 . Next,
consider the precondition axioms Poss(A, s1, s2) ≡ s1 = 0 ∧ s2 = 1 and
Poss(B, s1, s2) ≡ s1 = 2 ∧ s2 = 3 , violating the conditions for a anytime action
theories. The query ?- do(a), do(b) is macro-expanded to (∃)Poss(A, 0, s′1)∧
Poss(B, s′1, s

′

2) , which does not follow under the given precondition axioms.

Define an action theory to be admissible if it satisfies all of the above proper-
ties. Now, if an admissible action theory entails that there exists a time where a
goal holds, by an agent logic program a plan achieving that goal can be inferred:

Theorem 3 (Planning Completeness of ALPs). Let D be an admissible
action theory. Further, let Π be the generic planning ALP from example 3, and
let the query Γ be ?- plan.. Assume that D � (∃s)Holds(φ, s) for planning
goal φ , and Π ∪ D � (∀)S ⊃ Γ and S is satisfiable wrt. D . We then know
that there exist successful derivations of the query Plan(S0, s) in CLP(D) with
computed answers S1, . . . ,Sn such that D � (∀)(S ⊃ (S1∨ . . .∨Sn)) . The plans
computed by these derivations can be combined into a plan achieving the goal φ .
Note that this plan can be disjunctive, and conditional on the constraint store.
For LP(D) and query-complete action theories D a similar result holds.

Admissible action theories are not overly restrictive: while some of the expres-
sivity of the Event Calculus and concurrent planning languages like full PDDL
is lost, most standard agent and planning languages, as well as all of the basic
Fluent and Situation Calculus are preserved.8

The correspondence between goal achievability and the existence of disjunc-
tive plans is a well-known property of the Situation Calculus [16, 17]. Interest-
ingly, GOLOG, which is based on Situation Calculus action theories, cannot
be used to infer disjunctive plans. Agent logic programs, on the other hand,
instantiated with any admissible action theory can handle this task.

Example 5 [Disjunctive Plan] Consider a further simplified version of the ac-
tion theory from example 1, where the agent can move instantaneously to any
location: The precondition of moving is axiomatized as

Poss(Go(y), s, t) ≡ (∃x)(Holds(At(Agent , x), s) ∧ t = Do(Go(y), s),

and the effect axiom is as before. Let the initial state be given by

Holds(At(Agent , 1), S0) ∧ (Holds(At(Gold , 4), S0) ∨Holds(At(Gold , 5), S0)).

On top of this action theory, consider the following agent logic program:

8 Discussing in detail which (parts of) existing action formalisms are admissible is
beyond the scope of this paper.

A Declarative Agent Programming Language Based on Action Theories 15

goToGold :- ?(at(gold,X)), do(go(X)).

It is not hard to see that there exists a successful derivation of the query
?-goToGold., from which the plan Poss(Go(4), S0) ∨ Poss(Go(5), S0) can be
extracted, informing us that the agent should go to either location 4 or 5 to
achieve its goal.

6 Conclusion

We have developed a declarative programming paradigm which can be used
to specify agent strategies on top of underlying background action theories. A
declarative semantics in pure classical logic has been given and complemented
with a sound and complete operational semantics for two different settings: one,
where we admit only query-complete background theories and which, as a conse-
quence, harmonizes with basic logic programming; and one that is fully general,
appealing to constraint logic programming. Agent logic programs are generic
in that they can be used in combination with different (sufficiently expressive)
action calculi. This paves the way for implementations of agent logic programs
which combine SLD-resolution (or CLP-implementation techniques) with exist-
ing reasoners for actions. Specifically, we are currently developing an implemen-
tation of agent logic programs on the basis of recent results on how to build a
decidable action calculus on top of Description Logics[18–20].

It is worth pointing out that the declarative semantics we have used in this
paper is not the only meaningful interpretation of an agent logic program. In
fact, macro-expansion via Definition 2 implicitly requires an agent to execute
actions in a strictly sequential order. For future work, we intend to investigate
alternative interpretations, which support overlapping actions and temporal gaps
between two actions. This will allow us to broaden the class of action theories
on which agent logic programs are planning complete.

With regard to related work, GOLOG [2] and FLUX [8] are two major ex-
ponents of agent programming languages based on general action calculi. In
contrast to agent logic programs, GOLOG is a procedural language, whose ele-
ments derive from the classical programming language Algol. GOLOG has been
implemented in Prolog on the basis of a Situation Calculus-style axiomatization
of its programming elements. We believe that this can form the basis of a generic
agent logic program for GOLOG, which would then provide a nice reconciliation
of the procedural and the declarative programming paradigms. FLUX programs,
on the other hand, are full Prolog programs together with a sound implemen-
tation of a fragment of the Fluent Calculus. As a consequence, they only admit
an operational semantics based on the notion of Prolog computation trees [8].
However, FLUX restricted to pure definite logic programs is an example of a
sound implementation of a fragment of agent logic programs.

A prominent feature of agent logic programs that is absent from existing
agent programming languages are the disjunctive substitutions in CLP(D) ,
which can be viewed as conditional plans. Agent logic programs also stand apart
by their clear separation between world dynamics and employed strategy.

16 Conrad Drescher, Stephan Schiffel, and Michael Thielscher

References

1. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4 (1969) 463–502

2. Reiter, R.: Knowledge in Action. MIT Press (2001)
3. Mueller, E.: Commonsense Reasoning. Morgan Kaufmann (2006)
4. Dastani, M., de Boer, F., Dignum, F., Meyer, J.J.: Programming agent deliber-

ation: An approach illustrated using the 3APL language. In: Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS). (2003) 97–104

5. Morley, D., Meyers, K.: The SPARK agent framework. In: Proceedings of the Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS).
(2004) 714–721

6. Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. Wiley (2007)

7. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2 (1971) 189–208

8. Thielscher, M.: FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming 5 (2005) 533–565

9. Lloyd, J.: Foundations of Logic Programming. Springer (1987)
10. Thielscher, M.: Reasoning Robots: The Art and Science of Programming Robotic

Agents. Volume 33 of Applied Logic Series. Kluwer (2005)
11. McDermott, D.: The 1998 AI planning systems competition. AI Magazine 21

(2000) 35–55
12. Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI

competition. AI Magazine 26 (2005) 62–72
13. Stärk, R.: A direct proof for the completeness of SLD-resolution. In: Third Work-

shop on Computer Science Logic. (1990)
14. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proceedings of the 14th

ACM Principles of Programming Languages Conference, Munich (1987)
15. Green, C.: Theorem proving by resolution as a basis for question-answering sys-

tems. Machine Intelligence 4 (1969) 183–205
16. Reiter, R.: The frame problem in the situation calculus: A simple solution (some-

times) and a completeness result for goal regression. In Lifschitz, V., ed.: Artificial
Intelligence and Mathematical Theory of Computation. Academic Press (1991)
359–380

17. Savelli, F.: Existential assertions and quantum levels on the tree of the situation
calculus. Artificial Intelligence 170 (2006) 643–652

18. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes.
In: Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR 06), Lake District of the UK (2006)

19. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description
logics and action formalisms: First results. In: Proceedings of the AAAI National
Conference on Artificial Intelligence, Pittsburgh (2005) 572–577

20. Drescher, C., Liu, H., Baader, F., Guhlemann, S., Petersohn, U., Steinke, P.,
Thielscher, M.: Putting abox updates into action. In: Proceedings of the 7th In-
ternational Symposion on Frontiers of Combining Systems (FroCoS 2009), Trento,
Italy (2009)

