
A Language for Default Reasoning about Actions

Hannes Strass1 and Michael Thielscher2

1 Computer Science Institute, University of Leipzig
strass@informatik.uni-leipzig.de

2 School of Computer Science and Engineering, The University of New South Wales
mit@cse.unsw.edu.au

Abstract. Action languages allow for a concise representation of ac-
tions and their effects while at the same time being easily readable and
writable for humans. In this paper, we introduce D, the first action lan-
guage that centres around default reasoning about actions and change.
It allows to specify normal Reiter-style defaults and provides a semantics
that has at its core the groundedness of conclusions. This is not only of
use for default conclusions, but also for D’s solution to the ramification
problem. Additionally, our language does not suffer from Yale Shooting-
like counterexamples since it uses different mechanisms for default per-
sistence and default change. The answer set programming paradigm is
used as the basis of D’s implementation, which we prove sound and
complete with respect to the language’s semantics. We finally present a
showcase application for the language: its straightforward solution to the
qualification problem.

1 Introduction

Action languages are simple declarative languages for describing actions and
their effects on the world. The first ever action language, A [1], was introduced
in 1993 by Vladimir Lifschitz, to whom we dedicate this article on the occasion of
his 65th birthday, and his colleague Michael Gelfond to enhance the traditionally
example-oriented mode of operation of reasoning about actions research.

This original language A allowed only for very basic action descriptions, and
so was soon extended to B [2], which handles indirect effects through static
laws. A further extension came with C [3], enabling convenient description of
concurrency and non-determinism. The language E [4] then introduced an ex-
plicit notion of time into action languages, which had hitherto only possessed an
implicit time structure defined through state transition systems.

In this paper, we introduce the action language D for default reasoning about
actions. It is a useful addition to the existing A, B, C and E – but not just as
“yet another action language”: it is the first language that centres around default
reasoning about actions. We argue that this is of practical relevance for agents
with incomplete knowledge about their domain.

Two existing action languages do allow for some forms of default reasoning,
C+ [5] and K [6]. Alas, in both languages defaults can be at odds with the solu-
tion of the frame problem, since the same mechanism is used for static defaults



and temporal persistence defaults. We have found that certain intuitive ways of
modelling a domain do not yield the intuitively expected answers: As an exam-
ple, imagine a simple domain where two inertial fluents, Bird and Flies, express
whether there is a bird in the domain and whether it flies. We want to state that
birds fly by default and look at the interaction of this default with temporal
persistence. A seemingly straightforward C+ specification of this domain is

inertial Bird
inertial Flies
default Flies if Bird

Now consider an abnormal initial time point 0 where Bird is true and Flies is false,
{0:Bird, 0:¬Flies}. What holds at the next time point when no action occurs at
0? Intuition suggests that the world does not change when nothing happens,
hence ¬Flies should still hold. However, C+ does not conform with this intuition
in that it admits – along with the model where Flies still does not hold after
waiting (due to persistence) – an additional model where the abnormal bird
magically learns to fly (by default).3 In D, the straightforward specification of
this simple domain will yield the intuitively expected inference that abnormality
persists when not caused otherwise.

Another observation we made is that some conclusions in C+ circularly justify
themselves and are thus not grounded: The statements

default Rain if Wet
default Wet if Rain

say that rain and wet grass usually go hand in hand. For time point 0, they
expand to the formulas 0:Rain⇐ 0:Rain ∧ 0:Wet and 0:Wet⇐ 0:Wet ∧ 0:Rain
of nonmonotonic causal logic [5]. If nothing further is known about the time
point, {0:Rain, 0:Wet} is a model for the two formulas, where rain and wet
grass appear without any evidence for either. In contrast, all conclusions in D
are grounded in the sense that they have a non-cyclic derivation from definite
knowledge. For the same reason, D also offers a solution to the ramification
problem that can deal with cyclic effect dependencies.4

Together with our new action language D, we introduce a query language for
prediction. We present D’s implementation, which uses answer set programming
(ASP) as back-end, and is provably sound and complete for the semantics of D.
Finally, we demonstrate the capabilities of D by developing a solution for the
qualification problem [7] entirely inside the language itself.

3 Of course, this does not suggest that the domain cannot otherwise be modelled in
C+. If the cause of the bird’s abnormality is explicitly named in the language (say,
by inertial fluent AbBird) and 0:AbBird is added to the domain along with the static
law caused ¬Flies if AbBird, then C+ treats the example right.

4 It is even possible to use more general ramification rules than the ones considered
here. Ramification is however not our main topic here, so we keep that simple.



2 Action Language D

We assume a sorted logical signature that contains the sorts fluent (for domain
properties that change over time) and action (for actions that affect the state
of the world). Like its predecessor A, the language D assumes inertia for all
fluent properties unless there is an explicit cause for change.

2.1 Syntax

A specification of an action domain in D consists of two parts: the first part
contains general knowledge about the domain – action preconditions, action
effects, ramifications, state defaults. The second part contains information about
the initial time point of a specific domain instance. The vocabulary to describe
a domain is given by non-empty sets fluent and action of constant symbols.

