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Abstract. The game description language GDL has been developed as a logic-
based formalism for representing the rules of arbitrary games in general game
playing. A recent language extension called GDL-II allows the description of
nondeterministic games with any number of players who may have incomplete,
asymmetric information. In this paper, we applymodel checkingto address the
problem of verifying that games specified in GDL-II satisfy appropriate tempo-
ral and knowledge conditions. We present a systematic translation of a GDL-II
description to a model checking tool, and show the feasibility by two case studies.

1 Introduction

The general game description language GDL, which has been established as input lan-
guage for general game-playing systems [7, 10], has recently been extended to GDL-
II to incorporate games with nondeterministic actions and where players have incom-
plete/imperfect information [20]. However, not all GDL-IIdescriptions correspond to
games, let alone meaningful, non-trivial games. [7, 10] list a few properties that are nec-
essary for well-formed GDL games, e.g., it terminates afterfinite steps and all players
have at least one legal move in non-terminal states. The introduction of incomplete in-
formation to GDL-II also raises new questions, e.g., can playersalways knowtheir legal
moves in non-terminal states orknowtheir goal values in terminal states?

Temporal Logics have been applied to the verification of computer programs, or
more broadly computer systems, initially by A. Pnueli and Z.Manna et al. [14, 11], and
by E. Clarke and E. A. Emerson et al. [4]. The programs are in certain states at each
time instance, and the correctness of the programs can be expressed as temporal spec-
ifications, such as “AG¬deadlock” meaningthe program can never enter a deadlock
state. Epistemic logics, on the other hand, are the formalisms of knowledge and beliefs.
Its application in verification was originally motivated bythe need to reason about com-
munication protocols. One is typically interested in what knowledge different parties to
a protocol have before, during and after a run (an execution sequence) of the protocol.
[5] gives a comprehensive study on epistemic logic for multiple interacting agents.

We have previously analysed the epistemic logic behind GDL-II and in particular
shown that the situation at any stage of a game can be characterised by a multi-agent
epistemic (i.e., S5-) model [16]. Yet, this result only provides a static characterisation of
what players know (and don’t know) at a certain stage. This paper extends such analysis
with a temporal dimension, and also provides a practical method for verifying temporal
and epistemic properties using a model checker named MCK [6]. The main idea is
to translate a GDL-II description into the model specification language of MCK in a



systematic and equivalent way. Checking whether a propertyϕ holds for descriptionG
is then equivalent to checking whetherϕ holds for the translationπ(G). The latter can
be automatically checked in MCK.

The paper is organised as follows. Section 2 introduces GDL-II and MCK. Section 3
gives the main translation and some optimisations that can be applied to the translation.
Experimental results are given for two cases in Section 4. The paper concludes with a
discussion of related work and directions for further research.

2 GDL-II and MCK

GDL-II A complete game description consists of the names of (one or more) players,
a specification of the initial position, the legal moves and how they affect the position,
and the terminating and winning criteria. The emphasis of game description languages
is on high-level, declarative game rules that are easy to understand and maintain. At
the same time, GDL and its successor GDL-II have a precise semantics and are fully
machine-processable. Moreover, background knowledge is not required—a set of rules
is all a player needs to know to be able to play a hitherto unknown game. The description
language GDL-II uses thesekeywords:

role(?r) ?r is a player
init(?f) ?f holds in the initial position
true(?f) ?f holds in the current position

legal(?r,?m) ?r can do move?m
does(?r,?m) player?r does move?m
next(?f) ?f holds in the next position
terminal the current position is terminal

goal(?r,?v) goal value for role?r is ?v

sees(?r,?p) ?r perceives?p in the next position
random the random player

GDL (without sees andrandom) is suitable for describing finite, synchronous,
and deterministicn-player games with complete information about the game state [10].
The extended game description language GDL-II allows the specification of games with
randomness and imperfect/incomplete information [20]. Valid game descriptions must
satisfy certain syntactic restrictions; for details we have to refer to [10] for space rea-
sons.

