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Abstract. An approach to skeptical query-answering in Constrained Default
Logic based on the Connection Method is presented. We adapt a recently pro-
posed general method to skeptical reasoning in Default Logics—a method which
does neither strictly require the inspection of all extensions nor the computation
of entire extensions to decide whether a formula is skeptically entailed. We com-
bine this method with a credulous reasoner which uses the Connection Method
as the underlying calculus for classical logic. Furthermore, we develop the no-
tion of a skeptical default proof and show how such a proof can be extracted
whenever our calculus proves skeptical entailment of a particular query.

1 Introduction

Nonmonotonic Logics in general, and approaches like Autoepistemic [13] or Default
Logic [17] in particular, aim at extending an underlying classical logical system in
order to provide conclusions that go beyond this system. For this, they induce one or
several so-called extensions of a given world description, each of which represents a
reasonable set of beliefs. This phenomenon of multiple extensions suggests two natural
approaches to query-answering: A credulous one, in which a query is said to be derivable
if it belongs to a single extension, and a skeptical one, in which one stipulates that a
query lies in all extensions.
So far, computational approaches to nonmonotonic logics have mainly focused

on the computation of entire extensions, like [4, 22, 9, 25, 14], or credulous query-
answering, like [17, 21]. [10] compute intersections of extensions in Autoepistemic Logic.
Skeptical query-answering has up to now been primarily studied in restricted nonmono-
tonic reasoning frameworks, like Theorist [15] (corresponding to so-called prerequisite-
free default theories in Default Logic) [16, 23]. From the perspective of Default Logic,
implementations of Circumscription, like [7], fall into the same category since they use
roughly the same restricted fragment of Default Logic. Finally, a major category of
implementations for fragments of Default Logic is given by the wide body of imple-
mentations of Logic Programming.
In what follows, we develop a method for skeptical query-answering in Default

Logics. This work builds on [24], where a general framework to skeptical reasoning
in (semi-monotonic) Default Logics was proposed. There, we have given a high-level
description of skeptical query-answering that abstracts from an underlying credulous
reasoner. In this paper, we make the aforementioned meta-algorithm precise and em-
ploy it to extend an existing approach to credulous query-answering [21] based on the
Connection Method [1].
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The reader may wonder why we have chosen Constrained Default Logic [19, 3]
rather than Reiter’s original approach. In fact, Constrained Default Logic serves us as
an exemplary Default Logic enjoying the property of semi-monotonicity, which stipu-
lates that the addition of default rules to a theory does not invalidate the application of
previously applied default rules. As pointed out in [17], semi-monotonicity is indispens-
able for feasible query-answering in Default Logics. This is so because it allows for local
proof procedures focusing on default rules relevant for answering a query; otherwise the
whole set of default rules has to be taken into account. Now, semi-monotonicity is only
enjoyed by so-called normal default theories in Reiter’s Default Logic. However, since
both aforementioned Default Logics coincide on normal default theories, our exposi-
tion applies to this fragment of Reiter’s Default Logic, too. As concerns other variants
of Default Logic, we note that Constrained Default Logic yields the same conclusions
as Cumulative Default Logic [?]; both variants differ in representational issues only.
Moreover, Constrained Default Logic coincides with Rational Default Logic on the
large fragment of so-called semi-normal default theories [?]. All these interrelations
render our exemplar, Constrained Default Logic, a prime candidate for exposing our
approach.
Of course, a similar question may arise concerning the choice of the Connection

Method [1]. Unlike resolution-based methods that decompose formulas in order to
derive a contradiction, the Connection Method analyses the structure of formulas for
proving their unsatisfiability. In fact, we will see that skeptical query-answering requires
numerous variants of similar subproofs. In such a case, it is advisable to reuse infor-
mation gathered on similar structures. This approach is supported by the structure-
sensitive nature of the Connection Method. As a result, we obtain a homogeneous
characterization of skeptical default proofs at the level of the underlying deduction
method.
The paper is organized as follows. After recapitulating the basic concepts of Con-

strained Default Logic in Section 2, we elaborate in Section 3 on the general framework
to skeptical query answering proposed in [24]. The latter provides an abstract decision
procedure for skeptical query-answering in (semi-monotonic) Default Logics; it has its
roots in [16, 23], which address skeptical reasoning in Theorist [15]. In fact, we formalize
the general ideas presented in [24] by appeal to sequences of default rules. As a result,
we obtain in Section 3 an algorithm instantiating the general framework in [24]. The
resulting formal underpinnings given in Theorem 3, 4, and 5 are obtained as corollaries
to results in [24]. In addition, Section 3 offers a general definition of a skeptical de-
fault proof—a point left open in [24]. Such a skeptical default proof is returned by the
algorithm developed in the same section. Section 4 describes our underlying method
for credulous query-answering based on the Connection Method [21]. The major con-
tribution of this paper is presented in Section 5: We develop an analytic calculus for
skeptical query-answering by combing the approaches described in Section 3 and 4. We
give a soundness and completeness result of this approach and illustrate how skeptical
default proofs can be extracted whenever a query has been successfully proven. Our
results are summarized in Section 6.