Definition 1. Assume a fixed logical signature with sorts fluent and action.
For a fluent F , a fluent literal is of the form F or ¬F . Define F def= ¬F and
¬F def= F , and extend this notation to sets of fluent literals.

Let A be an action, F be a fluent, K,L be fluent literals and C be a finite
set of fluent literals. A statement can be:

– a precondition statement: possible A if C
– a direct effect statement: action A causes L if C
– an indirect effect statement: effect K causes L if C
– a default statement: normally L if C

An initial state axiom is of the form initially L. An action domain spec-
ification, or domain for short, is a finite set Σ = Υ ∪Ω where Υ is a set of
statements and Ω is a set of initial state axioms.

In statements of the above form, we will refer to literal L as the consequent.
If C = ∅ for a statement, we omit the if part in writing. To illustrate D, we use
the following running example throughout the paper.

Example 2 (Swipe Card Domain). Imagine an office building where some parts
have restricted access through swipe cards. It is possible for an agent who has a
card to swipe it through the reader. Normally, the agent has a card, and swiping
the card through the reader unlocks the door. Subsequently pushing an unlocked
door opens it, unless it is jammed, which may be caused by pushing a locked
door. In D, the domain specification of this environment is as follows:

Υ = {possible Swipe if {HasCard} ,
normally HasCard,

action Swipe causes Swiped,

normally ¬Locked if Swiped,

action Push causes Open if {¬Locked,¬Jammed} ,
action Push causes Jammed if {Locked}}



There is no precondition statement for Push, we thus take it to be the trivial
one – possible Push if ∅. At an initial time point, the door is locked and not
jammed, and the card has not been swiped:

Ω = {initially Locked, initially ¬Jammed, initially ¬Swiped}

This concludes the specification of the swipe card domain Σ = Υ ∪Ω .

D domains state how the world normally behaves. Due to their syntax being
close to natural language, we already have an intuitive understanding of their
meaning. In the next section, we will develop a mathematical semantics for D.

2.2 Semantics

Traditional action languages use transition systems to interpret action domains
and a Tarski-style entailment relation over so-called histories to solve reasoning
problems in these domains [2]. In D, we pay special attention to the groundedness
of conclusions and thus use a fixed-point based semantics much in the spirit of
default logic [8]. The time structure of D’s semantics as defined below is branch-
ing. However, this is only for the purpose of this paper and all the definitions we
give here can be adjusted to the case of more general time structures.

Definition 3. Assume a fixed logical signature with sorts fluent and action.
An action sequence α is a word over the alphabet of actions, that is, either ε
(the empty sequence) or of the form α′A for an action sequence α′.

A scenario S is a set of pairs (α,L) where α is an action sequence and L
is a fluent literal. A scenario S is consistent iff {(α1, F ), (α2,¬F )} ⊆ S implies
α1 6= α2 for all fluents F .

Intuitively, a pair (α,L) in a scenario means that L holds after execution
of α. For a scenario S and an action sequence α, we use the notation S(α) def=
{L | (α,L) ∈ S} to refer to the set of fluent literals to which α is related. Read
as a mapping, the alternative notation S(α) assigns to each action sequence a
(possibly incomplete) knowledge state [6], where incompleteness of the state only
reflects incomplete knowledge about the real world. Consider again the example:

Example 2 (Continued). In the first scenario S1, everything works as expected:
swiping the card unlocks an initially not jammed door which is then opened by
pushing it. Had the agent initially pushed the locked door, it would be jammed.

S1(ε) = {HasCard,¬Open, Locked,¬Jammed,¬Swiped}
S1(Swipe) = {HasCard,¬Open,¬Locked,¬Jammed,Swiped}

S1(SwipePush) = {HasCard,Open,¬Locked,¬Jammed,Swiped}
S1(Push) = {HasCard,¬Open, Locked, Jammed,¬Swiped}

In scenario S2, the card reader does not work and the door remains locked:

S2(ε) = {HasCard,¬Open, Locked,¬Jammed,¬Swiped}
S2(Swipe) = {HasCard,¬Open, Locked,¬Jammed,Swiped}



While scenarios talk about states of the world after execution of actions, there
is yet no mention of changes due to action effects. In the following, we define
how to determine these effects from the statements of a domain specification.
This is easy in the case of direct and indirect effects. For the case of default
effects, we use an additional scenario T , which represents a particular context
against which default conclusions are checked. We first define when statements
are considered applicable in a scenario S with respect to context scenario T .

Definition 4. Let Σ be a domain, S, T be scenarios for Σ’s signature, α be an
action sequence and A an action with precondition statement possible A if P .
A statement σ ∈ Σ is applicable in S after αA iff P ⊆ S(α) and

– σ = action A causes L if C and C ⊆ S(α); or
– σ = effect K causes L if C and K ∈ S(α), K ∈ S(αA), C ⊆ S(α); or
– σ = normally L if C and (a) C ⊆ S(αA), (b) L /∈ T (αA) and (c) one of
C ∩ S(α) 6= ∅ or L ∈ S(α).