The GDL-II rules in Fig. 1 formalise a simple but famous game calledMonty Hall
where a car prize is hidden behind one of three doors and wherea candidate is given two
chances to pick a door. The intuition behind the rules is as follows. Line 1 introduces
the players’ names (the game host is modelled byrandom). Lines 3–4 define the four
features that comprise the initial game state. The possiblemoves are specified by the
rules for legal: in step 1, therandom player must decide where to place the car (line 6)
and, simultaneously, the candidate chooses a door (line 10); in step 2,random opens
a door that is not the one that holds the car nor the chosen one (lines 7–8); finally,
the candidate can either stick to their earlier choice (noop) or switch to the other, yet
unopened door (line 12 and 13, respectively). The candidate’s only percept throughout
the game is to see the door opened by the host (line 15) and where the car is after step 3



1 role(candidate). role(random).
2

3 init(closed(1)). init(closed(2)). init(closed(3)).
4 init(step(1)).
5

6 legal(random,hide_car(?d)) <= true(step(1)), true(closed(?d)).
7 legal(random,open_door(?d)) <= true(step(2)), true(closed(?d)),
8 not true(car(?d)), not true(chosen(?d)).
9 legal(random,noop) <= true(step(3)).

10 legal(candidate,choose(?d)) <= true(step(1)), true(closed(?d)).
11 legal(candidate,noop) <= true(step(2)).
12 legal(candidate,noop) <= true(step(3)).
13 legal(candidate,switch) <= true(step(3)).
14

15 sees(candidate,?d) <= does(random,open_door(?d)).
16 sees(candidate,?d) <= true(step(3)), true(car(?d)).
17

18 next(car(?d)) <= does(random,hide_car(?d)).
19 next(car(?d)) <= true(car(?d)).
20 next(closed(?d)) <= true(closed(?d)), not does(random,open_door(?d)).
21 next(chosen(?d)) <= does(candidate,choose(?d)).
22 next(chosen(?d)) <= true(chosen(?d)), not does(candidate,switch).
23 next(chosen(?d)) <= does(candidate,switch),
24 true(closed(?d)), not true(chosen(?d)).
25 next(step(2)) <= true(step(1)).
26 next(step(3)) <= true(step(2)).
27 next(step(4)) <= true(step(3)).
28

29 terminal <= true(step(4)).
30

31 goal(candidate,100) <= true(chosen(?d)), true(car(?d)).
32 goal(candidate, 0) <= true(chosen(?d)), not true(car(?d)).
33 goal(random,0).

Fig. 1. A GDL-II description of the Monty Hall game adapted from [21].

(line 16). The remaining rules specify the state update (rules for next), the conditions for
the game to end (rule for terminal), and the payoff for the player depending on whether
they got the door right in the end (rules for goal).

We refer the formal semantics of GDL-II to [16] due to limitedspaces. The seman-
tics enables us to derive a game model from a given game description.

MCK In this paper, we will use MCK, for ‘Model Checking Knowledge’, which is a
model checker for temporal and knowledge specifications [6,12]. The overall setup of
MCK supposes a number of agents acting in an environment. This is modelled by an
interpreted system where agents perform actions accordingto protocols. Actions and
the environment may be only partially observable at each instant in time. In MCK,
different approaches to the temporal and epistemic interaction and development are
implemented. Knowledge may be based on current observations only, on current ob-
servations and clock value, or on the history of all observations and clock value. The
last corresponds tosynchronous perfect recall. In the temporal dimension, the specifi-
cation formulas may describe the evolution of the system along a single computation,
i.e., using linear time temporal logic, or they may describethe branching structure of
all possible computations, i.e, using branching time or computation tree logic. We give
the basic syntax of Computation Tree Logic of Knowledge (CTLK).



Definition 1. The language of CTLK (with respect to a set of atomic propositionsΦ),
is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | AXϕ | AFϕ | AGϕ | AϕU ψ | EϕU ψ | Kiϕ

wherep ∈ Φ. Other logic constants and connectives⊤,⊥,∨,→ are defined as usual.

We only explain the semantics informally here (cf. [17] for more details). The for-
mulas of CTLK can be interpreted on states of game models. A game model consists
of a set of agents, a set of possible states (esp., one initialstate and a subset of terminal
states), and a transition function for states. IntuitivelyAXϕ means that for all the next
statesϕmust hold;AFϕmeans that for all the paths of the gameϕ will eventually hold
in the future;AGϕ means that for all the paths of the gameϕ always hold in the future;
AϕU ψ means that for all the paths of the game,ϕ holds untilψ holds;EϕU ψ means
that there exists a path of the game,ϕ holds untilψ holds; andKiϕ means thatϕ holds
in all the states that agenti can not distinguish from. An agent with synchronous per-
fect recall, can not distinguish two states if it made the same moves and had the same
perceptions along two histories from the initial state.

