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Abstract. We present a robot control system for known structured environments that integrates ro-
bust reactive control with reasoning-based execution monitoring. It provides a robot with a powerful
method for dealing with situations that were caused by the interaction with humans or that are due
to unexpected changes in the operating environment. On the reactive level, the robot is controlled
using a hierarchy of low-level behaviours. On the high level, a logical representation of the world
enables the robot to plan action sequences and to reason about the state of the world. If the execution
of an action does not have the expected effect, high-level reasoning allows the robot to infer possible
explanations and, if necessary, to recover from the failure situation. For the robot to act optimally,
the discrepancies between the internal world model and the real world have to be detected and cor-
rected. The proposed system obtains new information about the world by executing sensing actions
(active perception) and by sensory interpretation during the robot’s operation. It also takes into ac-
count temporal information about changes in the environment. All updates of the world model are
performed in a way that the changes are consistent with an underlying action theory. Having im-
plemented the proposed system on a common mobile robot platform, we demonstrate the value of
intelligent execution monitoring by means of two realistic office delivery scenarios.
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1. Introduction

In recent years, robotics has been subject to promising advances in sensor and actuator hardware, sensory
processing techniques, and low-level control methods. Yet, if we want a mobile robot to perform complex
tasks in real-world environments, we still face a number of problems. The information the robot has about
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its operating environment might be out of date, incomplete, and uncertain. The execution of actions might
fail due to a multitude of reasons. Ideally, we want the robot to reason about unexpected situations and
to infer possible explanations in order to recover from the failure situation.

The capabilities described above require the robot to maintain information on its own state, usually
obtained by processing the sensory data, as well as knowledge about the operating environment and the
task at hand, commonly referred to asworld model. To deal with the uncertainty in the robot’s observa-
tions, it is common practice to represent state information such as the robot’s location in the environment
or the position of objects of interest using state enumeration and probabilities. Popular approaches in-
clude position probability grids [5] and particle sets [29]. On the other hand, as the robotic tasks become
more complex, we would like to use reasoning and planning techniques. These require a symbolic rep-
resentation instead. In fact, there is a large variety of symbolic reasoning and action planning methods
for mobile robots. However, they are very difficult to integrate with the commonly used mechanisms for
perception and reactive control due to the incompatibility of the underlying representations.

In order to make efficient use of high-level control for task planning and error recovery in dynamic
real-time environments, temporal information about changes in the environment need to be incorporated
into the world model. Therefore, we decided to realise the following two kinds of data acquisition. The
robot may obtain information about the environment using its sensory processing system concurrently
while executing a sequence of actions, or it may choose to execute specific sensory actions.

The aim of our work is to enable a mobile robot to perform action planning and reasoning-based ex-
ecution monitoring in known structured environments, allowing for action failures due to the interaction
with humans and dynamic changes in the environment. We present a hierarchical, modular control archi-
tecture that integrates low-level behaviours with a high-level controller, thus combining the robustness
of reactive control with the power of intelligent reasoning. We have developed a layered scheme of exe-
cution monitoring. It allows the robot to find explanations for action failure using the logic-based world
model and the history of the task execution. The capabilities of this novel kind of execution monitoring
are evaluated using realistic scenarios for an office delivery robot.

The paper is organised as follows. In Section 2, we discuss related work on logic-based repre-
sentations of dynamic information and on execution monitoring. In Section 3, we describe the main
components of the proposed architecture and the representations and techniques used at the reactive and
the abstract level. In Section 4, we describe the concepts and techniques for representing dynamic in-
formation, the acquisition of information while executing a plan, and active sensing. In Section 5, we
demonstrate the functionality of the system using example scenarios. We conclude in Section 6.

2. Related Work

There is a vast literature on the integration of planning and reactivity in autonomous mobile robots, e.g.,
on the traditional sense-plan-act architectures as well as behaviour-based control and variations thereof
[6, 17]. Several of the issues related to that are discussed in the following sections. However, a detailed
discussion of the previous work on this topic goes beyond the scope of this paper. In this section, we
therefore focus on literature on the realisation of reasoning-based execution monitoring and on logic-
based representations of dynamic worlds.
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2.1. Execution Monitoring

The problem of execution monitoring can be addressed in various ways. The individual solutions usually
depend on the control architectures and the tasks they are used with. For example, there are efficient
methods for handling errors in navigation tasks, such as the D*-algorithm [23]. Moreover, there is a
large body of related work in the fields of fault detection and isolation (FDI) and industrial control. Since
we want our solution to be applicable to complex delivery tasks, we address the problem of execution
monitoring in a logical framework, going far beyond the requirements of pure navigation tasks.

There is no generally accepted definition of execution monitoring. De Giacomo and colleagues [3]
defineexecution monitoringas “the robot’s process of observing the world for discrepancies between
the actual world and the robot’s internal representation of it, and recovering from such discrepancies”.
In this work, we extend this notion in the way that the robot should come up withexplanationsfor the
detected discrepancies as well. Consequently, we can divide the overall process of execution monitoring
into three steps: detecting discrepancies, explaining the situation, and launching a recovery procedure.
They are discussed in the remainder of this section.

Detecting Discrepancies

In general, the robot maintains a representation of its current state, such as the position in the environ-
ment, the distance to obstacles, and the state of the gripper. In addition, the execution of complex actions
requires an internal model of the robot’s interaction with the environment and a description of the task to
be solved. By comparing all this information, it should be possible to detect erroneous situations. How-
ever, we do not expect such a comparison to be straightforward as the models and representations are
likely to be complex and incompatible. In general, the representation of the robot’s state will be layered
and distributed. The control architectures usually include specialised modules for the interpretation of
sensory data. At the low levels of control, probabilistic representations are commonly used to deal with
incomplete and erroneous sensory information. At the highest level of control, in contrast, symbolic,
logic-based representations are preferred.

Suppose the robot is to execute a sequence of actions. At the beginning, the robot generates an
expectation as to the result of this sequence, i.e., the change of state caused by each action. These
expectations are going to be layered and distributed as well. The anticipated effect of a go-to action
at the low level, for example, is a change of the robot’s position within a certain amount of time while
maintaining a minimum distance to obstacles. At the highest level of control, expectations can be inferred
using a knowledge base and an underlying action theory.

