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Abstract. Cognition does not only depend on bottom-up sensor fea-
ture abstraction, but also relies on contextual information being passed
top-down. Context is higher level information that helps to predict belief
states at lower levels. The main contribution of this paper is to provide
a formalisation of perceptual context and its integration into a new pro-
cess model for cognitive hierarchies. Several simple instantiations of a
cognitive hierarchy are used to illustrate the role of context. Notably, we
demonstrate the use context in a novel approach to visually track the
pose of rigid objects with just a 2D camera.

1 Introduction

There is strong evidence that intelligence necessarily involves hierarchical struc-
tures [2, 6, 10, 1, 4, 27, 15, 24, 11, 9, 18, 25, 20, 17, 22, 3]. We recently addressed the
formalisation of cognitive hierarchies that allow for the integration of disparate
representations, including symbolic and sub-symbolic representations, in a gen-
eral framework for cognitive robotics [8]. Sensory information processing is up-
ward-feeding, progressively abstracting more complex state features, while be-
haviours are downward-feeding progressively becoming more concrete, ultimately
controlling robot actuators.

However, neuroscience suggests that the brain is subject to top-down cogni-
tive influences for attention, expectation and perception [12]. Higher level signals
carry important information to facilitate scene interpretation. For example, the
recognition of the Dalmatian, and the disambiguation of the symbol /−\ in Fig-
ure 1 intuitively show that higher level context is necessary to correctly interpret
these images1. Furthermore, the human brain is able to make sense of dynamic
3D scenes from light falling on our 2D retina in varying lighting conditions.
Replicating this ability is still a challenge in artificial intelligence and computer
vision, particularly when objects move relative to each other, can occlude each
other, and are without texture. Prior, more abstract contextual knowledge is
important to help segment images into objects or to confirm the presence of an
object from faint or partial edges in an image.

In this paper we extend the existing cognitive hierarchy formalisation [8] by
introducing the notion of perceptual context, which modifies the beliefs of a child

1 Both of these examples appear in [16] but are also well-known in the cognitive
psychology literature.
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Fig. 1. The image on the left would probably be indiscernible without prior knowledge
of Dalmations. The ambiguous symbol /−\ on the right can be interpreted as either an
“H” or an “A” depending on the word context.

node given the beliefs of its parent nodes. It is worth emphasising that defining
the role of context as a top-down predictive influence on a node’s belief state and
the corresponding process model that defines how the cognitive hierarchy evolves
over time is non-trivial. Our formalisation captures the dual influences of context
and behaviour as a predictive update of a node’s belief state. Consequently, the
main contribution of this paper is the inclusion and formalisation of contextual
influences as a predictive update within a cognitive hierarchy.

As a meta-framework, the cognitive hierarchy requires instantiation. We pro-
vide two simple instantiation examples to help illustrate the formalisation of
context. The first is a running example using a small belief network. The second
example involves visual servoing to track a moving object. This second exam-
ple quantifies the benefit of context and demonstrates the role of context in a
complete cognitive hierarchy including behaviour generation.

As a third, realistic and challenging example that highlights the importance
of context we consider the tracking of the 6 degrees of freedom pose of multiple,
possibly occluded, marker-less objects with a 2D camera. We provide a novel
instantiation of a cognitive hierarchy for a real robot using the context of a spatial
cognitive node modelled using a 3D physics simulator. Note, this formalisation
is provided in outline only due to space restrictions.

2 The Architectural Framework

For the sake of brevity the following presentation both summarises and extends
the formalisation of cognitive hierarchies as introduced in [8]. We shall, however,
highlight how our contribution differs from their work. The essence of this frame-
work is to adopt a meta-theoretic approach, formalising the interaction between
abstract cognitive nodes, while making no commitments about the representa-
tion and reasoning mechanism within individual nodes.
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2.1 Motivating Example

As an explanatory aid to formalising the use of context in a hierarchy we will
use the disambiguation of the symbol /−\ in Figure 1 as a simple running exam-
ple. This system can be modelled as a two layer causal tree updated according
to Pearl’s Bayesian belief propagation rules [26]. The lower-level layer disam-
biguates individual letters while the higher-level layer disambiguates complete
words (Figure 2). We assume that there are only two words that are expected
to be seen, with equal probability: “THE” and “CAT”.