2 Constrained Default Logic

We consider a straightforward yet powerful extension of Constrained Default Logic
[3], called Pre-Constrained Default Logic [20]. The idea is to supplement some initial



consistency constraints that direct the subsequent reasoning process. This is a well-
known technique, also used in Theorist [15], in which the “context of reasoning” is
predetermined and subsequently dominated by some initial consistency requirements.
These additional constraints play an important role in our approach to skeptical query-
answering, as we will see below.
A pre-constrained default theory (D,W, C) (default theory , for short) consists of a

set of formulas W, a set of default rules D, and a set of formulas C representing some
initial constraints. A default rule is any expression of the form α : β

γ
where α, β, γ are

formulas. For convenience, we denote the prerequisite α of a default rule by Prereq(δ),
its justification β by Justif (δ), and its consequent γ by Conseq(δ).3 A normal default
theory is restricted to normal default rules, whose justification is equivalent to the
consequent. For simplicity, we deal with a propositional language over a finite alphabet
and assume that W ∪ C is satisfiable. A constrained extension is defined as follows.

Definition 1. Let (D,W, C) be a default theory and let E and C be sets of formulas.
Define E0 =W and C0 =W ∪ C and for i ≥ 0

Ei+1 = Th(Ei) ∪ { γ | α : β
γ
∈ D, α ∈ Ei, C ∪ {β} ∪ {γ} 6` ⊥}

Ci+1 = Th(Ci) ∪ {β ∧ γ |
α : β
γ
∈ D, α ∈ Ei, C ∪ {β} ∪ {γ} 6` ⊥}

(E,C) is a constrained extension of (D,W, C) iff (E,C) = (
⋃∞

i=0 Ei,
⋃∞

i=0 Ci).

Observe that the initial constraints, C, enter merely the final constraints C (at C0)
but not the extension E. Thus, the initial constraints C direct the reasoning process
without actually becoming a part of it. In particular, they usually decrease the number
of applicable default rules.
Let us guide the formal development of our approach by means of the following ex-

ample. Consider the default statements “quakers are doves if they are no anti-pacifists,”
“republicans are hawks if they are no pacifists,” “doves as well as hawks are tradition-
alists,” along with the strict knowledge telling us that we have a “republican quaker.”
This is formalized in the following default theory:

({

Q :P
D

, R :¬P
H

, D :T
T

, H :T
T

}

, {Q,R}, ∅
)

(1)

The first and second default cannot be combined in a single constrained extension due
to their mutually exclusive justifications, P and ¬P , respectively. Hence, this theory
has two constrained extensions, one containing D and T and another one containing
H and T .
In the sequel, we follow [21] in dealing with default theories in atomic format in

the following sense: For a default theory ∆ = (D,W, C) in some language LΣ , let LΣ′

be the language obtained by adding, for each δ ∈ D, three new propositions, named
αδ, βδ, γδ, which do not occur elsewhere. Then, ∆ is mapped into a default theory
∆′ = (D′,W ′, C′) in LΣ′ where

D′ =
{

αδ : βδ
γδ

∣

∣

∣
δ ∈ D

}

W ′ =W ∪ {Prereq(δ)→ αδ, βδ → Justif (δ), γδ → Conseq(δ) | δ ∈ D}

C′ = C .
3 These projections extend to sets and sequences of default rules in the obvious way.



The resulting default theory ∆′ is called the atomic format of the original default
theory, ∆. As shown in [18], this transformation is a conservative extension of the
formalism. Hence, it does not affect the computation of queries to the original default
theory. We can therefore restrict our attention to atomic default rules without losing
generality. The advantages of atomic default rules over arbitrary ones are, first, that
their constituents are not spread over several clauses while transforming them into
clausal format and, second, that these constituents, e.g. the consequents, are uniquely
referable to. The motivations for this format are detailed in [21] and they are somehow
similar to the ones for clausal form in automated theorem proving.

3 Skeptical reasoning in constrained default logic

In classical logic, we can say that a formula ϕ is derivable from a set of facts W iff
it belongs to the deductive closure of W, that is if ϕ ∈ Th(W). Due to the possible
existence of multiple extensions, this notion of derivability is not directly applicable to
Default Logic. Rather we obtain two different notions of derivability: A formula ϕ is
credulously derivable from (D,W, C) iff ϕ ∈ E for some constrained extension (E,C)
of (D,W, C).4 And a formula ϕ is skeptically derivable from (D,W, C) iff ϕ belongs to
all such extensions of (D,W, C). In our example, (1), D and H are only credulously
derivable while T is also skeptically derivable.

In order to furnish a corresponding proof-theory, we need the following concepts. A
default proof segment in a default theory ∆ = (D,W, C) (or ∆-segment , for short) is a
(finite) sequence of default rules 〈δi〉i∈I such that

W ∪ Conseq({δ0, . . . , δi−1}) ` Prereq(δi) for i ∈ I and (2)

W ∪ C ∪ {Conseq(δi), Justif (δi) | i ∈ I} is satisfiable. (3)

A credulous default proof , or CDP for short, for a formula ϕ from ∆ is a ∆-segment
〈δi〉i∈I such that W ∪ {Conseq(δi) | i ∈ I} ` ϕ. Furthermore, we say that a formula ϕ
is provable from a ∆-segment 〈δi〉i∈I iff there is a CDP 〈δj〉j∈J for ϕ such that I ⊆ J ,
that is, if the segment is extendible to a CDP for ϕ. In our example, there are five
∆-segments, each of which is extendible to one of the two CDPs of T , namely

〈

Q :P
D

, D :T
T

〉

and
〈

R :¬P
H

, H :T
T

〉

. (4)

Clearly, a formula is credulously derivable iff it is provable from some ∆-segment, since
in this case it has a CDP. Accordingly, a formula is skeptically derivable iff it is provable
from all ∆-segments.5

A basic question is that on the concept of a default proof in skeptical reasoning.
Since in general there is not a single CDP valid in each extension, it is however natural
to view a skeptical default proof as being compound of multiple CDPs. In fact, we take a
skeptical default proof of a formula to be a set P of CDPs such that P is complete, that
is, for each constrained extension (E,C), P includes a proof which is valid in (E,C):

4 For brevity, we sometimes simply say ϕ “belongs to” (or “is contained in”) an exten-
sion (E,C), which always means ϕ ∈ E.