3 Translation from GDL-II to MCK

Given a GDL-II description G, our program generates a translationπ(G) as the input
for MCK. The result of the translation,π(G), is equivalent toG in the sense that, the
game model derived from G using GDL-II semantics satisfies same formulas as the
model that is derived fromπ(G) using MCK operational semantics.

Proposition 1. Given a GDL-II description G, letπ(G) be the translation from GDL-II
to MCK andϕ a temporal epistemic property, then:

G |=GDL ϕ iff π(G) |=MCK ϕ

This enables us to check temporal epistemic properties againstG by checking them
againstπ(G), which can be done by MCK automatically. For detailed proof,see [17].

We use the GDL-II description of Monty Hall game in Fig. 1, denoted asGMH , to
illustrate the whole process. The translationπ can be divided into the following steps.

Computing Domains

The first step is to compute the domains, or rather supersets of the domains, of all pred-
icates and functions of the game description. This is done bygenerating a dependency
graph from the rules of the game description, following [19]. The nodes of the graph
are the arguments of functions and predicates in game description, and there is an edge
between two nodes whenever there is a variable in a rule of thegame description that
occurs in both arguments. Connected components in the graphshare a (super-)domain.

Take, for example, the Monty Hall rules, line 3 and 6 give us the domain graph in
Fig. 2, from which it can be seen that the argument of bothclosed andhide car ranges
over the domain{1, 2, 3}.
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Fig. 2. A domain graph for calculating domains of functions and predicates.

Once we have computed the domains, we instantiate all the variables inG. E.g., the
rule in line 6-7 in the above example are turned into three rules

legal(random,hide_car(1)) <= true(step(1)), true(closed(1)).
legal(random,hide_car(2)) <= true(step(1)), true(closed(2)).
legal(random,hide_car(3)) <= true(step(1)), true(closed(3)).

Deriving MCK Variables

The second step is to derive all the variables forπ(G). For this, we distinguish pred-
icates that occur as arguments ofinit or true, and those that do not. The former
are translated to boolean variables. For example,step(1) andclosed(1) appear in
π(GMH) as

step_1: Bool
closed_1: Bool

Predicates of the second type typically depend on the first type of expressions. E.g.,
the following rule shows that thelegal predicate depends on twotrue predicates:

legal(random,hide_car(1)) <= true(step(1)), true(closed(1)).

There are two ways to deal with these cases: (1) translate them into booleans like
above and then use valuation statements or (2) directlydefinethem in terms of the
booleans translated from the first type of predicates. For example, we can translate
legal(random, hide car(1)) to a boolean (and assign a proper value later):

legal_random_hide_car_1: Bool
legal_random_hide_car_1:= step_1 /\ closed_1

or as a definition,

define legal_random_hide_car_1 = step_1 /\ closed_1

wherestep 1 andclosed 1 are both booleans and/\ is the symbol for conjunction.
The advantage of using definitions is that no new variables are introduced to the

state representation. This reduces the number of variablesin the overall translation and
therefore potentially saves model checking time. The predicatesterminal andgoal
can also be treated this way.

In GDL-II, sees predicates specify the perceptions of agents. Such predicates de-
pend on the first type of predicates as well but they cannot be given as definitions in the
translation because they have to be observable for the relevant agents in agent protocols
(given below). Therefore we translate such predicates intoseparate boolean variables.

Since agents can recall their past moves, we make moves as part of the history,
along with the perceptions of agents. While MCK’s algorithms for CTLK with perfect



recall semantics do not include moves as part of the history,we need to embed such
information as part of a state. Therefore we introduce an extra boolean for eachlegal
instance, and replacelegal with did. E.g., forlegal(random, hide car(1)), we add

did_random_hide_car_1: Bool.