Fig. 2. Disambiguating the symbol /−\ requires context from the word recognition layer.

There are three independent letter sensors with the middle sensor being un-
able to disambiguate the observed symbol /−\ represented by the conditional
probabilities p(/−\|H) = 0.5 and p(/−\|A) = 0.5. These sensors feed into the
lower-level nodes (or processors in Pearl’s terminology), which we label as N1,
N2, N3. The results of the lower level nodes are combined at N4 to disambiguate
the observed word.

Each node maintains two state variables; the diagnostic and causal supports
(displayed as the pairs of values in Figure 2). Intuitively, the diagnostic support
represents the knowledge gathered through sensing while the causal support
represents the contextual bias. A node’s overall belief is calculated by the com-
bination of these two state variables.

While sensing data propagates up the causal tree, the example highlights
how node N2 is only able to resolve the symbol /−\ in the presence of contextual
feedback from N4.

2.2 Nodes

A cognitive hierarchy consists of a set of nodes. Nodes are tasked to achieve a goal
or maximise future value. They have two primary functions: world-modelling and
behaviour-generation. World-modelling involves maintaining a belief state, while
behaviour-generation is achieved through policies, where a policy maps states to
sets of actions. A node’s belief state is modified by sensing or by the combination
of actions and higher-level context. We refer to this latter as prediction update to
highlight how it sets an expectation about what the node is expecting to observe
in the future.
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Definition 1. A cognitive language is a tuple L = (S,A, T ,O, C), where S is a
set of belief states, A is a set of actions, T is a set of task parameters, O is a
set of observations, and C is a set of contextual elements. A cognitive node is a
tuple N = (L, Π, λ, τ , γ, s0, π0) s.t:

– L is the cognitive language for N , with initial belief state s0 ∈ S.
– Π a set of policies such that for all π ∈ Π, π : S → 2A, with initial policy
π0 ∈ Π.

– A policy selection function λ : 2T → Π, s.t. λ({}) = π0.
– An observation update operator τ : 2O × S → S.
– A prediction update operator γ : 2C × 2A × S → S.

Definition 1 differs from [8] in two ways: the introduction of a set of context
elements in the cognitive language, and the modification of the prediction up-
date operator, previously called the action update operator, to include context
elements when updating the belief state.

This definition can now be applied to the motivating example to instantiate
the nodes in the Bayesian causal tree. We highlight only the salient features for
this instantiation.

Example. Let E = {〈x, y〉 | 0 ≤ x, y ≤ 1.0} be the set of probability pairs,
representing the recognition between two distinct features. For node N2, say (cf.
Figure 2), these features are the letters “H” and “A” and for N4 these are the
words “THE” and “CAT”. The set of belief states for N2 is S2 = {〈〈d〉, c〉 | d, c ∈
E}, where d is the diagnostic support and c is the causal support. Note, the
vector-in-vector format allows for structural uniformity across nodes. Assuming
equal probability over letters, the initial belief state is 〈〈〈0.5, 0.5〉〉, 〈0.5, 0.5〉〉. For
N4 the set of belief states is S4 = 〈〈d1, d2, d3〉, c〉 | d1, d2, d3, c ∈ E}, where di is
the contribution of node N i to the diagnostic support of N4.

For N2 the context is the causal supports from above, C2 = E, while the
observations capture the influence of the “H”-“A” sensor, O2 = {〈d〉 | d ∈ E}.
In contrast the observations for N4 need to capture the influence of the different
child diagnostic supports, so O4 = {〈d1, d2, d3〉 | d1, d2, d3 ∈ E}.