The direct effects ∆Dir
Σ (S, αA), indirect effects ∆Ind

Σ (S, αA) and default effects

∆Def
Σ,T (S, αA) of A after α in S are the sets of consequent literals L of direct and

indirect effect and default statements from Σ that are applicable in S after αA.

∆Σ,T (S, αA) def= ∆Dir
Σ (S, αA) ∪∆Ind

Σ (S, αA) ∪∆Def
Σ,T (S, αA)

The set ∆Σ,T (S, αA) contains all the effects of the action A when it is ex-
ecuted in the state S(α) of domain Σ. Direct effects occur whenever their pre-
condition C was satisfied in the starting state. Indirect effects materialise when
the precondition C was satisfied and additionally the trigger literal K changed
its truth value during action execution. A default effect L appears whenever
the precondition C was satisfied after executing A, the effect is consistent with
the context scenario T and the starting state was not abnormal with respect to
this default. Note that default effects are the only ones that require the context
scenario T .

Example 2 (Continued). For scenario S1, where the world behaves normally,
we obtain ∆Dir

Σ (S1,Swipe) = {Swiped} and ∆Ind
Σ (S1,Swipe) = ∅ along with

∆Def
Σ,S1

(S1,Swipe) = {¬Locked}. But note that using S2 as a context scenario

yields ∆Def
Σ,S2

(S1,Swipe) = ∅, since Locked ∈ S2(Swipe). For the empty scenario

we have ∆Dir
Σ (∅,Swipe) = ∅ since the action precondition HasCard of Swipe is

not satisfied.

Next, we define the set of non-effects of an action. Intuitively, the set
∆Σ,T (S, αA) just defined contains all the fluent literals that are guaranteed
to hold in S after αA. The non-effects of an action, on the other hand, will
contain all the fluent literals that are guaranteed to never possibly hold. For
example, if for a fluent F there is no indirect effect statement with F as effect,
no default statement that concludes F and also no direct effect statement with
effect F for an action A, then we can be sure that A will never make F true.



The next definition formalises this intuition. Note that “inapplicable” below is
not the negation of applicable – it rather means “not applicable now or ever.”
In addition, (in)applicability of a statement is only meaningful for time-points
that are connected by applicable actions, that is, actions whose preconditions
are fulfilled in the starting state.

Definition 5. Let Σ be a domain, S be a scenario for Σ’s signature, α be an
action sequence and A be an action. A statement σ ∈ Σ is inapplicable in S
after αA iff one of

– σ = action A causes L if C and C ∩ S(α) 6= ∅; or
– σ = effect K causes L if C and one of: (a) K ∈ S(α) or (b) K ∈ S(αA)

or (c) C ∩ S(α) 6= ∅; or
– σ = normally L if C and one of (a) C ∩ S(αA) 6= ∅ or (b) L ∈ S(αA) or

(c) C ⊆ S(α) and L ∈ S(α).

The non-effects of A after α in S are ΨDir
Σ (S, αA), Ψ Ind

Σ (S, αA) and ΨDef
Σ (S, αA),

defined as containing those literals L for which all direct and indirect effect and
default statements with consequent L are inapplicable in S after αA. Then

ΨΣ(S, αA) def= ΨDir
Σ (S, αA) ∩ Ψ Ind

Σ (S, αA) ∩ ΨDef
Σ (S, αA)

In particular, ΨΣ(S, αA) will contain a literal L if there is no statement with
consequent L. With the presumptions of the previous definition, we finally use
the set of non-effects to solve the frame problem: whenever we know F holds
before executing A and A cannot make F false, it will still hold afterwards. We
thus conclude persistence only in light of evidence that change is impossible.

Definition 6. Let Σ be a domain, S be a scenario for Σ’s signature, α be an
action sequence and A an action with precondition statement possible A if P .
The persisting fluents of A after α in S are

∆Frame
Σ (S, αA) def=

{
(αA,L)

∣∣ (α,L) ∈ S, P ⊆ S(α), L ∈ ΨΣ(S, αA)
}

This very cautious treatment of persistence is rooted in allowing incomplete
knowledge while dealing with defaults. If we allowed to conclude persistence
solely on the fact that the contrary effect did not occur in the context scenario,
then undesired interaction between persistence and defaults would be supported
as described in the introduction. Taken together, the two previous definitions
constitute D’s solution to the frame problem in the presence of defaults.

Example 2 (Continued). In S1, action Push causes Jammed if {Locked} is
inapplicable after SwipePush since ¬Locked ∈ S1(Swipe), which implies that
Jammed ∈ ΨDir

Σ (S1,SwipePush). Since there are no indirect effect or default
statements with consequent Jammed, we get Jammed ∈ ΨΣ(S,SwipePush),
which means that Jammed is a non-effect of the action Push after Swipe. Now
¬Jammed holds after Push in S1 – formally, ¬Jammed ∈ S1(Push) – and therefore
¬Jammed ∈ ∆Frame

Σ,S1
(S1,SwipePush).