The above procedure can already generate all the variables needed. We can do fur-
ther optimisation on two kinds of predicates: these appearing in the rules with empty
bodies and those never appearing in the head of rules. Under GDL-II semantics, the first
kind is always true and the second kind is always false. Therefore we can replace them
universally with their corresponding truth values. E.g., consider the following program:

1 succ(1,2)
2 succ(2,3)
3 next(step(?y)) <= true (step(?x)), succ(?x, ?y).

We can first translate the program to the following by using the dependency graph:

4 succ(1,2)
5 succ(2,3)
6 next(step(2)) <= true(step(1)), succ(1,2).
7 next(step(2)) <= true(step(2)), succ(2,2).
8 next(step(3)) <= true(step(2)), succ(2,3).
9 next(step(3)) <= true(step(3)), succ(3,3).

Because bothsucc(2, 2), succ(3, 3) are always false, andsucc(1, 2), succ(2, 3)
are always true, we replace them using their truth values. Then we can further simplify
this program by removing the rules with a “False” conjunct, and by removing the “True”
conjuncts universally:

10 next(step(2)) <= true(step(1)).
11 next(step(3)) <= true(step(2)).

It is easy to check that lines 10–11 are equivalent to lines 1–3 (and also lines 4–9)
in terms of changes overstep predicates. This will effectively reduce the number of
variables in the translation.

Initial Conditions

This step specifies the initial condition ofπ(G). All the booleans translated from the
predicates included withininit are made true and all other predicates are made false.
TakingGMH (lines 3-4) for example, we have

init_cond =
closed_1 == True /\ closed_2 == True /\ closed_3 == True /\
step_1 == True /\ step_2 == False /\ step_3 == False /\ step_4 == False /\
car_1 == False /\ car_2 == False /\ car_3 == False /\ ...

Agent Protocols

This step specifies the agents and their protocols during thegame play. The agent bind-
ing operation binds distinct agent names to the protocols they run, and instantiate each
protocol’s parameters. In GDL-II, the names of the agents are read off from the rules for
therole predicate, and moves are read off from thelegal predicates. Each agent has
its own protocol. In MCK, protocol parameters are typed and some haveobservable
before the type to indicate that agents canseethese parameters, which are then used for
agents’ accessibility relations. Taking the rolecandidate in GMH for example, the
following protocol is constructed inπ(GMH),



protocol "candidate" (
step_1: Bool, step_2: Bool, step_3: Bool, ... ,
sees_Candidate_1: observable Bool, sees_Candidate_2: observable Bool, ...,
did_Candidate_Choose_1: observable Bool, ... )
begin do
legal_Candidate_Choose_1 -> <<Choose_1>>
[] legal_Candidate_Choose_2 -> <<Choose_2>>
[] legal_Candidate_Choose_3 -> <<Choose_3>>
[] legal_Candidate_Noop -> <<Noop>>
[] legal_Candidate_Switch -> <<Switch>>
od

end

Here the parameters prefixed withsees or did are observable to thecandidate.
The variables prefixed withlegal are booleans or definitions (explained above) and
they represent the preconditions of moves, e.g.,legal Candidate Choose 1 is the
precondition for agent to chose move<< Choose 1 >>. “[]” means non-deterministic
choice, so in each step, one of these statements withindo...odwill be non-determinstically
executed whenever their guards are true.

We bind agentCandidate to the above protocolcandidate as this:

agent Candidate "candidate" ( parameter variables )

A protocol can be bound to multiple names, so this gives potential to code reuse
when several agents share the same protocol.

State Transition
This step specifies the statements that update the variablesafter agents have decided
which moves to make. The first part is update the variables prefixed withdid . E.g., the
following lines inπ(GMH) indicates that agentCandidate made moveChoose 1 on
the previous state.

if Candidate.Choose_1 -> did_Candidate_Choose_1 := True
[] otherwise -> did_Candidate_Choose_1 := False
fi;

Essentially, the effects of the agents’ joint actions will be computed so this section
is connected to thedoes andnext predicates in the description G. Here we use Clark
Completion to update these variables. This can be illustrated by the variablechosen 1

from our running example. First take all the rules that havechosen(1) in the head from
the original descriptionGMH and instantiate?d with 1:

1 next(chosen(1)) <= does(candidate,choose(1)).
2 next(chosen(1)) <= true(chosen(1)),
3 not does(candidate,switch).
4 next(chosen(1)) <= does(candidate,switch),
5 true(closed(1)),
6 not true(chosen(1)).