The observation update operators need to replace the diagnostic supports of
the current belief with the observation, which is more complicated for N4 due
to its multiple children, τ2({d1,d2,d3}, 〈d, c〉) = 〈Σ3

i=1di, c〉. Ignoring the influ-
ence of actions, the prediction update operator simply replaces the causal support
of the current belief with the context from above, so γ2({c′}, ∅, 〈〈d〉, c〉) = 〈〈d〉, c′〉.

2.3 Cognitive Hierarchy

Nodes are interlinked in a hierarchy, where sensing data is passed up the abstrac-
tion hierarchy, while actions and context are sent down the hierarchy (Figure 3).

Definition 2. A cognitive hierarchy is a tuple H = (N , N0, F ) s.t:

– N is a set of cognitive nodes and N0 ∈ N is a distinguished node corre-
sponding to the external world.
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Fig. 3. A cognitive hierarchy, highlighting internal interactions as well as the sensing,
action, and context graphs.

– F is a set of function triples 〈φi,j , ψj,i, %j,i〉 ∈ F that connect nodes N i, N j ∈
N where:

• φi,j : Si → 2Oj is a sensing function, and

• ψj,i : 2Aj → 2T i is a task parameter function.

• %j,i : Sj → 2Ci is a context enrichment function.

– Sensing graph: each φi,j represents an edge from node N i to N j and forms
a directed acyclic graph (DAG) with N0 as the unique source node of the
graph.

– Prediction graph: the set of task parameter functions (equivalently, the con-
text enrichment functions) forms a converse to the sensing graph such that
N0 is the unique sink node of the graph.

Definition 2 differs from the original with the introduction of the context en-
richment functions and the naming of the prediction graph (originally the action
graph). The connection between nodes consists of triples of sensing, task param-
eter and context functions. The sensing function extracts observations from a
lower-level node in order to update a higher level node, while the context enrich-
ment function performs the converse. The task parameter function translates a
higher-level node’s actions into a set of task parameters, which is then used to
select the active policy for a node.

Finally, the external world is modelled as a distinguished node, N0. Sensing
functions allow other nodes to observe properties of the external world, and
task parameter functions allow actuator values to be modified, but N0 doesn’t
“sense” properties of other nodes, nor does it generate task parameters for those
nodes. Similarly, context enrichment functions connected to N0 would simply
return the empty set, unless one wanted to model unusual properties akin to the
quantum effects of observations on the external world. Beyond this, the internal
behaviour of N0 is considered to be opaque.

The running example can now be encoded formally as a cognitive hierarchy,
again with the following showing only the salient features of the encoding.
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Example. We construct a hierarchy H = (N , N0, F ), consisting of five nodes
N = {N0, N1, . . . , N4}. The function triples in F will include φ0,2 for the visual
sensing of the middle letter, and φ2,4 and %4,2 for the sensing and context between
N2 and N4.

The function φ0,2 returns the probability of the input being the characters
“H” and “A”. Here φ0,2(/−\) = {〈0.5, 0.5〉}.

Defining φ2,4 and %4,2 requires a conditional probability matrix M =

[
1 0
0 1

]
to capture how the letters “H” and “A” contribute to the recognition of “THE”
and “CAT”.

For sensing from N2 we use zeroed vectors to prevent influence from the
diagnostic support components from N1 and N2. Hence φ2,4(〈〈d〉, c〉)= {〈〈0, 0〉,η·
M · dT , 〈0, 0〉〉}, where dT is the transpose of vector d, and η is a normalisation
constant.

For context we capture how N4’s causal support and its diagnostic support
components from N1 and N2 influences the causal support of N2. Note that
this also prevents any feedback from N2’s own diagnostic support to its causal
support. So, %4,2(〈〈d1, d2, d3〉, c〉)={η · (d1 · d3 · c) ·M}.

2.4 Active Cognitive Hierarchy

The above definitions capture the static aspects of a system but require addi-
tional details to model its operational behaviour. Note, the following definitions
are unmodified from the original formalism and are presented here because they
are necessary to the developments of later sections.