5 This is formally shown in [24].



Definition 2 Skeptical Default Proof. Let ∆ = (D,W, C) be a default theory and
ϕ a formula. A skeptical default proof of ϕ from ∆ is a set P of CDPs for ϕ such
that for each constrained extension (E,C) of ∆ there is some 〈δi〉i∈I ∈ P such that
C ∪ {Conseq(δi), Justif (δi) | i ∈ I} is satisfiable.

This view relies heavily on the notion of CDPs. In fact, we keep this fundamental idea
and base our method for skeptical reasoning on credulous reasoning, too [24]: The idea
is to start with an arbitrary CDP of a given query. Then, we determine in some way
a representative selection of ∆-segments incompatible with our initial CDP. These ∆-
segments indicate extensions in which our initial default proof is invalid. Intuitively,
they can be thought of as putative counterarguments challenging our initial CDP. Next,
we verify in turn whether our query is derivable from each such ∆-segment. If this is
indeed the case, then our initial query is skeptically derivable.
In order to illustrate this approach, let us verify that T is skeptically derivable in

our example. We start with an arbitrary CDP of T from Default Theory (1). Consider
the second CDP in (4):

〈

R :¬P
H

, H :T
T

〉

. This proof takes place in the extension of (1)
containing H and T . Next, we regard all ∆-segments ‘challenging’ default rules in
〈

R :¬P
H

, H :T
T

〉

. This notion is captured formally by the property of orthogonality:6

Two default proof segments 〈δi〉i∈I and 〈δj〉j∈J in a default theory (D,W, C) are called
C-orthogonal iff W ∪ C ∪ {Conseq(δk), Justif (δk) | k ∈ I ∪ J} is unsatisfiable. That
is, a ∆-segment is orthogonal to another one if its induced constraints, i.e., the set
of justifications and consequents of its default rules, are incompatible with the same
constraints of the other ∆-segment. Observe that each ∆-segment orthogonal to a given
CDP indicates one or more extensions in which our CDP is not valid.
The formal basis for our approach is laid in the following theorem.

Theorem3. Let (D,W, C) be a default theory and ϕ a formula. Then, ϕ is skeptically
derivable from (D,W, C) iff there is a CDP 〈δi〉i∈I for ϕ and ϕ is provable from all
default proof segments which are C-orthogonal to 〈δi〉i∈I .

In our example, there are two ∆-segments orthogonal to
〈

R :¬P
H

, H :T
T

〉

, namely

〈

Q :P
D

〉

and
〈

Q :P
D

, D :T
T

〉

.

This is so because the justification of the first default rule, R :¬P
H
, in our CDP is con-

tradictory to the justification of default rule Q :P
D

. There is no ∆-segment orthogonal
to the second default rule in our default proof. As will be shown in Theorem 4, we can
restrict our attention to minimal orthogonal ∆-segments. Accordingly, it is sufficient

to consider the orthogonal ∆-segment
〈

Q :P
D

〉

.

Intuitively, we then focus on all extensions of the initial default theory to which the

∆-segment
〈

Q :P
D

〉

contributes and check whether our initial query T belongs to these

extensions too. Importantly, this is accomplished by using only default rules relevant for
deriving T and hence without computing any extensions. We achieve this by checking
whether T is skeptically derivable from the default theory obtained by ‘applying’ the
default rules in our orthogonal ∆-segment. In this way, we try to prove our query under
the restrictions imposed by the ∆-segment contesting our initial CDP. To this end, we

6 Orthogonality usually refers to distinct extensions (c.f. [17]). In Constrained Default Logic,
two constrained extensions (E,C) and (E ′, C′) are orthogonal iff C ∪C ′ is unsatisfiable [3].



add the consequence of the default rule Q :P
D

to the facts of Default Theory (1) while
deleting the default rule itself. Furthermore, we have to add its justification to the set
of initial constraints. This yields the following modified default theory:

({

R :¬P
H

, D :T
T

, H :T
T

}

, {Q,R,D}, {P}
)

(5)

Now, it remains to be shown that T be skeptically derivable from Default Theory
(5). Proceeding recursively, we check first whether T is credulously derivable from this
default theory. In fact, T can be proven by means of the CDP

〈

D :T
T

〉

. Next, we have to

proceed as above and in turn find all minimal ∆-segments orthogonal to D :T
T

. However,
there are no such segments since Default Theory (5) has a single extension containing
D and T , in which, moreover, default rule R :¬P

H
is blocked due to initial constraint P .

Importantly, the previous step supplies us with an alternative CDP of T from our

original default theory in (1). This is obtained by appending the ∆-segment
〈

Q :P
D

〉

and the CDP of T from default theory (5), viz.
〈

D :T
T

〉

. This results in the first CDP

given in (4). Since there are no other ∆-segments orthogonal to our initial default
proof

〈

R :¬P
H

, H :T
T

〉

, we are done. As a result, we have obtained a skeptical default
proof consisting of two CDPs supporting the skeptical conclusion T . This approach is
justified by the following theorem [24]:

Theorem4. Let 〈δi〉i∈I be a default proof segment in a default theory (D,W, C) and
ϕ a formula. Then, ϕ is provable from all default proof segments 〈δj〉j∈J where I ⊆ J

iff ϕ is skeptically derivable from

(D \ {δi | i ∈ I},W ∪ {Conseq(δi) | i ∈ I}, C ∪ {Justif (δi) | i ∈ I}).

