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Abstract. The game description language GDL has been developed aga log
based formalism for representing the rules of arbitrary emim general game
playing. A recent language extension called GDL-II allolws tescription of
nondeterministic games with any number of players who mas frecomplete,
asymmetric information. In this paper, we apphodel checkingo address the
problem of verifying that games specified in GDL-II satisfypeopriate tempo-
ral and knowledge conditions. We present a systematiclatms of a GDL-II
description to a model checking tool, and show the feasitily two case studies.

1 Introduction

The general game description language GDL, which has béablisbed as input lan-
guage for general game-playing systems [7, 10], has rgcba#n extended to GDL-
Il to incorporate games with nondeterministic actions ateme players have incom-
plete/imperfect information [20]. However, not all GDLdEescriptions correspond to
games, let alone meaningful, non-trivial games. [7, 1@Hi&ew properties that are nec-
essary for well-formed GDL games, e.g., it terminates diitéte steps and all players
have at least one legal move in non-terminal states. Thedattion of incomplete in-
formation to GDL-II also raises new questions, e.g., caggrisalways knowheir legal
moves in non-terminal states kmowtheir goal values in terminal states?

Temporal Logics have been applied to the verification of catmpprograms, or
more broadly computer systems, initially by A. Pnueli and/anna et al. [14, 11], and
by E. Clarke and E. A. Emerson et al. [4]. The programs are itatestates at each
time instance, and the correctness of the programs can besseal as temporal spec-
ifications, such asAG-deadlock” meaningthe program can never enter a deadlock
state Epistemic logics, on the other hand, are the formalismsiofiedge and beliefs.
Its application in verification was originally motivated the need to reason about com-
munication protocols. One is typically interested in whadwledge different parties to
a protocol have before, during and after a run (an execuggoence) of the protocol.
[5] gives a comprehensive study on epistemic logic for rplétinteracting agents.

We have previously analysed the epistemic logic behind GIZAnd in particular
shown that the situation at any stage of a game can be chasadtéy a multi-agent
epistemic (i.e., S5-) model [16]. Yet, this result only pidms a static characterisation of
what players know (and don’t know) at a certain stage. Thiepaxtends such analysis
with a temporal dimension, and also provides a practicahogetor verifying temporal
and epistemic properties using a model checker named MCKTI& main idea is
to translate a GDL-II description into the model specificatianguage of MCK in a



systematic and equivalent way. Checking whether a progehtylds for descriptiort~
is then equivalent to checking whetheholds for the translation(G). The latter can
be automatically checked in MCK.

The paper is organised as follows. Section 2 introduces GR2hd MCK. Section 3
gives the main translation and some optimisations that eapplied to the translation.
Experimental results are given for two cases in Section 4.dper concludes with a
discussion of related work and directions for further resiea

2 GDL-ll and MCK

GDL-Il A complete game description consists of the names of (onecoe)nplayers,
a specification of the initial position, the legal moves apnalthey affect the position,
and the terminating and winning criteria. The emphasis afgdescription languages
is on high-level, declarative game rules that are easy tenstahd and maintain. At
the same time, GDL and its successor GDL-II have a precisastes and are fully
machine-processable. Moreover, background knowledgetisequired—a set of rules
is all a player needs to know to be able to play a hitherto unkrgame. The description
language GDL-Il uses the&eywords

role(?r) |?r isaplayer
init(?f) |?f holds in the initial position
true(?f) |?f holds inthe current position
I egal (?r, ?m |?r can do move’m
does(?r, ?m |player?r does move?m
next (?f) |?f holds in the next position
term nal the current position is terminal
goal (?r, ?v) |goal value for role?r is ?v
sees(?r, ?p) |?r perceives?p in the next positio
random the random player

=]

GDL (without sees andr andom) is suitable for describing finite, synchronous,
and deterministia-player games with complete information about the game $14Y].
The extended game description language GDL-II allows tkeeifipation of games with
randomness and imperfect/incomplete information [20]idMgame descriptions must
satisfy certain syntactic restrictions; for details we dn&w refer to [10] for space rea-
sons.

The GDL-II rules in Fig. 1 formalise a simple but famous garaler Monty Hall
where a car prize is hidden behind one of three doors and wateaedidate is given two
chances to pick a door. The intuition behind the rules is #svis. Line 1 introduces
the players’ names (the game host is modelled &gdon). Lines 3—4 define the four
features that comprise the initial game state. The possilolees are specified by the
rules for legal: in step 1, theandomplayer must decide where to place the car (line 6)
and, simultaneously, the candidate chooses a door (lingri8)ep 2,r andomopens
a door that is not the one that holds the car nor the chosenlioes {-8); finally,
the candidate can either stick to their earlier choice (h@oswitch to the other, yet
unopened door (line 12 and 13, respectively). The candgdatdy percept throughout
the game is to see the door opened by the host (line 15) anawhescar is after step 3



rol e(candi date). role(random.

init(closed(1l)). init(closed(2)). init(closed(3)).
init(step(1)).