Definition 3. An active cognitive node is a tuple Q = (N, s, π, a) where: 1) N
is a cognitive node with S, Π, and A being its set of belief states, set of policies,
and set of actions respectively, 2) s ∈ S is the current belief state, π ∈ Π is the
current policy, and a ∈ 2A is the current set of actions.

Essentially an active cognitive node couples a (static) cognitive node with
some dynamic information; in particular the current belief state, policy and set
of actions.

Definition 4. An active cognitive hierarchy is a tuple X = (H,Q) where H is a
cognitive hierarchy with set of cognitive nodes N such that for each N ∈ N there
is a corresponding active cognitive node Q = (N, s, π, a) ∈ Q and vice-versa.

The active cognitive hierarchy captures the dynamic state of the system at
a particular instance in time. Finally, an initial active cognitive hierarchy is an
active hierarchy where each node is initialised with the initial belief state and
policy of the corresponding cognitive node, as well as an empty set of actions.
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2.5 Cognitive Process Model

The process model defines how an active cognitive hierarchy evolves over time
and consists of two steps. Firstly, sensing observations are passed up the hierar-
chy, progressively updating the belief state of each node. Next, task parameters
and context are passed down the hierarchy updating the active policy, the ac-
tions, and the belief state of the nodes.

We do not present all definitions here, in particular we omit the definition of
the sensing update operator as this remains unchanged in our extension. Instead
we define a prediction update operator, replacing the original action update, with
the new operator incorporating both context and task parameters in its update.
First, we characterise the updating of the beliefs and actions for a single active
cognitive node.

Definition 5. Consider an active cognitive hierarchy X = (H,Q) where H =
(N , N0, F ). The prediction update of X with respect to an active cognitive node
Qi =(N i, si, πi, ai) ∈ Q, written PredUpdate′(X , Qi), is an active cognitive hi-
erarchy X ′ =(H,Q′) where Q′ =Q\{Qi}∪{Q′

i} and Q′
i =(N i, γi(C, a

′
i, si), π

′
i, a

′
i)

s.t:

– if there is no node Nx where 〈φi,x, ψx,i, %x,i〉 ∈ F then: π′
i = πi, a

′
i = πi(si)

and C = ∅,
– else:

π′
i = λi (T ) and a′i = π′

i(si)
T =

⋃
{ψx,i(ax) | 〈φi,x, ψx,i, %x,i〉 ∈ F where Qx = (Nx, sx, πx, ax) ∈ Q}

C =
⋃
{%x,i(sx) | 〈φi,x, ψx,i, %x,i〉 ∈ F where Qx = (Nx, sx, πx, ax) ∈ Q}

The intuition for Definition 5 is straightforward. Given a cognitive hierarchy
and a node to be updated, the update process returns an identical hierarchy
except for the updated node. This node is updated by first selecting a new active
policy based on the task parameters of all the connected higher-level nodes. The
new active policy is applied to the existing belief state to generate a new set
of actions. Both these actions and the context from the connected higher-level
nodes are then used to update the node’s belief state.

Using the single node update, updating the entire hierarchy simply involves
successively updating all its nodes.

Definition 6. Consider an active cognitive hierarchy X = (H,Q) where H =
(N , N0, F ), and let Ψ be the prediction graph induced by the task parameter
functions in F . The action process update of X , written PredUpdate(X ), is
an active cognitive model:

X ′ = PredUpdate′(. . .PredUpdate′(X , Qn), . . . Q0)

where the sequence [Qn, . . . , Q0] consists of all active cognitive nodes of the set
Q such that the sequence satisfies the partial ordering induced by the prediction
graph Ψ .
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Importantly, the update ordering in Definition 6 satisfies the partial ordering
induced by the prediction graph, thus guaranteeing that the prediction update
is well-defined.

Lemma 1. For any active cognitive hierarchy X the prediction process update
of X is well-defined.