Let us summarize our approach to checking whether a query ϕ is skeptically derivable:
We start with a CDP of ϕ. Then, we determine all minimal orthogonal ∆-segments
contesting our initial CDP. Next, we check in turn whether ϕ is skeptically derivable
under the restrictions imposed by each such ∆-segment. In this way, we check whether
ϕ belongs to all extensions orthogonal to the one containing our initial CDP of ϕ. It is
important to note that the choice of the initial CDP is a “don’t care”-choice in so far
that deciding whether ϕ is skeptically entailed is independent of which CDP is initially
chosen. The design of the resulting skeptical default proof, on the other hand, depends
on the latter choice.
The approach we have outlined so far can be put together to a concrete algorithm

as follows. Let (D,W, C) be a default theory and ϕ be a formula. We assume a function
cred(D,W, C, ϕ) such that

cred(D,W, C, ϕ) =

{

〈δi〉i∈I if 〈δi〉i∈I is a CDP of ϕ from (D,W, C)
⊥ otherwise

Moreover, given a CDP 〈δi〉i∈I , let orth(D,W, C, 〈δi〉i∈I) yield the set of all minimal
∆-segments C-orthogonal to 〈δi〉i∈I .

7 These two functions yield the following algorithm
for skeptical query-answering. Similar to its credulous source, it returns ⊥ if ϕ is not
skeptically derivable; otherwise it returns a set of CDPs forming a skeptical default
proof. The function “◦” concatenates two ∆-segments.

7 Note that this set is finite in case of a finite propositional alphabet. The procedure orth

will be designed below.



skep(D,W, C, ϕ) =
if cred(D,W, C, ϕ) =⊥
then return ⊥
else let 〈δi〉i∈I = cred(D,W, C, ϕ) in

let O = orth(D,W, C, 〈δi〉i∈I) in
P := ∅ ;
while O 6= ∅ do

select 〈δj〉j∈J ∈ O ;

let D′ = D \ {δj | j ∈ J} in
let W ′ =W ∪ {Conseq(δj) | j ∈ J} in
let C′ = C ∪ {Justif (δj) | j ∈ J} in

if skep(D′,W ′, C′, ϕ) =⊥
then return ⊥
else P := P ∪ {〈δj〉j∈J ◦〈δl〉l∈L | 〈δl〉l∈L∈skep(D

′,W ′, C′, ϕ)}
fi ;

O := O \ {〈δj〉j∈J}
od ;

return {〈δi〉i∈I} ∪ P
fi

The variable P accumulates the set of resulting CDPs. Whenever the procedure ends
up with success, the CDPs in P form a skeptical default proof of ϕ from (D,W, C).
Finally, we have to address the determination of minimal ∆-segments orthogonal

to a CDP at hand. Again, this is accomplishable by appeal to credulous reasoning.
Note that the notion of orthogonality refers to the consistency constraints induced
by a CDP. For this, we have to consider additionally a default rule’s justification any
time the default rule applies: For a set of atomic default rules D, we define the set of
normalization rules as N(D) = {γδ → βδ |

αδ :βδ
γδ

∈ D}. Intuitively, the addition of
normalization rules to the facts of a default theory in atomic format turns each atomic
default rule αδ :βδ

γδ
into a default rule of the form αδ :βδ

βδ∧γδ
.With this, the following theorem

tells us how to determine ∆-segments orthogonal to a CDP at hand:8

Theorem5. Let 〈δi〉i∈I and 〈δj〉j∈J be default proof segments in a default theory
(D,W, C). Then, 〈δi〉i∈I and 〈δj〉j∈J are C-orthogonal iff there is some i ∈ I such
that 〈δj〉j∈J is a CDP for ¬Conseq(δi) ∨ ¬Justif (δi) in this default theory:

(D \ {δk | k < i},W ∪N(D \ {δk | k < i}) ∪ {Conseq(δk), Justif (δk) | k < i}, C) (6)

That is, in order to find ∆-segments orthogonal to our CDP
〈

δ1 =
R :¬P

H
, δ2 =

H :T
T

〉

,

we consider the default theories9

({

Q :P
D

, R :¬P
H

, D :T
T

, H :T
T

}

, {Q,R} ∪ {D → P,H → ¬P}, ∅
)

(7)
({

Q :P
D

, D :T
T

, H :T
T

}

, {Q,R} ∪ {D → P} ∪ {H,¬P}, ∅
)

(8)

8 The following is a variant of Theorem 5.7 in [24], where a more complex normalization
procedure is employed. By using N(D) instead, we exploit the fact that we deal with default
theories in atomic format only (c.f. Section 2).

9 For sake of readability, we refrain from presenting Theory (7) and (8) in atomic format.
Moreover, we discard normalization rules for normal default rules since they are tautological.



In turn, we must determine all minimal CDPs of the negated consequences or the
negated justifications of R :¬P

H
and H :T

T
, respectively. That is, first we search for a

proof for ¬H ∨ P from Theory (7) and then for a proof of ¬T from Theory (8). While
¬T is not provable from (8), ¬H ∨ P is provable from (7) yielding a single orthogonal

∆-segment,
〈

Q :P
D

〉

.