Then translate the bodies of these three rules and take theirdisjunction to be the
guard of the resulting ‘if’ statement as follows: (note thatchosen(1) is translated to
chosen 1 and so are the other ground atoms)

if (did_Candidate_Choose_1) \/ (chosen_1 /\ neg did_Candidate_Switch) \/
(did_Candidate_Switch /\ closed_1 /\ neg chosen_1) -> chosen_1 := True
[] otherwise -> chosen_1 := False
fi;



In addition, we may need to arrange the order of MCK statements carefully, because
MCK’s input language is imperative, which means that the statements are executed in
a given order. In contrast, GDL-II is a declarative languageand the order of the rules
does not change the meaning (or semantics) of the whole description. Take the following
example:

1 next(step(2)) <= true(step(1)).
2 next(step(3)) <= true(step(2)).
3 next(step(4)) <= true(step(3)).

The first rule means that ifstep(1) is true in the current state, thenstep(2) will
be true in the next state. Note that this rule is the only rule with headnext(step(2)),
so we can apply the Clark Completion and get a statement:step 2 := step 1. This is
fine by itself, but we have a problem when the three rules are translated together in the
original order:

step_2 := step_1;
step_3 := step_2;
step_4 := step_3;

The problem is this: ifstep 1 is true originally, then after executing this three
statements we have all the variables to be true, whereas in GDL-II step(3) andstep(4)
would still be false in the next state. In fact, when we updatethe value ofstep 3 in
MCK, we need to make sure to use the guard valuestep 2 from the previous state.
When we follow the exact order of above, thenstep 2 is updated beforestep 3 is
getting updated. One solution to this problem is to use a dependency graph:

step(4) step(3) step(2) step(1)

This graph indictaes the order in which the variables need tobe updated:step 4, ..., step 1.
Thus the correct program in MCK is as follows:

step_4 := step_3;
step_3 := step_2;
step_2 := step_1;

But what if the dependency graph has loops? Consider this example:

1 next(holds(x,a)) <= true(holds(x,a)).
2 next(control(x)) <= true(control(o)).
3 next(control(o)) <= true(control(x)).

The first loop is a self loop and does not create any problem, but the second one
does pose a problem. The following program does not capture the meaning of lines 2–3
in the above description:

control_x := control_o;
control_o := control_x;

where the second statement uses a boolean updated by the first.
Our solution is to break the loop by cutting one dependency and then creating a

new variable to record the last variable in the new dependency graph. Back to the above
example, we can cut the dependency fromcontrol(o) to control(x), and then use a
new variable to give the following correct translation:



control_x_old := control_x;
control_x := control_o;
control_o := control_x_old;

Put in words,control x old is used to remember the old value ofcontrol x.
There is another more general way to solve this problem: giveall ground atoms

a new variable (appended withold) and use them to record the values of their cor-
responding part in the beginning of the translation. But this can be computationally
expensive for MCK in practice, because the number of variables will be doubled. It will
not increase the number of reachable states of the game, but the total state space of the
MCK program will be increased exponentially (i.e.,2n for n new variables). So our
above solution by using dependency graphs will be much more efficient in practice.

Specifications

The last step is to encode the temporal and epistemic properties to be verified, using:

<specification type> = ... temporal and epistemic formula ...

The specification types we will use are “spec spr nested”, “ spec obs ctl” and
“spec spr bmc n”, where spr indicates that the model checking algorithm will use
synchronous perfect recall semantics, andobs indicates observational semantics,bmc
means bounded model checking. The first two algorithm use Ordered Binary Decision
Diagram (OBDD) encoding and the second uses SAT encoding. Wewill explain the
difference when we present the experimental results in the next session. Our temporal
and epistemic formulas are given in CTLK syntax.

MCK checks a propertyϕ on the initial state of the translated gameπ(G) with
specification typex, and then when the computation is done, it returns either ‘holds’
(i.e.,π(G) |=x ϕ) or ‘fails’ (otherwise).