Providing Explanations

Once an action turned out to have a different effect than expected, we would like to know the reason,
i.e., find an explanation for the encountered discrepancy between state information and expectation. In
general, this will require reasoning. This goes beyond the capabilities of reactive control and has to be
performed at the highest level of control.

The robot can generally only observe symptoms of the current situation. For instance, a robot getting
stuck could have been caused by a variety of reasons: a localisation failure, a visible object such as a
person, an invisible obstacle such as a bump in the floor, an unexpected change of the environment such
as a door being closed, and so on. The more relevant features of the environment are included in the
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state information and the smaller the granularity of the world model and task description, the easier it is
to make conjectures about the possible reasons of failure. On the other hand, to keep all this information
up to date and consistent is challenging.

Decomposition planning meets the requirements mentioned above [30]. If, for example, a complex
navigation task is broken down into smaller actions like door passings, corridor and room traverses, then
failures can be substantiated with higher reliability. Default logic [14] provides means for the planning
and reasoning module to abstract away from the sheer non-exhausting, but increasingly unlikely, set of
preconditions, thus solving the qualification problem [12]. In case of unexpected situations though, these
default assumptions must be checked according to an ordered preference list [11], thus providing the
most likely explanation for action failure.

Recovering

Once an explanation of the current situation is found and the state information and world model are
corrected, some recovery strategy is expected to remedy the failure. As suggested by Fernández and
Simmons [4], this can be done by launching a predefined recovery plan. For example, when the robot
notices that it ran into a dead end, it computes a path that brings it back on the original track and continues
with the initial plan. Given a strong planning tool, instead of just correcting the mistake, we are able to
find an optimal plan for the current situation, provided that the world model is correct. Suppose the
robot did not run into a dead end, but found a shortcut. Now, the planner can provide a better solution if
returning to the old track proves to be more costly.

2.2. Logic-based Representations of Dynamic Worlds

Previous logic-based representations of dynamic worlds are rooted in the general framework developed
by Sandewall [18], in which dynamic information is modelled by autonomous processes that run in
parallel and that may eventually trigger further changes in the environment. This technique has been
integrated, for example, into situation calculus [15], event calculus [21], or fluent calculus [26]. Imple-
menting these approaches, the agent programming and planning languages ConGolog [2] or FLUX [10]
support the specification of concurrent processes and their effects.

A disadvantage of these methods is that all changes need to be explicitly inferred as effects of endoge-
nous events, whose occurrence in turn needs to be derived from the ongoing processes. Robots which
follow this approach in highly dynamic environments would be overwhelmed with constantly calculating
all changes that happen around them. In order to avoid these frequent updates, we represent temporal
knowledge about a dynamic property by attaching the time of its observation to the corresponding prop-
erty. Decay of information will then be simulated by automatically forgetting about outdated fluents after
a certain amount of time so that only recent knowledge is considered when devising plans.

3. Building the System

To put the functionality described above into practice, we added a high-level planning and reasoning
component to a fairly standard hierarchical robot control system. In the following, we describe the parts
of the system that are relevant specifically to execution monitoring.



M. Fichtner, A. Großmann, M. Thielscher / Intelligent Execution Monitoring in Dynamic Environments 5

status info

exogenous events

actuator settings

parameter
behaviour

position
estimates

distance and
odometry
sensor readings

path request

status

info

map data

map data

path info

camera image

sensor data

position estimates
of detected objects

Controller

Controller

Interface
User

Robot Hardware

Vision System
Position Tracking

Map Module

Path Planner
Cognitive−Level

Reactive−Level

Door Detection

Figure 1. Control architecture of the robot.

3.1. System Architecture

The control architecture of the robot, as depicted in Figure 1, consists of several modules. The hardware
controller talking directly to the robot’s sensors (odometry, sonars, laser) and actuators (drive motors,
gripper) is considered the lowest level of control.

The basic perceptual and behavioural functions of the robot are implemented by the reactive-level
controller. Aiming at reactivity and robustness, we have chosen a behaviour-based approach. That is, the
reactive controller includes several interacting, task-specific programs that are referred to as low-level
behaviours. Each behaviour program takes the current sensor readings and the state information and
computes target values of the robot’s actuators. Individual behaviours can overwrite the output of other
behaviours. The overall behaviour of the robot is controlled by activating or disabling individual low-
level behaviours and by setting behaviour parameters such as target coordinates. Obstacle avoidance and
local navigation (navigation inside a single room or corridor) are implemented in this way.

The robot’s goal-oriented behaviour is directed by the cognitive-level controller. For example, the
high-level controller allows for global navigation (navigation between rooms) by providing target coor-
dinates to the reactive-level controller such as the location of doors and persons. In return, the low-level
controller provides status information to the cognitive-level controller, notifying the planning and rea-
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soning system about the success or failure of individual actions or the encounter of unexpected situations.
There are specialised sensor-processing modules for visual object detection, laser-based position

tracking, and door detection. These components maintain a probabilistic representation of the detected
objects, robot poses, and door angles, respectively. The reactive-level and the cognitive-level controllers
depend on the information from the sensory interpretation modules. However, both control programs are
unable to process complete, possibly multi-modal, probability distributions. Therefore, the probabilistic
representations of the sensory modules are simplified by computing an approximation as a mixture of
Gaussians. Only their mean and variance parameters are passed on to the controllers.

3.2. At the Lower Levels

Independently of the task to be performed, the safety of the robot and the environment has to be main-
tained at all times. Therefore, the reactive controller includes a set of low-level safety behaviours, e.g.,
for obstacle avoidance and velocity control, that cannot be switched off by higher levels of control. The
other low-level behaviours are designed to achieve specific (parameterised) goals such as to travel to a
target position or to pick up an object.

Suppose the robot is to execute a sequence of high-level actions. Then for each action, there is
a designated process that supervises the execution of that action. This execution monitoring process
invokes the appropriate low-level behaviours. The monitoring processes are implemented as finite state
machines. Some states are common to all actions, others are specific to the task. For each monitoring
process, there is a predefined set of exceptions, represented by status information. There are exceptions
that are passed on by the low-level behaviours and there are exceptions that were detected by the sensor
processing systems.