Theorem 5 leads to the following algorithm for the function orth:

orth(D,W, C, 〈δi〉i∈I) =
for i ∈ I do

let D′ = D \ {δk | k < i} in
let W ′ =W ∪N(D′) ∪ {Conseq(δk), Justif (δk) | k < i} in
let O = ∅ in
let ϕ = ¬Conseq(δi) ∨ ¬Justif (δi) in

O := O ∪ {〈δj〉j∈J | 〈δj〉j∈J = cred(D′,W ′, C, ϕ) and there is no J ′ ⊂ J

such that 〈δj′〉j′∈J ′ = cred(D′,W ′, C, ϕ) }
od ;

return O

This procedure yields a set containing all minimal ∆-segments orthogonal to a given
CDP 〈δi〉i∈I .
In all, our approach has the following advantages. First, it avoids the computation

of entire extensions. Second, it is goal-directed and thus restricted to default rules rele-
vant to proving a given query. Third, it takes advantage of basic techniques developed
for credulous reasoning. Clearly, it is necessary to consider all mutually orthogonal
CDPs belonging to distinct extensions. In this way, we cannot get around the exponen-
tial factor present in worst-case, where there is an exponential number of extensions
each of which comprises a CDP orthogonal to all CDPs in all other extensions. In fact,
skeptical reasoning is ΠP

2 -complete [8]. While this theoretical threshold is inevitable in
the worst-case, our local proof theory avoids investigating all or even entire extensions
whenever a large domain is ‘locally structured,’ that is, if the query under considera-
tion is deductively connected with merely a small fraction of the entire theory. This
advantage becomes obvious by looking at some more examples. Suppose that we extend
Default Theory (1) with a default rule like R :W

W
saying that “republicans are Western

fans.” Proving that W is skeptically derivable is doable by a single CDP,
〈

R :W
W

〉

, since
this CDP is not contested by any orthogonal ∆-segments. For another example, sup-
pose that we extend Default Theory (1) with default rules like Q :V

V
and R :¬V

¬V
saying

that “quakers are vegetarians” and “republicans aren’t vegetarians.” This leads to four
distinct extensions. Proving that T is skeptically derivable however is doable with the
same steps as described above. That is, the two additional extensions do not increase
computational efforts. This is so because the new default rules are irrelevant to proving
T .

4 Credulous query-answering

In what follows, we extend the approach for query-answering in Default Logics devel-
oped in [21] to Pre-Constrained Default Logic. This approach is based on the Con-
nection Method [1], which allows for testing unsatisfiability of formulas in conjunctive



normal form (CNF). Unlike resolution-based methods that decompose formulas in or-
der to derive a contradiction, the Connection Method analyses the structure of formulas
for proving their unsatisfiability. This structure-sensitive nature allows for an elegant
characterization of proofs in Default Logic, as we will see below.
In the Connection Method, formulas in CNF are displayed two-dimensionally in

the form of matrices (see (9) for an exemplar). A matrix is a set of sets of literals
(literal occurrences, to be precise).10 Each column of a matrix represents a clause of
the CNF of a formula. In order to show that a sentence ϕ is entailed by a sentence W,
we prove W ∧ ¬ϕ be unsatisfiable. In the Connection Method this is accomplished by
path checking: A path through a matrix is a set of literals, one from each clause. A
connection is an unordered pair of literals which are identical except for the negation
sign (and possible indices). A mating is a set of connections. A mating spans a matrix
if each path through the matrix contains a connection from the mating. Finally, a
formula, like W ∧¬ϕ, is unsatisfiable iff there is a spanning mating for its matrix.
The approach of [21] relies on the idea that a default rule can be decomposed into

a classical implication along with two qualifying conditions, one accounting for the
character of an inference rule and another one enforcing the respective consistency
conditions. The computational counterparts of these qualifying conditions are given by
the proof-oriented concepts of admissibility and compatibility , which we introduce in
the sequel.
In order to find out whether a formula ϕ is in some extension of a default theory

(D,W, C), we first transform the default rules in D into their sentential counterparts.
This yields a set of indexed implications:

WD =
{

αδ → γδ

∣

∣

∣

αδ : βδ
γδ

∈ D
}

Second, we transform both W and WD into their clausal forms, CW and CD. The
clauses in CD, like {¬αδ, γδ}, are called δ-clauses; all other clauses like those in CW
are referred to as ω-clauses. Finally, a query ϕ is derivable from (D,W, C) iff there
is a spanning mating for the matrix CW ∪ CD ∪ {¬ϕ} agreeing with the concepts of
admissibility and compatibility.11

A useful concept is that of a core of a matrix M wrt a mating Π, which allows for
isolating the clauses relevant to the underlying proof. [21] defines the core of M wrt Π
as12

κ(M,Π) = {c ∈M | ∃π ∈ Π . c ∩ π 6= ∅} .

For instance, the core of Matrix (9) below wrt the mating drawn is given by all clauses
connected by arcs. Then, the proof-theoretic counterpart of condition (2), also called
groundedness, can be captured as follows [21]:

Definition 6 Admissibility. Let CW be a set of ω-clauses and CD be a set of δ-
clauses and let Π be a mating for CW ∪ CD. Then, (CW ∪ CD, Π) is admissible iff
there is an enumeration 〈{¬αδi , γδi}〉i∈I of κ(CD, Π) such that for each i ∈ I, Π is a

spanning mating for CW ∪
(

⋃

j<i{{¬αδj , γδj}}
)

∪ {{¬αδi}}.

10 In the sequel, we simply say literal instead of literal occurrences; the latter allow for distin-
guishing between identical literals in different clauses.

11 Without loss of generality, we deal with atomic queries only, since any query can be trans-
formed into ‘atomic format.’

12 Recall that we deal with literal occurrences.



Note that sometimes not all connections inΠ are needed for showing the unsatisfiability
of the previous submatrices.

As regards compatibility, we have to extend the corresponding notion found in [21]
in order to deal with a set of pre-constraints C.