Proof. Follows from the DAG structure.

The final part of the process model, which we omit here, is the combined
operator, Update, that first performs a sensing update followed by a prediction
update. This operation follows exactly the original, and similarly the theorem
that the process model is well-defined also follows.

We can now apply the update process (sensing then prediction) to show how
it operates on the running example.

Example. When N2 senses the symbol /−\, φ0,2 returns that “A” and “H” are
equally likely, so τ2 updates the diagnostic support of N2 to 〈〈0.5, 0.5〉〉. On the
other hand N1 and N2 unambiguously sense “C” and “T” respectively, so N4’s
observation update operator, τ4, will update its diagnostic support components to
〈〈0, 1〉, 〈0.5, 0.5〉, 〈0, 1〉〉. The nodes overall belief, 〈0, 1〉, is the normalised product
of the diagnostic support components and the causal support, indicating here the
unambiguous recognition of “CAT”.

Next, during prediction update, context from N4 is passed back down to N2,
through φ4,2 and γ2, updating the causal support of N2 to 〈0, 1〉. Hence, N2 is
left with the belief state 〈〈〈0.5, 0.5〉〉, 〈0, 1〉〉, which when combined, indicates that
the symbol /−\ should be interpreted as an “A”.

We next appeal to another simple example to illustrate the use of context
to improve world modelling and in turn behaviour generation in a cognitive
hierarchy.

3 A Simple Visual Servoing Example

Consider a mobile camera tasked to track an object sliding down a frictionless
inclined plane. The controller is constructed as a three-node cognitive hierarchy.
Figure 4 depicts the cognitive hierarchy and the scene.

The performance of the controller will be determined by how well the camera
keeps the object in the centre of its field-of-view, specifically the average error
in the tracking distance over a time period of 3 seconds.

The details of the instantiation of the cognitive hierarchy controller fol-
low. The cognitive hierarchy is H = (N , N0, F ) with N = {N0, N1, N2}. N0

is the unique opaque node representing the environment. The cognitive lan-
guage for N1 is a tuple L1 = (S1,A1, T 1,O1, C1), and for N2 it is L2 =
(S2,A2, T 2,O2, C2). The cognitive nodes are N1 = (L1, Π1, λ1, τ1, γ1, s

0
1, π

0
1)

and N2 = (L2, Π2, λ2, τ2, γ2, s
0
2, π

0
2). For brevity we only describe the material

functions.
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Fig. 4. A three-node cognitive hierarchy controller tasked to visually follow an object.
Context flow is shown in red.

The belief state of N1 is the position of the object: S1 = {x | x ∈ R}.
The belief state of N2 is both the position and velocity of the object: S2 =
{〈x, v〉 | x, v ∈ R}. The object starts at rest on the inclined plane at the origin:
s01 = 0.0 and s02 = 〈0.0, 0.0〉.

N1 receives object position observations from the environment:O1 = {x | x ∈
R}. These measurements are simulated from the physical properties of the scene
and include a noise component to represent errors in the sensor measurements:
φ0,1(·) = {0.5kt2 + ν}, with constant acceleration k = 8.49 m/s2, t the elapsed
time and ν zero mean Gaussian random noise with a standard deviation of
0.1. The acceleration assumes an inclined plane of 60 degrees in a 9.8 m/s2

gravitational field. The N1 observation update operator implements a Kalman
filter with a fixed gain of 0.25: τ1(〈{x}, y〉) = (1.0− 0.25)y + 0.25x.

N2 receives observations O2 = {x | x ∈ R} from N1: φ1,2(x) = {x}. In turn
it updates its position estimate accepting the value from N1: τ2(〈{x}, 〈y, v〉〉) =
〈x, v〉. The prediction update operator uses a physics model to estimate the
new position and velocity of the object after time-step δt = 0.05 seconds:
γ2(〈{}, {}, 〈x, v〉〉) = 〈x+vδt+0.5kδt2, v+kδt〉 with known acceleration k = 8.49.