In the following, we illustrate this concept for the action of travelling to a given office. The corre-
sponding low-level behaviourGoToPosconsists of the following states:

Initialise Define target parameters

ExecutePlan Initiate plan execution

InProgress Execution in progress

Success Execution terminated successfully

FailureStalled Drive motors stalled

FailureObstacle Path blocked by obstacle

FailureDoor Path blocked by door

Timeout Execution timeout

Interrupt Execution interrupted

We would like to stress that execution monitoring happens at either level of control. The individual
low-level behaviours might be able to deal with the situation on their own. For example, if a small
obstacle is detected by the distance sensors, the obstacle avoidance behaviour might be able to navigate
around it. If the low-level behaviour terminates unsuccessfully, e.g., after bumping into an obstacle, the
cognitive level is notified and has to take over.
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3.3. At the Highest Level

The high-level controller maintains a symbolic world model. Reasoning about actions is used at this level
to plan complex tasks and to generate expectations as to the effects of actions. When a discrepancy arises
between the expectations and the robot’s actual perception, the high-level controller uses its reasoning
facilities to come up with suitable explanations and a recovery plan. As the underlying action theory we
use the fluent calculus with its solution to the classical frame, ramification, and qualification problems.
Our system builds on the inference engine FLUX for the fluent calculus [28].

Symbolic State Representations

A many-sorted predicate logic language, the fluent calculus extends the classical situation calculus by the
concept of a state. Its signature includes the standard sortsFLUENT and STATE. The intuition is that a
state is characterised by the fluents that hold in it. Formally, every fluent, i.e., term of sortFLUENT, is also
of sort STATE. The signature of the fluent calculus moreover contains the constant∅ : STATE (denoting
the empty state) and the binary function symbol◦ : STATE× STATE 7→ STATE. The latter is usually
written in infix notation and denotes the union of two states. If, for example,Carries(Book123, Sandra)
is a FLUENT and z a variable of sortSTATE, then Carries(Book123, Sandra) ◦ z is also a state. A
finitestate is a term of the formf1 ◦ . . . ◦ fn where each sub-termfi is of sort FLUENT.

In order to capture the intuition of identifying states with the fluents that hold, the special connec-
tion function “◦ ” of fluent calculus obeys certain properties which closely resemble those of the union
operation for sets.

Definition 3.1. Let Holds(f, z) be an abbreviation for the equational formula(∃z′) z = f ◦ z′. The
foundational axiomsFstate of the fluent calculus are:1

1. Associativity and commutativity,

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3)
z1 ◦ z2 = z2 ◦ z1

2. Empty state axiom,
¬Holds(f, ∅)

3. Irreducibility,
Holds(f, g)⊃ f = g

4. Decomposition,
Holds(f, z1 ◦ z2)⊃Holds(f, z1) ∨ Holds(f, z2)

5. State equality,
(∀f) (Holds(f, z1)≡Holds(f, z2))⊃ z1 = z2

6. State existence,
(∀P )(∃z)(∀f) (Holds(f, z)≡P (f))

1Below, f, g are FLUENT variables whilez1, z2, z3 are STATE variables. Free variables are universally quantified.
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The very last axiom stipulates the existence of a state for any set of fluents, wherebyP is a unary,
second-order predicate variable of sortFLUENT.

For formalising the effects of actions, and ultimately for solving the classical frame problem [13],
the fluent calculus uses a purely axiomatic characterisation of removal and addition of fluents to states.
Let z1, z2 be states andf a fluent, then the expressionz1 − f = z2 (denoting removal off from z1)
is defined as an abbreviation for the formula

[z2 = z1 ∨ z2 ◦ f = z1] ∧ ¬Holds(f, z2)

Let ϑ− = f1 ◦ . . .◦fn (n ≥ 1), then an inductive extension of this macro definesz1− (ϑ− ◦f) = z2 as
(∃z) (z1−ϑ− = z ∧ z−f = z2). The addition of fluents, writtenz1+f1◦ . . .◦fn = z2, is defined as an
abbreviation for the formulaz1 ◦ f1 ◦ . . . ◦ fn = z2. Finally, theupdate equationz2 = (z1−ϑ−) + ϑ+,
which lays the foundation for an axiomatic solution to the frame problem, is defined as

(∃z) (z1 − ϑ− = z ∧ z + ϑ+ = z2)

Specifying the Effects of Actions

The sorts ACTION and SIT (for situations as sequences of actions) are inherited from the situation
calculus [16] along with the standard functionsS0 : SIT (denoting the initial situation) andDo :
ACTION × SIT 7→ SIT (denoting the successor situation of performing an action). To this the fluent
calculus adds the special functionState : SIT 7→ STATE which denotes the state of the world in a
situation. With this, a fluentf is defined to hold in a situations thus:

Holds(f, s) def= Holds(f, State(s))

It is important to note the intuition for states and situations. Being the fundamental representation, a
state represents a (timeless) state of the world by means of a set of fluents denoting properties that hold
in it. In contrast, a is like a “point in time” and is characterised by the agent’s sequence of actions, rooted
in the initial situationS0. The basic expressionState(s) refers s to a statez.

The fluent calculus provides a solution to the fundamental frame problem in classical logic. For
every action, a so-calledstate update axiomuses the concept of fluent removal and addition to specify
the effects of an action. For example, the actionReceive(o, p) of receiving objecto from personp is
specified by:

Poss(Receive(o, p), s) ⊃
(∃p′) (Holds(Request(p, o, p′), s)∧

State(Do(Receive(o, p), s)) = (State(s)− Request(p, o, p′)) + Carries(o, p′) )

Here, the standard predicatePoss(a, s) denotes that actiona is possible in situations. The update
axiom describes the subsequent state,State(Do(Receive(o, p), s)), in terms of an update of the current
state, State(s), by the negative effectRequest(p, o, p′) and the positive effectCarries(o, p′). That is,
upon receivingo from p addressed to personp′, the robot carries this object forp′ and the correspond-
ing delivery request is cancelled.