Definition 7 C-compatibility. Let CW and CC be sets of ω-clauses and let CD be
a set of δ-clauses. Let Π be a mating for CW ∪ CD and let 〈{¬αδi , γδi}〉i∈I be an
enumeration of κ(CD, Π). Then, (CW ∪ CD, Π) is C-compatible wrt I iff there is no
spanning mating for CW ∪ CC ∪

(
⋃

i∈I{{¬αδi , γδi}, {βδi}}
)

.

The following theorem shows that our extended method is sound and complete:

Theorem8. Let (D,W, C) be a default theory in atomic format and ϕ an atomic
formula. Then, ϕ ∈ E for some constrained extension (E,C) of (D,W, C) iff there
is a spanning mating Π for the matrix M = CW ∪ CD ∪ {{¬ϕ}} and an enumera-
tion 〈{¬αδi , γδi}〉i∈I of κ(CD, Π) which verifies (CW ∪ CD, Π) be admissible and C-
compatible (wrt I).

Finally, (M,Π) represents the CDP 〈δi〉i∈I for ϕ from (D,W, C).

For illustration, let us verify that T is credulously derivable according to the recipe
given above. The encoding of the set of default rules yields the set WD of implications:
{Qδ1 → Dδ1 , Rδ2 → Hδ2 , Dδ3 → Tδ3 , Hδ4 → Tδ4}. The indexes denote the respective
default rules in (1) from left to right. In order to verify that a republican quaker is
traditionalist, T , we first transform the facts in Default Theory (1) and the implications
in WD into their clausal form. The resulting clauses are given two-dimensionally as
the first six columns of the matrix in (9). The full matrix is obtained by adding the
clause containing the negated query, ¬T . In fact, the matrix has a spanning mating,
viz {{R,¬Rδ2}, {Hδ2 ,¬Hδ4}, {Tδ4 ,¬T}}. We have indicated these connections in (9)
as arcs linking the respective literals.

bracket
Q R

¬Qδ1

Dδ1

¬Rδ2

Hδ2

¬Dδ3

Tδ3

¬Hδ4

Tδ4

¬T
(9)

This proof corresponds to the second one in (4) and yields the following enumeration:

〈{¬Rδ2 , Hδ2}, {¬Hδ4 , Tδ4}〉 (10)

For admissibility, we must therefore consider the following two submatrices of Matrix
(9):

bracket
Q R

¬Rδ2

bracket
Q R

¬Rδ2

Hδ2

¬Hδ4
(11)

Observe that each of these submatrices has a spanning mating, so the original matrix
and its mating, given in (9), constitute an admissible proof.



For compatibility (or ∅-compatibility, to be precise), we have to verify that the
following matrix has no spanning mating:13

bracket
Q R

¬Rδ2

Hδ2 ¬Pδ2

¬Hδ4

Tδ4 Tδ4
(12)

This is indeed the case since the matrix contains a non-complementary path, viz.
{Q,R,Hδ2 , Tδ4 ,¬Pδ2}. We thus obtain an admissible and compatible proof for the
original query, T , asking whether a republican quaker is traditionalist.

5 Skeptical query-answering

Let us now return to skeptical query-answering. The basic idea is to extend the given
method for credulous query-answering by adding another specific condition on proofs
ensuring that a query is skeptically derivable. This extra condition is motivated by the
general idea described in Section 3.
At first, we account for the proof-theoretic counterpart of ∆-segments orthogo-

nal to a given CDP. Let CN(D) be the clausal representation of N(D), i.e., CN(D) =
{{¬γδ, βδ} | δ ∈ D}. These clauses are needed for adding the justifications of default
rules while determining ∆-segments orthogonal to a CDP at hand. Clearly, this is ob-
solete for normal default theories.

Definition 9 Challenge. Let CW and CC be sets of ω-clauses and let CD be a set of δ-
clauses. Let Π be a mating for CW ∪CD∪{{¬ϕ}} (for some ϕ) and let 〈{¬αδi , γδi}〉i∈I
be an enumeration of κ(CD, Π). Then, a challenge Λ at i ∈ I is a minimal (wrt set
inclusion) set of default rules Λ = {δ | {¬αδ, γδ} ∈ κ(CD, Πi)} for some spanning
mating Πi for the matrix

Mi = CW ∪ CN(D) ∪ {{γδk}, {βδk} | k < i} ∪ CD ∪ {{γδi}, {βδi}} (13)

such that (Mi, Πi) is admissible and C-compatible (wrt some index set Ii).

Observe that the matrix representation allows us to simplify (13) by replacing CD and
CN(D) by (CD \{{¬αδk , γδk} | k ≤ i}) and (CN(D) \{{¬γδk , βδk} | k ≤ i}), respectively,
since the subtracted clauses are subsumed by {{γδk}, {βδk} | k < i} and the query
clauses {{γδi}, {βδi}}. Now, the overall idea is that (CW ∪ CD, Π) represents a CDP

〈δi〉i∈I for the considered query. Then, each default proof (Mi, Πi) induces a challenge
Λ that corresponds to a minimal ∆-segment C-orthogonal to 〈δi〉i∈I . This is so because
(Mi, Πi) represents a CDP of ¬Conseq(δi) ∨ ¬Justif (δi) from Default Theory (6) (c.f.
Theorem 5). Of course, any matrix Mi may have several spanning matings Πi and
hence may induce different challenges.
Now, we are ready to formulate our additional condition on default proofs for skep-

tical reasoning:

Definition 10 Protection & Stability. Let CW and CC be sets of ω-clauses, CD be
a set of δ-clauses and ϕ an atomic formula. Let Π be a mating for CW ∪ CD and

13 The clauses {¬Pδ2} and {Tδ4} represent the justifications of δ2 and δ4, respectively.



let 〈{¬αδi , γδi}〉i∈I be an enumeration of κ(CD, Π). Let 〈Λij〉j∈Ji be the family of all
challenges at i ∈ I.