The next definition provides the main “workhorse” for D’s semantics. It is
an operator that takes a scenario as argument and transforms it into another
scenario using statements and axioms from an action domain specification. We
will see later that this operator corresponds to the one-step consequence oper-
ator from logic programming. First, the set ∆Ω puts together the information
about the initial state of the domain. Then, ∆α

Σ,T (S) computes the additional
domain information about action sequence α that can be derived from S and
the statements in the domain. There, ∆ε

Σ,T (S) applies default statements to

the initial state of S, while ∆αA
Σ,T (S) computes all pairs of action sequences and

fluent literals that hold due to application of action A after α in S – be they di-
rect effects, indirect effects, default effects or persisting fluents. Finally, ΓΣ,T (S)
accumulates the world knowledge and puts it into the resulting scenario. The
additional scenario T is the context against which default application is checked.

Definition 7. Let Σ = Υ ∪Ω be a D action domain specification and S and T
be scenarios.

∆Ω
def= {(ε, L) | initially L ∈ Ω}

∆ε
Σ,T (S) def=

{
(ε, L)

∣∣ normally L if C ∈ Σ,C ⊆ S(ε), L /∈ T (ε)
}

∆αA
Σ,T (S) def=

{
(αA,L)

∣∣ L ∈ ∆Σ,T (S, αA)
}
∪∆Frame

Σ (S, αA)

ΓΣ,T (S) def= ∆Ω ∪
⋃

α∈action∗
∆α
Σ,T (S)

It is tedious but not hard to show that ΓΣ,T is a monotone operator for any
given Σ,T . We are now ready to define possible scenarios, the central notion of
D’s semantics. As we will see later on, it corresponds to the notion of an answer
set of a logic program. A possible scenario can be reconstructed from the initial
state specification using the domain rules at hand.

Definition 8. Let Σ be a domain. A scenario S is possible for Σ iff it is con-
sistent and the least fixed point of ΓΣ,S.

It is a direct consequence of this definition that possible scenarios of a given
domain Σ need not be unique and need not necessarily exist at all.

Example 2 (Continued). Our example scenario S1 for the swipe card domain can
be extended to a scenario S∗1 that is possible for Σ by repeatedly applying ΓΣ ,S1

until reaching a fixed point. S2, on the other hand, cannot be extended to a
possible scenario. Roughly, one cannot explain Locked ∈ S2(Swipe) ⊆ S∗2 (Swipe)
for any potential candidate S∗2 : there is no statement with consequent Locked,
hence persistence would be the only possibility. However, the default state-
ment normally ¬Locked if Swiped is not inapplicable after Swipe in S∗2 , thus
¬Locked /∈ ΨΣ (S∗2 ,Swipe). The intuition here is that in S2 the world does not

behave normally: the default effect of unlocking the door might materialise, but
has not done so in the context. Indeed, S∗1 is the only possible scenario of Σ .



Our action language D shares with its predecessorsA and B the principle that
the semantics solves the frame problem [2].5 Domain specifications in A consist
solely in effect statements (written as A causes L if C), and the semantics is
defined by a state transition system that obeys these effect laws and otherwise
assumes inertia. Lack of space does not permit to go into details, but it is easy
to verify that D is a proper generalisation of A in the following sense.

Theorem 9. Consider a domain in which all statements are of the form
action A causes L if C, then any possible scenario (in the sense of D) corre-
sponds to a sequence of state transitions (in the sense of A) and vice versa.

2.3 Query Answering

In D, we do not ask what definitely holds after a sequence of actions in a domain,
but instead what normally holds. We next introduce the normality version of
the query language P [2].

Definition 10. Let Σ be a D action domain description, α be an action se-
quence and L be a fluent literal. A query is of the form normally L after α.
We say that Σ entails the query and write Σ |≈ normally L after α if and only
if L ∈ S(α) for all possible scenarios S of Σ.

When solving projection problems for a domain Σ, we specify an initial state
and then ask what is true after a sequence of actions has been performed.

Example 2 (Continued). Possible queries about the swipe card domain Σ are
“does the agent initially have a swipe card?” – normally HasCard after ε,
or “is the door open after swiping the card and pushing the door?” –
normally Open after SwipePush. Both queries are entailed by Σ since they
hold in the only possible scenario S1.

3 Implementation

We now present the implementation of action language D. It is based on logic
programming, more specifically the answer set semantics, which has also been
conceived by Vladimir Lifschitz together with his colleague Michael Gelfond [9].
The translation we define below transforms D action domain specifications into
extended logic programs. These rules will contain first-order variables, thereby
representing the set of the rule’s well-sorted ground instances. Before delving
into the technical details, we recall the necessary notions.

Definition 11. Let P be a propositional signature. An extended logic program
rule is of the form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n (1)

5 Language C deviates from this principle in that it assumes explicit inertia statements
to be included in a domain specification [3].



where L0, L1, . . . , Lm+n are literals over P and m,n ≥ 0. A program rule is
definite iff n = 0. For a set P of definite rules and a set M of literals, define

ΓP (M) def= {L0 | L0 ← L1, . . . , Lm ∈ P, {L1, . . . , Lm} ⊆M}

For a set P of extended logic program rules and a set M of literals, define the
Gelfond-Lifschitz reduct PM as the logic program obtained from P by

1. eliminating each rule containing an expression not L with L ∈M , and
2. deleting all expressions not L from the remaining clauses.