Both N1 and N2 have one policy function each. The N2 policy selects the
N1 policy. The effect of the N1 policy: π1(x) = {x}, is to move the camera to
the estimated position of the object via the task parameter function connecting
the environment: ψ1,0({x}) = {x}.

We consider two versions of the N1 prediction update operator. Without
context the next state is the commanded policy action: γ1(〈{x}, {y}, z〉) = y.
With context the context enrichment function passes the N2 estimate of the
position of the object to N1: %2,1(〈x, v〉) = {x}, where C1 = {x | x ∈ R}. The
update operator becomes: γ1(〈{x}, {y}, z〉) = x.

When we simulate the dynamics and the repeated update of the cognitive
hierarchy at 1/δt Hertz for 3 seconds, we find that without context the average
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tracking error is 2.004± 0.009. Using context the average tracking error reduces
to 0.125± 0.015—a 94% error reduction.2

4 Using Context to Track Objects Visually

Object tracking has applications in augmented reality, visual servoing, and man-
machine interfaces. We consider the problem of on-line monocular model-based
tracking of multiple objects without markers or texture, using the 2D RGB
camera built into the hand of a Baxter robot. The use of natural object features
makes this a challenging problem.

Current practice for tackling this problem is to use 3D knowledge in the
form of a CAD model, from which to generate a set of edge points (control
points) for the object [21] . The idea is to track the corresponding 2D camera
image points of the visible 3D control points as the object moves relatively to
the camera. The new pose of the object relative to the camera is found by
minimising the perspective re-projection error between the control points and
their corresponding 2D image.

However, when multiple objects are tracked, independent CAD models fail
to handle object occlusion. In place of the CAD models we use the machinery
provided by a 3D physics simulator. The object-scene and virtual cameras from
a simulator are ideal to model the higher level context for vision. We now de-
scribe how this approach is instantiated as a cognitive hierarchy with contextual
feedback. It is important to note that the use of the physics simulator is not to
replace the real-world, but is used as mental imagery efficiently representing the
spatial belief state of the robot.

4.1 Cognitive Hierarchy for Visual Tracking

We focus on world-modelling in a two-node cognitive hierarchy (Figure 5). The
external world node that includes the Baxter robot, streams the camera pose
and RGB images as sensory input to the arm node. The arm node belief state
is s = {pa} ∪ {〈pia, ci〉|object i}, where pa is the arm pose, and for all recognised
objects i in the field of view of the arm camera, pia is the object pose relative
to the arm camera, and ci is the set of object edge lines and their depth. The
objects in this case include scattered cubes on a table. Information from the arm
node is sent to the spatial node that employs a Gazebo physics simulator [19] as
mental imagery to model the objects.

A novel feature of the spatial node is that it simulates the robot’s arm camera
as an object aware depth camera. No such camera exists in reality, but the
Gazebo spatial belief state of the robot is able to not only provide a depth image,
but one that segments the depth image by object. This object aware depth image
provides the context to the arm node to generate the required control points.

2 It is of course intuitive in this simple example that as N2 has the benefit of the
knowledge of the transition dynamics of the object it can better estimate its position
and provide this context to direct the camera.
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Fig. 5. Cognitive hierarchy comprising an arm node and a spatial node. Context from
the spatial node is in the form of an object segmented depth image from a simulated
special camera that shadows the real camera.

4.2 Update Functions and Process Update

We now describe the update functions and a single cycle of the process update
for this cognitive hierarchy.

The real monocular RGB arm camera is simulated in Gazebo with an object
aware depth camera with identical characteristics (i.e. the same intrinsic camera
matrix). The simulated camera then produces depth and an object segmentation
images from the simulated objects that corresponds to the actual camera image.
This vital contextual information is then used for correcting the pose of the
visible objects.

The process update starts with the sensing function φN0,Arm that takes the
raw camera image and observes all edges in the image, represented as a set of
line segments, l.