We say that (CW ∪CD, Π) is protected under C against Λij by (Mij , Πij) iff Πij is
a spanning mating for the matrix

Mij = CW ∪ {{γδ} | δ ∈ Λij} ∪ CD ∪ {{¬ϕ}}

such that (Mij , Πij) is admissible, C ∪ Justif (Λij)-compatible, and stable for ϕ under
C ∪ Justif (Λij). We say that (CW ∪CD, Π) is stable for ϕ under C iff (CW ∪CD, Π) is
protected under C against all challenges Λij .

The idea is that (CW ∪CD, Π) represents a CDP for query ϕ. In order to verify whether
ϕ is skeptically derivable, we need to show that (CW ∪CD, Π) in addition satisfies the
stability criterion. For this, we proceed as follows. First, we isolate all challenges Λ
against our CDP (CW∪CD, Π). In turn we verify whether ϕ is also skeptically derivable
from the matrices obtained by adding the consequents of the default rules in Λ to CW
and taking the justifications of the default rules in Λ as additional constraints on the
compatibility check. This amounts to verifying whether ϕ is in all extensions to which
the default rules in Λ contribute. Accordingly, a skeptical default proof is given by
a stable credulous default proof (CW ∪ CD, Π) along with all its protecting default
proofs (Mij , Πij). Of course, there may be several such skeptical proofs depending on
the initial choice.
Now, let us examine whether our default proof in (9) is stable and thus renders

T a skeptical conclusion of Default Theory (1). For this, we consider the obtained
enumeration 〈{¬Rδ2 , Hδ2}, {¬Hδ4 , Tδ4}〉. In turn, we determine all emerging challenges.
That is, we consider all minimal default proofs of ¬Hδ2 ∨Pδ2 and ¬Tδ4 . These formulas
represent the negated consequents (and justifications) of the used default rules, δ2 and
δ4, respectively.
In the first case, we consider the matrix obtained from our original matrix, (9), by

replacing query clause {¬T} by clauses {Hδ2} and {¬Pδ2}. This allows us moreover to
eliminate the δ-clause {¬Rδ2 , Hδ2} from (9) since it is subsumed by {Hδ2}. Analogously,
we can omit the normalization clause {¬Hδ2 ,¬Pδ2} due to the presence of {¬Pδ2}.
Hence, we have to add only the normalization clause {¬Dδ1 , Pδ1} since δ3 and δ4 are
normal default rules. The modifications to our initial matrix in (9) are indicated as
dashed boxes.14 This results in the following derivative of Matrix (9):15

M2 =

bracket
Q R

¬Qδ1

Dδ1

¬Dδ3

Tδ3

¬Hδ4

Tδ4

¬Dδ1

Pδ1

Hδ2 ¬Pδ2

ashbox,1 ashbox,1 ashbox,1 ashbox,1d ashbox,1 ashbox,1 ashbox,1 ashbox,1d ashbox,1 ashbox,1 ashbox,1 ashbox,1d ashbox,1 ashbox,1 ashbox,1 ashbox,1d
(14)

By discarding the two query clauses, Matrix16 M2 can be seen as the proof-theoretic
counterpart of Default Theory (7). In fact, M2 admits the spanning mating Π2 =
{{Q,¬Qδ1}, {Dδ1 ,¬Dδ1}, {Pδ1 ,¬Pδ2}}. This CDP involves a single default rule, viz. δ1.

14 This is done to underline the utility of structure-oriented theorem proving.
15 For simplicity, we have refrained from turning the two query clauses {Hδ2} and {¬Pδ2}

into {Hδ2 , ϕ}, {¬Pδ2 , ϕ} along with the single atomic query clause {¬ϕ} (as stipulated in
Theorem 8).

16 The index 2 of M2 and Π2 reflects the index of the query ¬Hδ2 ∨ Pδ2 .



We thus obtain the singleton enumeration 〈{¬Qδ1 , Dδ1}〉 inducing the following two
matrices for verifying admissibility and compatibility, respectively:

bracket
Q R

¬Qδ1 ¬Dδ1

Pδ1

¬Hδ2

¬Pδ2

bracket
Q R

¬Qδ1

Dδ1

¬Dδ1

Pδ1

¬Hδ2

¬Pδ2

(15)
Both matrices contain the normalization clauses {¬Dδ1 , Pδ1} and {¬Hδ2 ,¬Pδ2}. The
left matrix is complementary and thus confirms admissibility, while the right ma-
trix has the open path {Q,R,Dδ1 , Pδ1 ,¬Hδ2} establishing compatibility. Consequently,
(M2, Π2) provides us with a CDP of ¬Hδ2 ∨ Pδ2 . This CDP is orthogonal to our initial
proof in (9). As a result, (M2, Π2) induces the challenge Λ21 = {δ1}. There is no other
challenge induced by M2.