4 Experimental Results

We present some experimental results on two incomplete information games: Monty
Hall and Krieg-Tictactoe. The machines have Intel Core i5-2500 Quad CPU 3.3 GHz
and 8GB Ram running under GNU Linux OS 2.6.32. The MCK versionis 1.0.0.

Monty Hall

Following the method presented in the previous section, we compare the efficiency of
two different translations of the Monty Hall game from Fig. 1. The first translation
π1(GMT ) is the straightforward one without optimisation. It contains 43 boolean vari-
ables. The second translationπ2(GMT ) is the result of applying the various optimisa-
tions given above, resulting in only 28 boolean variables.

The following properties have been checked using MCK on these two translations:

– ϕ1 = (
∧

m

legal(Candidate,m) → KCandidatelegal(Candidate,m))

This property intuitively means that‘Candidate’ knows his legal moves at the
current state. Furthermore, we defineϕ2 = AXϕ1 which intuitively means that



‘Candidate’ knows his legal moves at all next states; ϕ3 = AXAXϕ1; andϕ4 =
AXAXAXϕ1.

– ϕ5 = AXAXAX(terminal ∧ KCandidateterminal). This property intuitively
means that for all states after three steps, the game is terminal and the candidate
knows this.

– ϕ6 = ¬AXAXAX(goal(Candidate, 100))∧¬AXAXAX(goal(Candidate, 0)).
This property intuitively means that it is not always the case thatCandidatewill win
(i.e.,goal(Candidate, 100) is true) after three steps, nor that he will always lose.

– ϕ7 = AFterminal. This property means the game will eventually reach a terminal
state.

We checkϕ1 to ϕ5 using thespr nested algorithm associated withsynchronous
perfect recall(spr) semantics because they all involve knowledge, and then checkϕ6

andϕ7 using theobs ctl algorithm associated with theobservational(obs) semantics
because these formulas do not involve knowledge (which reduces the model checking
time). For comparison, we also checkϕ6 under spr semantics. The following table
shows the model checking time (measured in seconds) for these seven formulas. These
formulas all hold in the initial state ofGMT and MCK returns corrected results.

Translation ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6(spr)ϕ6(obs) ϕ7

π1(GMT ) 6.70 20.63 49.37129.66222.06 561.24 3.41 6.47
π2(GMT ) 0.53 3.10 9.01 19.59 17.25 39.32 0.50 0.49

We can see that our second translation needs notably less time than the first transla-
tion under both semantics. Also when a formula contains moretemporal depth, it tends
to need more time. The result onϕ6 shows that the model checking under obs-semantics
may need much less time than that of spr-semantics. Forϕ7, it cannot be checked under
spr-semantics because operator AF is not supported.

Krieg-TicTacToe

We also studied a more complex game called Krieg-TicTacToe,an incomplete infor-
mation version of TicTacToe. In this game, two players cannot see their opponent’s
markings, and if one player tries to mark a position that has been occupied by the oppo-
nent, then the game master will tell the player that the move is not valid and ask it to try
again. The turn-taking and winning conditions remain the same. The GDL-II descrip-
tion of this game (call itGKT ) can be found on ggpserver.general-game-playing.de.

Our first translationπ1(GKT ) has 111 boolean variables, and the optimised trans-
lation π2(GKT ) has 70 boolean variables. Both are around six times larger than the
translations of the Monty Hall game.

We select a few representative properties:

– ψ1 = (
∧

m

legal(xplayer,m) → Kxplayerlegal(xplayer,m)). This property intu-

itively means that‘xplayer’ knows his legal moves at the current state. Similarly
we defineψ2 = AXψ1, ψ3 = AXAXψ1 andψ4 = AXAXAXψ1.



– ψ5 = AXAXcontrol(xplayer). This property says thatafter two steps xplayer
is in control in all the resulting states. This property would be true for the original
TicTacToe due to the turn taking under complete information. But under incomplete
information, this is not true anymore. It is because after one step,oplayer has
control and she might try an invalid move, in that case, she will be given another
chance to select a move for the next step.

– ψ6 = AG(tried(xplayer, 1, 1) → AXtried(xplayer, 1, 1)). This property says
that it is always the case that if xplayer already tried to mark the position (1,1), then
in all the next states, this is still true.