φN0,Arm({rawImage}) = {l}

The observation update operator τArm takes the expected edge lines ci for
each object i and transforms the lines to best match the image edge lines l [21].
The update function uses the OpenCV function solvePnP to find a corrected
pose pia for each object i relative to the arm-camera a 3.

τArm({l, ci|object i}) = {pia|object i}

The sensing function from the arm to spatial node takes the corrected pose
pia for each object i, relative to the camera frame a, and transforms it into the

3 The pose of a rigid object in 3D space has 6 degrees of freedom, three describing
its translated position, and three the rotation or orientation, relative to a reference
pose.
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Fig. 6. The Process update showing stages of the context enrichment function and the
matching of contextual information to the real camera to correct the arm and spatial
node belief state.

Gazebo reference frame via the Baxter’s reference frame given the camera pose
pa.

φArm,Spatial({pa, 〈pia, ci〉|object i}) = {gia|object i}

The spatial node observation update τSpatial, updates the pose of all viewed
objects gia in the Gazebo physics simulator. Note {gia|object i} ⊂ gazebo state.

τSpatial({gia|object i}) = gazebo.move(i, gia) ∀i

The update cycle now proceeds down the hierarchy with prediction updates.
The prediction update for the spatial node γSpatial consists of predicting the
interaction of objects in the simulator under gravity. Noise introduced during the
observation update may result in objects separating due to detected collisions
or settling under gravity.

γSpatial(gazebo state) = gazebo.simulate(gazebo state))

We now turn to the context enrichment function %Spatial,Arm that extracts
predicted camera image edge lines and depth data for each object in view of the
simulator.

%Spatial,Arm(gazebo state) = {ci|object i}

The stages of the context enrichment function %Spatial,Arm are shown in Figure 6.
The simulated depth camera extracts an object image that identifies the object
seen at every pixel location. It also extracts a depth image that gives the depth
from the camera of every pixel. The object image is used to mask out each object
in turn. Applying a Laplacian function to the part of the depth image masked
out by the object yields all visible edges of the object. A Hough line transform
identifies line end points in the Laplacian image and finds the depth of their
endpoints from the depth image, producing ci.
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Fig. 7. Tracking several cube configurations. Top row: Gazebo GUI showing spatial
node state. 2nd row: matching real image edges in green to simulated image edges in
red. Bottom row: camera image overlaid with edges in green.

Figure 7 shows the cognitive hierarchy tracking several different cube con-
figurations. This is only possible given the context from the spatial belief state.
Keeping track of the pose of objects allows behaviours to be generated that for
example pick up a cube with appropriately oriented grippers.

5 Related Support and Conclusion

There is considerable evidence supporting the existence and usefulness of top-
down contextual information. Reliability [5] and speed [7] of scene analysis pro-
vide early evidence.

These observations are further supported by neuroscience, suggesting that
feedback pathways from higher more abstract processing areas of the brain down
to areas closer to the sensors are greater than those transmitting information
upwards [13]. The authors summarise the process — “what is actually happen-
ing flows up, and what you expect to happen flows down”. It has been argued
that the traditional idea that the processing of visual information consists of
a sequence of feedforward operations needs to be supplemented by top-down
contextual influences [12].

In the field of robotics, recent work in online interactive perception shows the
benefit of predicted measurements from one level being passed to the next-lower
level as state predictions [23].

This paper has included and formalised the essential element of context in
the meta framework of cognitive hierarchies. The process model of an active
cognitive hierarchy has been revised to include context updates satisfying the
partial order induced by the prediction graph. We have illustrated the role of
context with two simple examples and a novel way to track the pose of texture-
less objects with a single 2D camera. Our motivating example highlighted the
use of context in a cognitive hierarchy inspired by belief propagation in causal
trees. In fact, as a general result it can be proved [14] that any Bayesian causal
tree can be encoded as a cognitive hierarchy, testifying to the representation
versatility of our framework.
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