The general form of a state update axiom supports the specification of conditional as well as non-
deterministic effects.
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Definition 3.2. A state update axiomis a formula

Poss(A(~x), s)⊃ (∃~y1) (∆1(~x, ~y1, s) ∧ State(Do(A(~x), s)) = State(s)− ϑ−1 + ϑ+
1 )

∨ . . . ∨
(∃~yk) (∆k(~x, ~yk, s) ∧ State(Do(A(~x), s)) = State(s)− ϑ−k + ϑ+

k )
∨ . . . ∨
(∃~yn) (∆n(~x, ~yn, s) ∧ State(Do(A(~x), s)) = State(s)− ϑ−n + ϑ+

n )

(1)

where n ≥ 1 and, for each1 ≤ i ≤ n, ∆i(~x, ~yi, s) is a first-order formula specifying additional
conditions with free variables among~x, ~yi, s, and ϑ+

i , ϑ−i are finite states with variables among~x, ~yi.

The main theorem of the basic fluent calculus says that state update axioms solve the frame prob-
lem [24]:

Theorem 3.1. Let Fstate be the foundational axioms of the fluent calculus, and consider a state up-
date axiom of the form (1), then for any1 ≤ k ≤ n, the formula Poss(A(~x), s) ∧ ∆k(~x, ~yk, s) ∧∧

i6=k(∀~yi)¬∆i(~x, ~yi, s) entails

Holds(f, Do(A(~x), s)) ≡ Holds(f, ϑ+
k )

∨ Holds(f, s) ∧ ¬Holds(f, ϑ−k )

Specifying Action Preconditions

The cognitive controller requires precondition and effect specifications of each high-level action. To
account for unexpected action failure, we make the distinction between normal and abnormal precondi-
tions. The former need to be ascertained before an action can be planned while the latter are assumed
away by default but serve as possible explanations in case the action surprisingly fails. For example,
the following axiom specifies the preconditions of the actionDeliver(o, p) of delivering objecto to
personp :

Poss(Deliver(o, p), s) ≡ Holds(Carries(o, p), s)∧
(∃r) (Holds(InRoom(r), s) ∧Office(r, p))∧
¬Holds(Ab(Traceable(p)), s) ∧ ¬Holds(Ab(NotLost(o)), s)

(2)

The fluentAb(x) indicates the presence of abnormal conditionx. Hence, the precondition axiom says
that normally a delivery is possible if the robot carries the object in question,o, and happens to be in the
office r of the recipientp. However, the action fails under the unusual circumstances that the respective
person is not traceable or the object has been lost.

Actions sometimes fail to produce the intended effect. For example, in exceptional cases a delivery
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may leave the recipient with the wrong item:

Poss(Deliver(o, p), s) ⊃
¬(∃o′) Holds(Ab(Deliver(o′, p)), s)∧

State(Do(Deliver(o, p), s)) = State(s)− Carries(o, p)

∨
(∃o′, p′)

(
Holds(Ab(Deliver(o′, p)), s)∧

Holds(Carries(o′, p′), s) ∧ o 6= o′ ∧
State(Do(Deliver(o, p), s)) = State(s)− Carries(o′, p′)

)
(3)

The conditionHolds(Ab(Deliver(o′, p)), s) represents the abnormal case of delivering the wrong item
o′ to personp in situation s. Abnormal conditions in state update axioms, too, are assumed away by
default but may serve as explanations for observed discrepancies between the expected and the actual
outcome.

Possible indirect effects of actions are specified by causal relationships. This solves the ramification
problem [7]. For example, suppose the robot searches for an objecto among the group of people in
some roomr. WheneverHas(p′, o) becomes true, stating that personp′ is in possession of the object,
then all other previously considered possibilities of people havingo are ruled out:

Holds(MightHave(p, o, r), s) ⊃ Causes(Has(p′, o),¬MightHave(p, o, r), s)

Here, the standard macro definitionCauses(e, r, s) means that effecte causes indirect effectr in
situation s.

Explaining Action Failures

Action failure is explained on the basis of the various abnormalities that have been specified for each ac-
tion. Following the solution to the qualification problem developed in [27], abnormal conditionsAb(x)
are assumed away by default unless there is evidence to the contrary. We use a non-monotonic default
theory to this end. Whenever the observations suggest a discrepancy between the default expectations
and the actual world, the default theory entails that one or more default assumptions no longer hold.

Suppose, for example, a delivery action cannot be performed although the robot believes that it
carries the right object and is in the right office. Precondition axiom (2) then offers two explanations
by means of the respective positive instances ofAb. In addition, if the failed action occurs after other
deliveries, then update axiom (3) offers a further explanation, namely, that the object was previously
accidentally delivered to the wrong person. If so, the update axiom implies that the regular precondition
Holds(Carries(o, p), s) in (2) does actually not hold. In this way, the high-level controller uses its
reasoning facilities to generate suitable explanations for the encountered failure [11]. By appealing
to prioritised default logic [1], one can specify qualitative knowledge of the relative likelihood of the
various explanations for abnormal qualifications. The accompanying concept of preferred extensions
then helps selecting the most likely explanations. In cases where it is impossible to provide an exhaustive
specification of the reasons for a particular action to fail, a specialAb instance can be added to the
precondition axiom indicating an inexplicable failure. If this abnormality is specified as being least
preferred, then the controller falls back upon it only if all other explanations fail.
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loop(S,Z):-
( /* Stationary */

notify_reach(Z, URL) -> As = URL;
call_help(P,Z) -> As = [call_help(P)];
search_fail(O,P,Z) -> As = [email(O,P)];
delivery(O, P, Z) -> As = [deliver(O,P)];
receipt(O, P, Z) -> As = [receive(O,P)];
/* Knowledge Acquisition */
search(SearchDialog,Z) -> As = SearchDialog;
/* Navigation */
continue(GoAct, Z) -> As = [walk_on|GoAct];
/* Otherwise */ As = [idle]
),
execute(As, S, Z).

Figure 2. Implementation of the main loop.

Planning

A controlling mechanism that monitors action execution inevitably requires a high amount of reactiv-
ity. On the low level, a set of interacting behaviours seem to meet this requirement. In an analogous
manner, an abstract task planner should be able to react on events that might affect the current agenda.
Action failures and general world changes require re-planning for both successful accomplishment and
efficiency reasons.

The maintenance of a state and a set of abstract state evaluation functions consulted during every
action-execution cycle are the base for the planning loop. Once a critical world change is realised, the
current agenda is dropped and the planner is invoked again.