M is an answer set for P iff M is consistent and the least fixed point of ΓPM .

Note that this definition of answer sets requires consistency, while [9] admit-
ted the set of all literals as an answer set for inconsistent programs. There will
be no difference for query entailment, since this depends on containment in all
answer sets. Additionally, in practice we are naturally only interested in possible
consistent belief states for an agent.

For specifying the extended logic program PΣ with variables for a domain
Σ, we assume a sorted, first-order logical language Π. To the sorts fluent
and action used by a D domain, we add the sort time for time-points along
with the predicates Holds(f, t) (saying that fluent f is true at time-point t)
and Poss(a, s, t) (saying that it is possible to execute an action from time-point
s to t). The notation (¬)F [τ ] for a fluent F and term τ : time abbreviates
(¬)Holds(F, τ). For a set C = {L1, . . . , Lm} of fluent literals, C[τ ] denotes the
rule body L1[τ ], . . . , Lm[τ ]. We use a term-based encoding of action sequences
in the logic program: for an action sequence α, its ending time-point τα is defined
inductively by τε

def= ε and ταA
def= τα ·A.

The answer set program defined below implements the principle of universal
causation by reifying possible causes. In accord with D’s semantics (cf. Defini-
tion 7), there is a pair of predicates for each type of effect: DirT (f, a, s, t) and
DirF (f, a, s, t), e.g., express that f is a positive (negative) direct effect of action
a from s to t. Dir(L, a, s, t) for a fluent literal L then abbreviates DirF (F, a, s, t)
if L = ¬F for a fluent F and DirT (L, a, s, t) otherwise. Predicates Frame(L, s, t),
Ind(L, s, t) and Def (L, s, t) are used for the other causes.

The effect rules below now simply say that a fluent holds (or does not hold)
after an action was possible leading to the time-point if there was a cause for the
fluent to have its respective truth value. These causes, in turn, are derived from
additional rules: for persistence, two special rules expressing what persistence
means; the rules for direct effects are created from D direct effect statements
and implement an explanation closure assumption; default effects are derived by
rules using negation as failure. Disjunction “;” in rule bodies is syntactic sugar
for multiplying out its arguments into multiple rules with the same head.

Definition 12. Let Υ be a set of statements and f : fluent, a : action,
s, t : time be fresh variables and assume w.l.o.g. C = {C1, . . . , Cn} for sets of
fluent literals. The extended logic program PΥ contains the following.



For each possible A if C ∈ Υ , the rules

Poss(A, s, s ·A)← C[s] (2)

¬Poss(A, s, s ·A)← C1[s]; . . . ; Cn[s] (3)

For each action A causes L if C ∈ Υ , the rules

Dir(L,A, s, t)← Poss(A, s, t), C[s] (4)

¬Dir(L,A, s, t)← C1[s]; . . . ; Cn[s] (5)

For each effect K causes L if C ∈ Υ , the rules

Ind(L, s, t)← Poss(a, s, t), K[s], K[t], C[s] (6)

¬Ind(L, s, t)← K[s]; K[t]; C1[s]; . . . ; Cn[s] (7)

For each normally L if C ∈ Υ , the rules

L[ε]← C[ε], not L[ε] (8)

Def (L, s, t)← Poss(a, s, t), C[t], (C1[s]; . . . ; Cn[s]; L[s]), not L[t] (9)

¬Def (L, s, t)← C1[t]; . . . ; Cn[t]; L[t]; (C[s], L[s]) (10)

Finally, the rules

FrameT (f, s, t)← Poss(a, s, t), Holds(f, s),

¬DirF (f, a, s, t), ¬IndF (f, s, t), ¬DefF (f, s, t) (11)

FrameF (f, s, t)← Poss(a, s, t), ¬Holds(f, s),

¬DirT (f, a, s, t), ¬IndT (f, s, t), ¬DefT (f, s, t) (12)

Holds(f, t)← FrameT (f, s, t); DirT (f, a, s, t);

IndT (f, s, t); DefT (f, s, t) (13)

¬Holds(f, t)← FrameF (f, s, t); DirF (f, a, s, t);

IndF (f, s, t); DefF (f, s, t) (14)

along with facts ¬Dir(L,A, s, t) for each A : action and fluent literal L without
direct effect statement; and facts ¬Ind(L, s, t) and ¬Def (L, s, t) for all fluent
literals L that do not appear as consequent of an indirect effect statement or
default statement, respectively.

As a last but one step, we define how to transform a set Ω of D axioms into
a set PΩ of ground facts: initial state axioms just become ground Holds literals
in the initial time-point ε.

Definition 13. Let Ω be a set of D axioms. PΩ
def= {L[ε] | initially L ∈ Ω}.