Now, let us first verify whether our CDP in (9) is protected against Λ21 by some
other CDP before we determine more challenges: For establishing stability, intuitively,
we verify whether our initial query, T , belongs to the extensions formed (among others)
by the default rules in Λ21 = {δ1}. For this, we consider the matrix M21 obtained from
our initial matrix in (9) by adding the consequents of all default rules in Λ21. This
amounts to replacing the δ-clause {¬Qδ1 , Dδ1} in (9) by the ω-clause {Dδ1} :

M21 =

bracket
Q R Dδ1

¬Rδ2

Hδ2

¬Dδ3

Tδ3

¬Hδ4

Tδ4

¬T

ashbox,1 ashbox,1 ashbox,1 ashbox,1d

(16)

According to Definition 10 we then verify whether there is a spanning mating Π21 for
M21 such that (M21, Π21) is admissible, {Pδ1}-compatible (since Justif (Λ21) = {Pδ1}),
and stable. Admissibility and compatibility of (M21, Π21) are easily verified by checking
the two following matrices induced by the only δ-clause used in (16), i.e., {¬Dδ3 , Tδ3}:

bracket
Q R Dδ1

¬Dδ3

bracket
Q R Dδ1

¬Dδ3

Tδ3 Pδ1

Complementarity of the left matrix establishes admissibility while
non-complementarity (initiated by the open path {Q,R,Dδ1 , Tδ3 , Pδ1}) of the right
matrix confirms {Pδ1}-compatibility. Now, it remains to be shown that (M21, Π21)
along with its induced enumeration 〈{¬Dδ3 , Tδ3}〉 is stable for T under {Pδ1}. How-
ever, there is no challenge to {¬Dδ3 , Tδ3} since ¬Tδ3 is not provable from the matrix
obtained by replacing the query clause {¬T} in (16) by {Tδ3}.

17 As a result, we obtain
that our CDP in (9) is protected against Λ21 by (M21, Π21).
Next, we must consider all challenges of the second δ-clause in (10). For this, we

determine all CDPs of ¬Tδ4 (the consequent of δ4) from the matrix obtained in the fol-
lowing way. First, we add the clauses {Hδ2} and {¬Pδ2} representing the ‘consequent’
and the ‘justification’ of the first δ-clause in (10) to our initial matrix, (9). The first
addition is accomplished by replacing the δ-clause {¬Rδ2 , Hδ2} by {Hδ2}. Second, we
add the normalization clause {¬Dδ1 , Pδ1}. As with Matrix (14), the second normal-
ization clause {¬Hδ2 ,¬Pδ2} can be omitted since it is subsumed by {¬Pδ2}. Again,

17 In fact, there is no compatible default proof.



no normalization clauses are added for the normal default rules δ3 and δ4. Finally, we
replace the original query clause {¬T} of (9) by {Tδ4}. This allows us to eliminate
δ-clause {¬Hδ4 , Tδ4} since it is subsumed by {Tδ4}:

bracket
Q R

¬Qδ1

Dδ1 Hδ2

¬Dδ3

Tδ3

¬Pδ2 ¬Dδ1

Pδ1

Tδ4

ashbox,1 ashbox,1 ashbox,1 ashbox,1d ashbox,1 ashbox,1 ashbox,1 ashbox,1d ashbox,1 ashbox,1 ashbox,1 ashbox,1d ashbox,1 ashbox,1 ashbox,1 ashbox,1d ashbox,1 ashbox,1 ashbox,1 ashbox,1d

Observe that this matrix can be regarded as the proof-theoretic counterpart of Default
Theory (8) if we discard the query clause. The above matrix has a spanning mating
inducing the enumeration 〈{¬Qδ1 , Dδ1}〉. Admissibility of the previous proof can be
verified in a straightforward way, and to test compatibility, we have to consider the
following matrix:

bracket
Q R

¬Qδ1

Dδ1

Hδ2 ¬Pδ2 ¬Dδ1

Pδ1

Obviously, this matrix has no open path so that our proof is not compatible. Accord-
ingly, ¬Tδ4 is not derivable (c.f. Default Theory (8)) and therefore there are no more
challenges, apart from Λ21. In this way, we have shown that our initial CDP in (9) is
stable for T (in addition to its admissibility and compatibility verified in Section 4).
This is so because it is protected against its only challenge Λ21 by (M21, Π21). This
tells us that T is skeptically derivable from Default Theory (9).
In general, we have the following result stating the adequacy of our proof method:

Theorem11. Let (D,W, C) be a default theory in atomic format and ϕ an atomic
formula. Then, ϕ ∈ E for all constrained extension (E,C) of (D,W, C) iff there is
a spanning mating Π for the matrix M = CW ∪ CD ∪ {{¬ϕ}} and an enumeration
〈{¬αδi , γδi}〉i∈I of κ(CD, Π) such that (CW ∪CD, Π) is admissible wrt I, C-compatible
wrt I, and stable for ϕ under C.

6 Conclusion

We have developed an approach to skeptical query-answering in Constrained Default
Logic based on the Connection Method. This has been accomplished by elaborating on
a recently proposed, general idea for skeptical reasoning in (semi-monotonic) Default
Logics [24]. As a result, we have obtained a precise algorithm that returns a skeptical
default proof if the query is contained in all extensions of the underlying default theory.
The approach has then been combined with a method for credulous query-answering
based on the Connection Method. This was accomplished by employing a further re-
striction on credulous default proofs, expressed by the stability criterion. This has led to
a homogeneous characterization of skeptical default proofs at the level of the underly-
ing deduction method. This approach was supported by the structure-sensitive nature
of the Connection Method. The value of this for structure-sharing among the diverse
subproofs involved is detailed for credulous query-answering in [21]. Even though we
have not discussed it here, it should be obvious that the utility of structure-sharing ap-
plies to skeptical query-answering, too. We have tried to indicate this by stressing the
common structures involved in the skeptical default proof carried out in the previous
section.
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12. A. Mikitiuk and M. Truszczyński. Rational versus constrained default logic. Personal
communication, 1994.

13. R. Moore. Semantical considerations on nonmonotonic logics. Artificial Intelligence,
25:75–94, 1985.
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