The implementation of the main loop, predicateloop/2, is given in Figure 2. The planner investi-
gates the current state according to various criteria of decreasing priority. The predicates on the left-hand
side of the arrows can be understood as diagnostic functions of the current state. PredicateNotifyReach
holds if people became out of reach recently. The second argumentURL is a sequence of notification
actions about the unreachable persons. PredicateCallHelp succeeds if it is necessary to call for help in
the current state.SearchFailnotifies the originator of the search request by email if none of the possible
candidates has the desired item. If delivery or receipt is possible, the according actions are performed. If
no stationary action is launched, that is, if all the previous state diagnostic predicates failed, then pred-
icate Continue is invoked. Depending on the current state (e.g., the position), a rather complex path
planning procedure is invoked and returns, if possible, a navigation action sequence (consisting ofGoto,
or severalEnter and GotoDoor actions). If all else fails, the robot goesIdle. If stationary actions are
possible, then these are executed. The plan can either be a single action or an action sequence.

In the examples below, we illustrate the use of temporal information by means of knowledge about
changing doors. Keeping track of multiple requests, our delivery robot has to serve a number of people
in general. For finding an optimal plan, one usually has to consider a number of aspects. While there
are general aspects like high efficiency and low risk, domain dependent criteria like guarantee of service
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also constrain planning. Regarding navigation, we impose a ranking among the destination locations.
PredicateContinuecomputes an optimal path plan given the current tasks and situation. The planning

strategy behind it exploits temporal knowledge about changing door states and blocked doors in the
following way: First, for all possible routes to a destination, the planner prefers a path that involves
doors currently known to be open and reachable. Alternatively, a valid route is found if it does not
contain doors that are known to be closed or blocked. In the remaining case, no door is excluded from
the route plan. Of course, a sensing action executed in front of each door will provide the knowledge
of the state of any door at execution time just before entering the door. In other words, we prefer routes
the robot recently found to work out. Please note, that no option is ruled out, but rather the best one is
scheduled first.

4. Extensions for Modelling a Dynamic World

To consider also the dynamic properties of the world in action planning and reasoning, this information
must be part of the robot’s state description. Consequently, we have to distinguish between recent and
outdated information, because otherwise invalid knowledge may mislead the robot or prevent it from
finding a plan at all. In the following, we show how temporal knowledge about dynamic properties of
the world can be represented in FLUX, together with a mechanism for its maintenance.

4.1. Representing Temporal Information

From the perspective of a robot that has incomplete knowledge of its environment, the world can be in
any of several possible states. When a robot uses its sensors to gain more knowledge of its environment,
it can reduce the set of possible states to those that satisfy the new information. This, in a nutshell, is
the approach to representing and reasoning about knowledge and sensing in the fluent calculus presented
in [25], rooted in the situation calculus-based approach [19, 20]. Formally, the fluent calculus has been
extended by the predicateKState: SIT× STATE. An instanceKState(s, z) means that, according to the
knowledge of the agent,z is apossiblestate in situations. For instance, the axiom

(∀z) (KState(S0, z) ⊃ Holds(Carries(Book123, Sandra), z)) (4)

says that the robot carriesBook123 for Sandra in all states that are possible in the initial situation.
Hence, the robot can be said toknowthis fact in S0. Generally, a fluent is known to hold in a situation
(not to hold) just in case it is true (false, respectively) in all possible states:

Knows(f, s) def= (∀z) (KState(s, z)⊃Holds(f, z))

This macro can be inductively generalised to the knowledge of logical combinations of state properties:

Knows(ϕ, s) def= (∀z) (KState(s, z)⊃HOLDS(ϕ, z))

HOLDS(f, z) def= Holds(f, z) if f fluent

HOLDS(¬ϕ, z) def= ¬HOLDS(ϕ, z)
HOLDS(ϕ1 ∨ ϕ2, z) def= HOLDS(ϕ1, z) ∨ HOLDS(ϕ2, z)

HOLDS((∃x) ϕ, z) def= (∃x) HOLDS(ϕ, z)
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The representation of incomplete knowledge by possible states provides a means to reason about
actions from the subjective perspective usingknowledge update axioms(KUAs) [25]. Like a state update
axiom, a KUA is used to specify the effects of an action. However, rather than describing the update of
the actual state of the world,State(s), a KUA defines an update of the totality of possible states. In this
way, both actions that change the state as well as pure sensing actions can be specified.

While the approach of [25] facilitates the representation of incomplete state knowledge, it rests on
the assumption that knowledge, once established, does not change unless an action is performed which
effects a change. Consequently, if at some point the robot senses, e.g., that a particular door is open,
then it assumes that this door is still open in any later situation, unless this situation includes an action
which affects the state of this door. Hence, this representation is unsuitable for dynamic worlds, in which
properties may undergo frequent changes which a robot is usually not aware of.

We have developed a new way of dealing with uncertain information, in which knowledge of a
dynamic property of the world is represented by attaching the time of its observation. Formally, for each
fluent f(~x) which we want to treat as dynamic, we introduce the two fluentsf(~x, t) and f(~x, t). If
f(~x, t) is true in all possible states of a situations, then this indicates thatf(~x) has been observed to
be true at timet. Likewise, if f(~x, t) is true in all possible states of a situations, then f(~x) has been
observed to be false at timet. For each such pair of fluents, we introduce the following three domain
axioms, which stipulate that the time-point of an observation is always unique and that not bothf and
f can be true in a possible state:

Knows(f(~x, t1) ∧ f(~x, t2) , s)⊃ t1 = t2

Knows(f(~x, t1) ∧ f(~x, t2) , s)⊃ t1 = t2

¬Knows(f(~x, t1) ∧ f(~x, t2), s)

When a robot senses information about a dynamic property, it records the observation by updating
the set of possible states accordingly. The following generic KUA defines the effect of sensing whether
a fluent f(~x) holds. It uses the functionTime(Do(a, s)) which denotes the time at which actiona is
performed in situations:

Poss(Sensef (~x), s)⊃(
KState(Do(Sensef (~x), s), z′)≡

(∃t, z)
(

KState(s, z) ∧ t = Time(Do(Sensef (~x), s)) ∧
(∃z′′)

(
(∀t1, t2) z′′ = z − f(~x, t1) ◦ f(~x, t2) ∧[

z′ = z′′ + f(~x, t) ∧ Holds(f(~x), s) ∨
z′ = z′′ + f(~x, t) ∧ ¬Holds(f(~x), s)

])))
(5)

By this KUA, previous knowledge about fluentf is positively discarded, andf is respectively true or
false in all possible statesz′, depending on whether the fluent actually holds in situations. The cor-
rectness of this axiom relies on the aforementioned domain axiom which says thatf(~x, t1) or f(~x, t2)
can be true for at most one time-point. The universal quantification overt1, t2 then ensures that the
respective instance no longer holds in statez′′.