We first checkψ1 to ψ4 using thespr nested algorithm. The following table only
shows the model checking time (in seconds) for the second translationπ2(GKT ):

Translation ψ1 ψ2 ψ3 ψ4

π2(GKT ) 86.24 1539.2426782.95 NA

It indicates that the time complexity increases quickly with the depth of the formula.
In the case ofϕ4 we could not obtain a result within 24 hours. This led us to bounded
model checking (BMC) in which the specification is required to be a formula in the
so-called universal fragment of a logic. The universal fragment of a logic requires that
the negation operator may apply only to atomic propositions, and the modal operators
can only beAX , AF , AG, A U andKi. Each specification will also be given a bound
numbern to indicate the depth of the game tree to be checked by MCK. Thefollowing
table shows the model checking time (in seconds) for both translations:

Translationψ1(b 1) ψ2(b 2) ψ3(b 3) ψ4(b 4) ψ5(b 3) ψ6(b 5) ψ6(b 4)
π1(GKT ) 0.27 1.70 4.40 10.34 3.69 11.87 6.87
π2(GKT ) 4.63 8.69 32.00 588.38 24.33 113.62 48.81

Note that each formula is given a bound when being fed to MCK; the boundn is
indicated as(b n). It is interesting to see that under BMC, the first translation has a
better efficiency now. The main disadvantage of BMC is that itonly check the model
up to boundn. So if there is no counter example found under boundn, it usually does
not mean that no counter example can be found at boundn + 1. E.g., formulaϕ6 has
no counter example under bound 4, but it has a counter exampleunder bound 5.

We can partially answer why a seemingly more optimised translation yields a worse
result in BMC. Unlike the OBDDs, SAT algorithms are more sensitive to the complex-
ity of boolean statements which can express complicated relations between booleans,
rather than to the number of booleans. In the optimised versionπ2(GKT ), we use “def-
initions” to reduce the number of variables but that, on the other hand, increases the
complexity of boolean statements.

5 Related Work and Further Research

There are a few papers on reasoning about games in GDL and its extension GDL-II. [8]
uses Answer Set Programming for verifying finitely-boundedtemporal invariance prop-
erties against a given game description by structural induction. [9] extends [8] to deal



with epistemic properties for GDL-II. That formalism restricts on positive-knowledge
formulas while the approach in this paper does not have such restriction and can handle
more expressive epistemic and temporal formulas. [15] provides a reasoning mecha-
nism for strategic and temporal properties but it is restricted on the original GDL for
complete information games. [16] exams the epistemic logicbehind GDL-II and in
particular shows that the situation at any stage of a game canbe characterised by a
multi-agent epistemic (i.e., S5-) model. [18], an extension to [15, 16], provides both se-
mantic and syntactic characterisations of GDL-II descriptions in terms of a strategic and
epistemic logic, and shows the equivalence of these two characterisations. The current
paper does not handle strategies but is more applied than [18] as we can directly using
a model checker.

Some other work are related to this paper more generally in terms of planning and
model checking. [1] applies symbolic planning to solve parity games equivalent toµ-
calculus model checking problems. [2] solves planning problems based on a high-level
action language and model checking; and [3] gives automaticplan generation for non-
deterministic domains using OBDD (which is also used by MCK). [13] introduces an
approach to conformant planning (where the initial situation is not fully known and
actions may have non-deterministic effects) by convertingsuch problems into classical
planning problems. It is similar to our approach in sprit butthe actual formalisms are
rather different.

We conclude by pointing out some directions for further research. Our case study
on Krieg-TicTacToe suggests that the optimisation we have applied allows us to verify
some formulas in a reasonable amount of time but is not yet fully functional for more
complex formulas. However a hand-made version of Krieg-TicTacToe (with more ab-
straction) in MCK does suggest that MCK has no problem to copewith the amount of
reachable states of Krieg-TicTacToe. So the question is, what other optimisation tech-
niques can we find for the translation? On the other hand, we would like to investigate
how to make MCK language more expressive by allowing n-ary predicates, fixpoints,
loops in transition relations. This may result in a more direct translation.

Also there are logics that deal with strategic and epistemicreasoning, so we are
interested in generalising this model checking approach tosuch logics (see [18] for a
first theoretical result). Similar to [1–3, 13], we would like to also explore how plans (or
strategies) can be generated via model checking for generalgame playing.
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