Example 2 (Continued). For the swipe card domain Υ , the translation yields

Poss(Swipe, s, s · Swipe)← Holds(HasCard, s)

¬Poss(Swipe, s, s · Swipe)← ¬Holds(HasCard, s)

Poss(Push, s, s · Push)

DirT (Swiped,Swipe, s, t)← Poss(Swipe, s, t)

DirT (Open,Push, s, t)← Poss(Push, s, t),

¬Holds(Locked, s), ¬Holds(Jammed, s)

DirT (Jammed,Push, s, t)← Poss(Push, s, t), Holds(Locked, s)

Holds(HasCard, ε)← not ¬Holds(HasCard, ε)

DefT (HasCard, s, t)← Poss(a, s, t),

Holds(HasCard, s), not ¬Holds(HasCard, t)

¬Holds(Locked, ε)← Holds(Swiped, ε), not Holds(Locked, ε)

DefF (Locked, s, t)← Poss(a, s, t),

¬Holds(Swiped, s), not Holds(Locked, t)

DefF (Locked, s, t)← Poss(a, s, t),

¬Holds(Locked, s), not Holds(Locked, t)

along with ¬Dir(L,A, s, t) for all fluent literals L and actions A without direct ef-
fect statement, ¬Ind(L, s, t) for all fluent literals L and (11–14). The initial state
axioms Ω become {Holds(Locked, ε),¬Holds(Jammed, ε),¬Holds(Swiped, ε)}.

To complete our translation, we have to make sure the resulting program
admits only groundings that are well-sorted with respect to the first-order lan-
guage Π. Consequently, we define a fresh predicate name Qσ for each sort σ of
Π; we add a set of ASP rules that define the domain of each Qσ; lastly, for all
(first-order) variables x : σ occurring in rules, we add the atom Qσ(x) to the rule
body. So for a D action domain specification Σ = Υ ∪Ω, its ASP translation PΣ
is simply PΥ ∪ PΩ along with the rules for the sort domains. Since the signature
Π contains function symbols of positive arity (e.g. in terms of the form τα ·A),
the well-sorted grounding of PΣ is obviously infinite. In the actual implementa-
tion, we introduce a finite horizon, that is, a maximal term depth to which the
program is grounded.

The most remarkable property of the translation we presented above is that
Υ (general workings of the domain) and Ω (a specific starting time-point for an
agent in the domain) can be translated completely independently. This has the
advantage that for any given domain, we need to compile the general domain
knowledge only when it changes, which should arguably happen less often. In
particular, the rules in PΥ make no mention of actual states and can therefore
easily be extended by any PΩ . Information about actual domain instances (which
arguably changes more often during online control of an agent) can be translated
to ASP in linear time, which is immediate from Definition 13.



When posing a query to a D action domain, it is straightforward to reduce
sceptical query entailment to answer set existence: we add an integrity constraint
that forbids L being true at the ending time point τα of the action sequence.

Definition 14. Let ζ = normally L after α be a query. Its corresponding
extended logic program is Pζ

def= {Q← L[τα], not Q} for a fresh predicate Q.

Now for a query ζ = normally L after α, the literal L[τα] is contained in every
answer set of P iff P ∪ Pζ admits no answer set.

3.1 Proof of Correctness

In this section, we take the propositional signature P to contain all ground in-
stances of predicates from the signature Π of the previous section, hence PΣ
represents its ground instantiation. The proof now establishes a one-to-one cor-
respondence between possible scenarios of Σ and answer sets of PΣ .

To develop the correspondence, we first define how to obtain a scenario from a
given set of literals. For a set M of literals over the domain signature of a domain
specification Σ, we define a scenario SM

def= {(α,L) | L[τα] ∈M,α ∈ action∗}.
The scenario and M now agree on all fluent literals at all time-points (i.e., after
all action sequences). Our first formal result states that the one-step consequence
operators for domain Σ and program PΣ agree likewise during their iterations,
adjusted for a small difference/lag due to action applicability. For an operator
Γ on sets, define Γ 0 def= ∅, for i ≥ 0 set Γ i+1 def= Γ (Γ i) and Γ∞ def=

⋃∞
i=0 Γ

i.

Theorem 15. Let Σ = Υ ∪Ω be a domain, M be a set of literals, α be an action
sequence and L be a fluent literal. For all i ≥ 0,

1. L[τα] ∈ Γ i
PMΣ

implies (α,L) ∈ Γ iΣ,SM , and

2. (α,L) ∈ Γ iΣ,SM implies there is a j ≥ i with L[τα] ∈ Γ j
PMΣ

.

As an immediate corollary, we obtain that the least fixed points of the two
operators coincide with respect to literals after all action sequences.

Corollary 16. Let Σ be a domain, M be a set of literals, α be an action sequence
and L be a fluent literal. Then (α,L) ∈ Γ∞Σ,SM iff L[τα] ∈ Γ∞

PMΣ
.

Our main result now states that computing the answer sets of the logic
program PΣ as a matter of fact computes the possible scenarios of the action
domain specification Σ.

Theorem 17. Let Σ be a D action domain specification.

1. For each answer set M for PΣ, scenario SM is possible for Σ.
2. For each possible scenario S for Σ, there exists an answer set M for PΣ

such that SM = S.