The parametert can be taken as a measure for the reliability of the knowledge of a dynamic fluent.
Decay of information is simulated by forgetting about outdated fluents after a certain amount of time. By
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regularly retracting fluents considered to be out of date, we make sure that the current state description
only contains recent knowledge. Hence, no additional checks for recency of fluents are required for
reasoning. Nevertheless, any observation made in the past is crucial for explaining action failures as they
directly influence the planner’s computation, and must be kept in the situation history.

In general, the sensory processing modules operate in two modes: autonomous broadcasting of rele-
vant information (concurrently to the execution of actions) and a direct query of the current belief – both
will be described next.

4.2. Gathering Information while Executing a Plan

Suppose a dynamic world in which doors might be open or closed and unknown obstacles might block
the way. Following the schematic formula (5), a possible knowledge update axiom for such a domain is:

Poss(SenseDoor(d), s)⊃(
KState(Do(SenseDoor(d), s), z′)≡

(∃t, z)
(

KState(s, z) ∧ t = Time(Do(SenseDoor(d), s)) ∧
(∃z′′)

(
(∀t1, t2, t3) z′′ = z −Op(d, t1) ◦ Cl(d, t2) ∧[

z′ = z′′ + Op(d, t) ∧ Holds(Op(d), s) ∨
z′ = z′′ + Cl(d, t) ∧ ¬Holds(Op(d), s)

])))
whereOpandCl abbreviateDoorOpenandDoorClosed, respectively.

Once a sensory processing module has gained sufficient confidence about a certain property of the
environment by integrating observations over time, the new belief is announced to all listening modules
including the high-level controller. FLUX in turn interrupts the current action and incorporates the new
observations in the manner of the KUA above. Since new observations may render the current plan
obsolete or suboptimal, a new plan is computed to accommodate to the new situation. Hence, the robot
always follows an optimal plan according to its goals and current observations.

4.3. Active Sensing

Besides the concurrent, autonomous broadcast of perception results, the sensory processing modules
provide information on demand. The high-level controller may request the execution of a sensing action.
Subsequently, the corresponding sensing module would then be queried about its current belief.

Revisiting the example above, the actionSenseDoorasks the door sensing module about the current
state of the door at hand. The result is then incorporated into the world model by means of the KUA
above for changing doors. Before the robot can pass through a door, it has to obtain the current state
of this door for safety reasons. WhileDoorOpen(d, t) is part of the preconditions for the enter-door
action, the KUA exhibits a non-deterministic behaviour with unknown result at the time of planning, but
is resolved bySenseDoorat the time of execution. Only if the queried property turns out to hold, the
preconditions of subsequent actions are fulfilled and the robot can continue; otherwise FLUX tries to
find an alternative plan based on the revised situation.
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Figure 3. Pioneer 2 mobile robot equipped with a colour camera, a laser range finder, a ring of sonar sensors, and
a gripper.

5. Experiments

A detailed evaluation of the presented robot control system and its execution monitoring techniques
renders very difficult. In many cases it is only possible to analyse specific aspects of the system or
particular techniques separately, as a layered control system bears complex interactions between various
aspects and functionalities at the same time. Moreover, a single functionality is usually distributed among
several modules of different layers. Consequently, it is difficult to compare the system directly with
implementations of other control architectures. Nevertheless, distinctions regarding specific features
will be summarised in Section 6.

The aim of the experiments reported here is to evaluate the control system with respect to its ability
to deal with dynamic changes of the world and the use of intelligent execution monitoring for complex
delivery tasks. The choice of the possible test scenarios is usually restricted by the perceptual capabilities
of the robot platform. In our case, the robot control system was used on a Pioneer 2 mobile robot, as
shown in Figure 3. Due to the constraints imposed by the robot hardware, we focused on office-delivery
scenarios. Here, a mobile robot receives requests from users and is supposed to take items from one
place to another and to search for items among persons in the offices.

Unfortunately, no system for on-line tracking of persons was available to us at the time of the exper-
iments. Therefore, we modelled the dynamic properties of the world using unknown obstacles blocking
the way of the robot, as it may be caused by people or moved pieces of furniture, using doors that open
and close during the robot’s operation, and using recipients that change their location unexpectedly. De-
spite the simple nature of the environment dynamics, our experimental setup shares important features
and requirements with other real-world robotic applications:

• The robot has little prior knowledge about dynamic properties and objects of the world. Such
information is gathered during the operation.

• The robot’s world model will be incomplete because real environments are not fully observable
and perceptual capabilities are limited in range, modalities and quality.

As a consequence, the robot experiences unexpected changes of the world according to its world model
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Figure 4. Office environment used in the experiments consisting of five rooms and a hallway.

as well as action failures. It is our opinion that this demands for intelligent execution monitoring.
The presented control system is portable to other mobile robot platforms. Solely the reactive-level

controller contains programs that were specifically optimised for the robot platform at hand. The pro-
posed techniques for intelligent execution monitoring are independent of the robot platform. Specifically,
the kernel of the FLUX controller comprises the foundational functionality without being domain depen-
dent – the task and domain are axiomatised separately.

We proceed with the description of two example scenarios highlighting different features of the robot
control system. Thereby, we illustrate the need for intelligent execution monitoring and the utilisation of
temporal knowledge about dynamic properties of the environment.

5.1. Dealing with Temporal Knowledge

In the following, we exemplify our statement that maintaining knowledge about dynamic properties of
the operating environment is of advantage in practice. The example also demonstrates how an agent can
exploit the aspect of recency of information.

Consider the situation depicted on the left-hand side of Figure 4. In this example, the robot is situated
in roomr421, at Axel’s place, initially and it knows that doord2 is closed. Upon receiving a request
to bring a cup of coffee from Horst to Sylvia, the high-level planner is invoked. The lack of (recent)
knowledge on door states prevents finding a valid path considering only doors that are known to be open.
Following the second heuristic, the planner computes a valid plan excluding doors that are known to be
closed:

State: [request(horst,coffee,sylvia), door_open(d2,24), in_room(r421), at(axel)|Zp]

Agenda: [walk_on, gotodoor(d4), sense_door(d4), enter(corr), gotodoor(d0), sense_door(d0), enter(r423),

goto(horst)]

Hereof, the second argument of predicatedoor open denotes the time of the observation in seconds (cf.
Section 4.1). As usual in FLUX, the tail variableZp of the state indicates that the robot has incomplete
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knowledge. The agenda shows the plan that FLUX determined, a path plan entering two doors. For
a mobile robot in real-world environments, the complexity of the action to enter a door necessitates to
split the action into distinct parts executed subsequently. This is due to noisy sensor data and imprecise
localisation. Therefore, entering a room comprises the high-level actions to position the robot in front of
the door, to check the current state of the door, and, in case the door is open, to actually steer the robot
through. While the robot travels, the low-level behaviours bypass obstacles on its way autonomously.
The interaction within the system architecture is described in more detail in the second example.

Active sensing.Having arrived at doord4, a sensing action explicitly determines the state of this door
by querying the door sensing module. If it gained enough confidence in the door state, this observation
is returned to the cognitive level, which in turn updates its internal world model,Z . Since there was no
previous knowledge about the state of the door at hand,Z is enriched by this observation with a time
stamp attached,door open(d4,79). Now knowing that the door ahead is open, the preconditions for
actionenter(corr) are satisfied and the robot continues executing the current plan.

Concurrent sensing. At door d3, the door sensing module autonomously signals thatd3 is open
upon which FLUX computes a new plan since any observation may influence the current plan (cf. Sec-
tion 5.3). Here, the new plan equals the continuation of the previous one due to independence of the state
of doord3, yielding:

State: [door_open(d3,106), door_open(d4,79), in_room(corr), request(horst,coffee,sylvia),

door_open(d2,24)|Zp]

Agenda: [walk_on, gotodoor(d0), sense_door(d0), enter(r423), goto(horst)]

Planning with multiple requests. Suddenly, Steffen requires a book which should be on Andreas’
desk. Since both scheduled providers, Horst and Andreas, can be reached (by default) according to
the agent’s knowledge, the planner chooses Andreas, being the nearest person, as its first target while
keeping track of remaining requests. Next, sensing the state of doord0 provides the prerequisites to enter
roomr423. Having arrived at Andreas’ desk and subsequently received the book for Steffen, the robot
derives a new plan and determines to pick up the coffee from Horst next. On the way to Horst, the door
sensing module signals that doord1 appears to be closed. While the new observation does not interfere
with the current plan, the robot could derive that it cannot enter roomr422 given its current knowledge
on door states. After the robot successfully received the coffee from Horst, two deliveries are due, from
which the planner selects Steffen’s request according to the strategy of serving the nearest recipient that
is reachable first. While passing by doord1 on its way back, the door sensing module detectsd1 to
still be closed. By means of the knowledge update axiom forsense door (cf. Section 4.2), previous
knowledge aboutd1 is discarded and the new observationdoor closed(d1,250) is asserted. On its
way to Steffen, the robot observes thatd3 is now closed. The corresponding world model and agenda
are:

State: [door_closed(d3,330), door_open(d0,288), in_room(corr), door_closed(d1,250),

carries(horst,coffee,sylvia), carries(andreas,book,steffen), door_open(d4,79), door_open(d2,24)|Zp]

Agenda: [walk_on, gotodoor(d7), sense_door(d7), enter(r420), goto(steffen)]

Exploiting temporal knowledge. As Sylvia is still waiting for her coffee, the robot successfully
delivers the book to Steffen. The FLUX planner computes a path to Sylvia and succeeds considering
only such doors that are known to be open since it recently entered throughd7, whiled2 is still known to
be open from the initial situation. Although directly entering Sylvia’s room via doord5 would result in
the shortest path, the planner’s strategy prefers paths through doors that were open recently and proceeds
to Sylvia via the corridor.
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After our diligent robot had delivered the coffee to Sylvia, Pascal requested a copy of a journal from
Axel. Again, the planner selects a path through the corridor instead of risking the encounter of a closed
door in the shortcut via Steffen’s office. The left-hand side of Figure 4 illustrates the current situation.
Meanwhile, FLUX forgets about the open doord0 and also about the closed doorsd1 andd3. This
immediately enables the robot to start the delivery of the journal to Pascal as the state description shows:

State: [carries(axel,journal,pascal), at(axel), door_open(d4,699), in_room(r421), door_open(d2,637),

door_open(d7,468)|Zp]

Agenda: [walk_on, gotodoor(d4), sense_door(d4), enter(corr), gotodoor(d3), sense_door(d3), enter(r422),

goto(pascal)]

Please note that without a mechanism for forgetting dynamic properties of the environment which are
represented in the world model, outdated knowledge can prevent the high-level controller to find a plan,
such that the robot would wait forever in this example. In the given solution for changing doors, the
reachability of rooms is checked again after some time. In the current implementation, the lifetime of
temporal information is an interval of a fixed size which is sufficient for the robot to travel to the remote
end of the hallway and back.

5.2. Explaining Unexpected Situations

In the following, we want to exemplify the application of the reasoning capabilities of FLUX together
with the layered scheme of execution monitoring to finding possible explanations for an action failure
and an appropriate recovery strategy thereafter.

Starting at Axel’s place and knowing nothing about dynamic properties of the world, suppose the
robot receives requests from Axel to takebook1 to Steffen andbook2 to Sylvia. The FLUX planner
chooses to visit Steffen first taking the shortcut through doord6 according to the built-in strategy ex-
plained above. Steffen being delighted about the book, the robot plans to proceed to Sylvia carrying the
remaining book by taking the shortcut through doord5.

Computing an explanation. Since an unexpected obstacle completely blocks the way to doord5,
the obstacle avoidance behaviour detects a failure to reach the desired door node of the underlying topo-
logical graph and interrupts the navigation behaviours. Upon this crucial incident, the reactive controller
informs FLUX about the failure together with lists of nodes that have been reached so far and remain-
ing nodes of the topological path to the destination. FLUX in turn determines the potential actions that
might have caused the failure and recursively searches for an explanation by inserting uninstantiated ab-
normality fluents. An abnormality that unifies with the state update axiom of one of the potential actions
provides a possible explanation for the failure and is registered. Re-planning then determines a recovery
strategy based on the new situation and computes an alternative path plan via the corridor.