Proof. 1. Let α be an action sequence and L be a ground literal. We have

(α,L) ∈ Γ∞Σ,SM
iff L[τα] ∈ Γ∞PMΣ (Corollary 16)

iff L[τα] ∈M (M is an answer set for PΣ)

iff (α,L) ∈ SM (Definition of SM )

This yields Γ∞Σ,SM = SM and hence SM is a possible scenario for Σ.

2. Define M0 def= {L[τα] | (α,L) ∈ S} and M∞ def= Γ∞
PM

0
Σ

. We prove that M∞

is an answer set for PΣ, that is, Γ∞
PM
∞

Σ

= M∞ = Γ∞
PM

0
Σ

by showing

PM
∞

Σ = PM
0

Σ . Observe that all default-negated literals in PΣ are of the form
“not L[τ ]” for some time-point τ , hence it suffices to show that M0 and M∞

agree on all literals of the form L[τα] for an action sequence α:

L[τα] ∈M0

iff (α,L) ∈ S (S = SM0)

iff (α,L) ∈ Γ∞Σ,S (S is possible)

iff L[τα] ∈ Γ∞
PM

0
Σ

(Corollary 16)

iff L[τα] ∈M∞ (Definition of M∞)

Additionally, this shows that SM∞ = S and concludes the proof. ut

The main result implies as an immediate corollary the correctness of our
implementation of query answering in D.

Corollary 18. Let Σ be a D action domain specification, and consider a query
ζ = normally L after α, then Σ |≈ ζ if and only if L[τα] is contained in each
answer set of PΣ.

The one-to-one correspondence of possible scenarios and answer sets gives us
important information about the type of nonmonotonic reasoning performed by
D: there is a similar one-to-one correspondence between answer sets of extended
logic programs and extensions of Reiter’s default logic [9]. Combining these two
results, we can see that the action language presented here indeed allows for
Reiter-style default reasoning.

4 The Qualification Problem

In D as defined so far, we make the simplifying assumption that necessary pre-
conditions of actions are fully known. This is unrealistic insofar as there are
potentially infinitely many circumstances that can prevent the successful execu-
tion of an action, which cannot be foreseen let alone specified [7]. For practical
reasoning, this constitutes at least two tasks: (1) assume away all of the unlikely



circumstances that prevent action execution and (2) correctly predict action
disqualification if an exceptional circumstance is known to arise.

Moreover, an action might not always downright fail, but only fail to produce
a certain outcome, for which Vladimir Lifschitz and his colleagues coined the
term weak qualification [10] (vs. strong qualification, which means that an action
fails altogether).

To solve the strong qualification problem in D, we introduce a new function
symbol Disqualified : action→ fluent with the obvious intuitive meaning [11].
For each action A, we turn its precondition PA into PA ∪ {¬Disqualified(A)} –
that is, to the known, definite preconditions we add another one that repre-
sents all additional conceivable preconditions. These are then assumed away by
default through the statement normally ¬Disqualified(A). An action A is then
possible after α iff Σ |≈ normally L after α for all L ∈ PA. Particular causes
for disqualification of A can now be expressed modularly by adding ramification
rules effect K causes Disqualified(A) if C.

For weak qualification, we introduce a similar function symbol
Ab : fluent→ fluent. The term Ab(F ) now says that fluent F is ab-
normally disqualified at a time-point. For each direct effect statement
action A causes (¬)F if C we add ¬Ab(F ) to the effect’s precondition C.
This expresses that effect (¬)F only occurs if there was nothing abnormal
about F at the starting time point. As before, abnormality is assumed away by
default using the statements normally ¬Ab(F ) for all fluents F .

Notice that D’s solution to the qualification problem is formulated entirely
within the language itself and requires no language extension or external ma-
chinery.

5 Discussion

We introduced the action language D for default reasoning about actions. The
language solves the frame problem in the presence of defaults as well as the ram-
ification and qualification problems. D is efficiently implemented, which makes
it immediately applicable for practical problems.

Our work can be seen as a restriction of [12] where the restriction is solely for
computational benefits: in a domain with n fluents, there are potentially O(2n)
knowledge states, all of which we would have to inspect for query answering.
What we trade off here, however, is expressiveness: the version of D presented
in this paper is essentially “disjunction-free.” For example, from the statements
action A causes G if {F} and action A causes G if {¬F}, we cannot con-
clude normally G after A.6 This is however common for the implementation
of action languages [1]. In particular, A and E only come with translations to
logic programming that are sound but incomplete. In our case of a nonmono-
tonic formalism, this would not work since incompleteness is bound to lead to
unsoundness (imagine a default being wrongly applicable because a justification
could not be derived due to incompleteness).

6 In A, such a pair of statements would not even be admissible for translation [1].



Generally speaking, surprisingly few approaches exist that deal with default
reasoning about actions. The Discrete Event Calculus [13] offers simple default
reasoning about time using circumscription, which however allows for default
conclusions with circular justifications. Action language C+ [5] provides the de-
fault statements we have seen in the introduction, which however have an un-
derlying intuition that is different from ours. Additionally, C+ also allows the
circularly justified conclusions we have seen in the introduction. [14] use a modal
variant of the Situation Calculus to define a semantics for reasoning about actions
in the presence of defaults. They however “forget” default conclusions and re-
apply defaults after each action without keeping track of extensions. Also, there
is no mention of an implementation. [15] offer an argumentation-based seman-
tics for what they call “knowledge qualification.” There, each piece of knowledge
about a domain is encoded as an argument in favor of some conclusion. Pref-
erences between different kinds of arguments determine what is believed about
the domain. These preferences are declared by the axiomatiser and are them-
selves arguments, which makes the formalism quite complex and delegates the
specification of the semantics to the user. An implementation is not mentioned
in the paper. [16] extend modal logics with preferences in order to incorporate
defeasible inferences into modal-based formalisms for reasoning about actions.
However, they do not provide a solution to the frame problem in this framework
nor an implementation.

There are many implemented systems that employ answer set programming
for reasoning about actions – [1, 6, 17–19] to name only a few. However, none
of these systems aspire to combine temporal reasoning with default reasoning.
They use the nonmonotonicity of ASP to implement the explanation closure
assumption, to solve the frame problem or compute circumscription.

Acknowledgements

This paper is based entirely on Vladimir Lifschitz’s groundbreaking research in
knowledge representation, reasoning about actions and logic programming. None
of what we described would have been possible without his seminal work on
action languages and the foundations for answer set programming that he laid,
for which we thank him profoundly! We also thank our second reader Fangkai
Yang for the for helpful comments on an earlier version of this paper.

This research was supported under Australian Research Council’s (ARC)
Discovery Projects funding scheme (project number DP 120102144) The sec-
ond author is the recipient of an ARC Future Fellowship (project num-
ber FT 0991348). He is also affiliated with the University of Western Sydney.



References

1. Gelfond, M., Lifschitz, V.: Representing Action and Change by Logic Programs.
Journal of Logic Programming 17(2/3&4) (1993) 301–321

2. Gelfond, M., Lifschitz, V.: Action Languages. Electronic Transactions on Artificial
Intelligence 3 (1998)

3. Giunchiglia, E., Lifschitz, V.: An Action Language Based on Causal Explanation:
Preliminary Report. In: Proceedings of the Fifteenth National Conference on Ar-
tificial Intelligence (AAAI-98), Menlo Park, CA, USA, American Association for
Artificial Intelligence (1998) 623–630

4. Kakas, A., Miller, R.: A Simple Declarative Language for Describing Narratives
with Actions. Journal of Logic Programming 31(1–3) (1997) 157–200 Reasoning
about Actions and Change.

5. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic
Causal Theories. Artificial Intelligence 153(1-2) (2004) 49–104

6. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming
Approach to Knowledge-State Planning: Semantics and Complexity. ACM Trans-
actions on Computational Logic 5 (April 2004) 206–263

7. McCarthy, J.: Epistemological Problems of Artificial Intelligence. In: Proceedings
of the Fifth International Joint Conference on Artificial Intelligence (IJCAI-77).
(1977) 1038–1044

8. Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 13 (1980) 81–132
9. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9 (1991) 365–385
10. Gelfond, M., Lifschitz, V., Rabinov, A.: What Are the Limitations of the Situation

Calculus? In Boyer, R.S., Pase, W., eds.: Automated Reasoning. Volume 1 of
Automated Reasoning Series. Springer Netherlands (1991) 167–179

11. Thielscher, M.: Causality and the Qualification Problem. In: Proceedings of the In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR), Cambridge, MA (November 1996) 51–62

12. Baumann, R., Brewka, G., Strass, H., Thielscher, M., Zaslawski, V.: State De-
faults and Ramifications in the Unifying Action Calculus. In: Proceedings of the
Twelfth International Conference on the Principles of Knowledge Representation
and Reasoning, Toronto, Canada (May 2010) 435–444

13. Mueller, E.: Commonsense Reasoning. Morgan Kaufmann (2006)
14. Lakemeyer, G., Levesque, H.: A Semantical Account of Progression in the Presence

of Defaults. In: Proceedings of the Twenty-first International Joint Conference on
Artificial Intelligence (IJCAI-09). (2009) 842–847

15. Michael, L., Kakas, A.: A Unified Argumentation-Based Framework for Knowledge
Qualification. In Davis, E., Doherty, P., Erdem, E., eds.: Proceedings Common-
sense, Stanford, CA (March 2011)

16. Britz, K., Meyer, T., Varzinczak, I.: Preferential Reasoning for Modal Logics.
Electronic Notes in Theoretical Computer Science 278 (2011) 55–69

17. Kim, T.W., Lee, J., Palla, R.: Circumscriptive Event Calculus as Answer Set
Programming. In: IJCAI. (July 2009) 823–829

18. Lee, J., Palla, R.: Situation Calculus as Answer Set Programming. In: Proceedings
of the Twenty-Fourth Conference on Artificial Intelligence (AAAI-10). (July 2010)
309–314

19. Casolary, M., Lee, J.: Representing the Language of the Causal Calculator in
Answer Set Programming. In: Proceedings of the Twenty-Seventh International
Conference on Logic Programming (ICLP-11). (July 2011)