The doorsd7 andd2 turn out to be open so that our busy robot can reach Sylvia. This situation is
depicted in the right-hand side of Figure 4 and comprises:

State: [at(sylvia), door_open(d2,208), in_room(r419), door_open(d7,152), door_open(d6,112),

carries(axel,book2,sylvia), ab(reachable(d5,r420),51)|Zp]

Agenda: [deliver(book2,sylvia)]

Please note that abnormality fluents are considered as dynamic properties of the world that may change,
which is why a time stamp is attached in order to invalidate them later.

Reasoning about action failure.When the robot arrived at Sylvia’s desk, she does not accept the
book unexpectedly. The analysis of the robot’s action history reveals two possible explanations: The
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item might have been lost on the way, or some person took the wrong book during a previous delivery,
both of which the robot cannot sense. FLUX assumes that the latter happened since bothbook1 and
book2 were in the tray when the delivery to Steffen took place, which is the preferred explanation if
applicable. The robot will discover which explanation actually holds later. The computed recovery plan
comprises to return to Steffen in order to pick upbook2 for Sylvia and to deliverbook1 that seems to be
in the tray at that time. The corresponding state description is:

State: [request(steffen,book2,sylvia), at(sylvia), door_open(d2,208), in_room(r419), door_open(d7,152),

ab(reachable(d5,r420),51), door_open(d6,112), carries(axel,book1,steffen)|Zp]

Agenda: [walk_on, gotodoor(d2), sense_door(d2), enter(corr), gotodoor(d7), sense_door(d7), enter(r420),

goto(steffen)]

Avoiding the blocked path and using the doors that were recently open, the robot carriesbook1 to Steffen
which he regrets to have mixed up. By that, the explanation proves to be correct. Otherwise,book2 being
lost would serve as an alternative explanation. Later,book2 has been successfully delivered to Sylvia,
eventually.

We would like to point out that only for the purpose of understanding we have demonstrated the two
aspects of dealing with temporal information and explaining action failures in separate examples. In
practice they are employed simultaneously.

5.3. Conclusions

The performance of the robot control system was evaluated in several runs using the conditions of the
example scenarios mentioned above. The robot was employed in the office environment of our institute
comprising a corridor and several adjacent rooms. The layout is given in Figure 4. The performance of
the robot in these runs exhibited no significant differences to the description above – it successfully ac-
complished the requests and gracefully reacted to unexpected situations. The experiments demonstrated
the benefits of intelligent execution monitoring being robust action execution, recognition of action fail-
ures and optimal response to failure situations according to the world model. We were also able to show
that representing information about dynamic properties of the world can be of advantage and is necessary
for acting efficiently. The practical application of the proposed control system and techniques helped us
to identify the following issues.

The possible scenarios a robot is applicable to are mostly constrained by the robot’s limitations
regarding perception and actuators. For example, the Pioneer 2 we used in the experiments requires
to move on an even surface. Because door sills cannot be recognised, such obstacles either have to be
known in advance in order to avoid them, or can be learnt from experience, i.e., once the action to enter
a particular door bearing an invisible door sill failed, this knowledge is represented in the world model
and is taken into account in future planning.

As our robot cannot sense the state of its tray, it is unable to recognise whether a person took the
wrong item, for example. By means of intelligent execution monitoring, we can infer certain information
given its history of actions and observations and the domain axiomatisation; for details, see Section 5.2.

In practical application, the perceptual limitations directly constrain the types of dynamic objects a
robot can recognise and handle. We want to develop further specialised object recognition modules as
well as more generic means to recognise objects of regular shape.

When a change of a dynamic property of the world is recognised, the high-level controller can either
react immediately, or defer its processing until the next plan is to be computed. On the one hand, optimal
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behaviour is gained with respect to always choosing the best action according to the world model in the
first case. On the other hand, this kind of reactivity of the high-level controller can become intractable
in highly dynamic environments. Deferring to take new relevant observations into account will result in
inefficient performance due to the increased risk of impending action failures.

Handling objects of dynamic occurrence and properties demands for a solution of the so-called an-
choring problem, that is to identify and maintain the correspondence between percepts of objects and
its symbolic representation at the cognitive level consistently. We want to develop our current, rigid
approach toward a flexible and generic solution.

6. Summary and Future Work

We have presented a layered scheme of execution monitoring for mobile robots operating in known
structured environments, allowing for action failures due to the interaction with humans and dynamic
changes in the environment. It allows the robot to find explanations for action failures using a logic-
based world model and the history of the task execution. In the experiments, we were able to illustrate the
advantages of reasoning-based execution monitoring over reactive control methods. The implementation
is based on the fluent calculus along with its augmentations.

Our approach is similar to the systems by Shanahan [22], Haigh and Veloso [9], and Hähnel and col-
leagues [8] in the sense that all use high-level planning on real robots. Shanahan’s Khepera robot based
on the event calculus makes heavy use of abductive planning and explanations of failures. However,
these failures are mainly due to the sensor limitations of this fairly simple robot. In contrast to our work,
the high-level planner is not embedded in a complex modular architecture with clearly defined low-level
behaviours such as obstacle avoidance and sophisticated localisation techniques.

The control architecture used in our work is more comparable to the ones proposed by Haigh and
Veloso [9] and Ḧahnelet al. [8]. These, in turn, provide only hand-coded recovery procedures for failures
of the current action. Undetected failures of earlier actions are not considered. Furthermore, the use of
the fluent calculus allows us to model side effects of actions.

Preference lists for action failures involve a great deal of speculation and need to be specified in
advance. An alternative method would be a form of hypothesis testing: being left with a set of possible
explanations for some action failure, each of them could be double checked by additional sensing or
state verification. This topic is closely related to central questions in the field of active perception, for
example, active vision. The application of a cognitive planner for sensing actions in the fashion outlined
above could help in minimising action effort and maximising knowledge gain. Thus, it seems promising
to formalise active perception domains within the fluent calculus. Furthermore, the static nature of the
preference list could be overcome by learning from experiences.
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