I egal (random hide_car(?d)) <= true(step(1l)), true(closed(?d)).

| egal (random open_door (?d)) <= true(step(2)), true(closed(?d)),
not true(car(?d)), not true(chosen(?d)).

| egal (random noop) <= true(step(3)).

| egal (candi dat e, choose(?d)) <= true(step(1l)), true(closed(?d)).

11 | egal (candi dat e, noop) <= true(step(2)).

12 | egal (candi dat e, noop) <= true(step(3)).

13 | egal (candi dat e, swi t ch) <= true(step(3)).

14

15 sees(candi dat e, ?2d) <= does(random open_door (?d)).

16 sees(candi date, ?2d) <= true(step(3)), true(car(?d)).

17

18 next (car (?d)) <= does(random hi de_car(?d)).

19 next (car (?d)) <= true(car(?d)).

20 next (cl osed(?d)) <= true(closed(?d)), not does(random open_door(?d)).

21 next (chosen(?d)) <= does(candi date, choose(?d)).

22 next (chosen(?d)) <= true(chosen(?d)), not does(candi date, switch).

23 next (chosen(?d)) <= does(candi date, switch),

24 true(cl osed(?d)), not true(chosen(?d)).

25 next(step(2)) <= true(step(l)).

26 next(step(3)) <= true(step(2)).

27 next (step(4)) <= true(step(3)).

28

29 termnal <= true(step(4)).

30

31 goal (candi date, 100) <= true(chosen(?d)), true(car(?d)).

32 goal (candi date, 0) <= true(chosen(?d)), not true(car(?d)).

33 goal (random 0) .
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Fig. 1. A GDL-II description of the Monty Hall game adapted from [21]

(line 16). The remaining rules specify the state updategfdr next), the conditions for
the game to end (rule for terminal), and the payoff for theptalepending on whether
they got the door right in the end (rules for goal).

We refer the formal semantics of GDL-II to [16] due to limitsplaces. The seman-
tics enables us to derive a game model from a given game gésaori

MCK In this paper, we will use MCK, for ‘Model Checking Knowledgehich is a
model checker for temporal and knowledge specificationsJp,The overall setup of
MCK supposes a humber of agents acting in an environmens.i$hihodelled by an
interpreted system where agents perform actions accotdipgotocols. Actions and
the environment may be only partially observable at eactaimsdn time. In MCK,
different approaches to the temporal and epistemic intiera@and development are
implemented. Knowledge may be based on current obsergatioly, on current ob-
servations and clock value, or on the history of all obséowatand clock value. The
last corresponds teynchronous perfect recalin the temporal dimension, the specifi-
cation formulas may describe the evolution of the systemabsingle computation,
i.e., using linear time temporal logic, or they may descthre branching structure of
all possible computations, i.e, using branching time or jgotation tree logic. We give
the basic syntax of Computation Tree Logic of Knowledge (E).L



Definition 1. The language of CTLK (with respect to a set of atomic propmstd),
is given by the following grammar:

pu=p|-pleVi|AXe | AFp | AGyp | ApUp | EeUY | Kip
wherep € &. Other logic constants and connectives., VvV, — are defined as usual.

We only explain the semantics informally here (cf. [17] fooma details). The for-
mulas of CTLK can be interpreted on states of game models.rdegaodel consists
of a set of agents, a set of possible states (esp., one stii@ and a subset of terminal
states), and a transition function for states. Intuitivély o means that for all the next
statesp must hold;A F'p means that for all the paths of the gagwill eventually hold
in the future;AGy means that for all the paths of the gamalways hold in the future;
ApU 1 means that for all the paths of the gampeholds untily holds; Ep U/ ¢ means
that there exists a path of the gameholds untily) holds; andK; o means thap holds
in all the states that agefntan not distinguish from. An agent with synchronous per-
fect recall, can not distinguish two states if it made the sanoves and had the same
perceptions along two histories from the initial state.

3 Translation from GDL-Il to MCK

Given a GDL-II description G, our program generates a tetitsl 7(G) as the input

for MCK. The result of the translation;(G), is equivalent taZ in the sense that, the
game model derived from G using GDL-II semantics satisfieseséormulas as the
model that is derived from(G) using MCK operational semantics.

Proposition 1. Given a GDL-II description G, let(G) be the translation from GDL-II
to MCK andyp a temporal epistemic property, then:

G Eapr ¢ iff ©(G) Emck ¢

This enables us to check temporal epistemic propertiesisigaiby checking them
againstr(G), which can be done by MCK automatically. For detailed preeg [17].

We use the GDL-II description of Monty Hall game in Fig. 1, déed asG /17, to
illustrate the whole process. The translationan be divided into the following steps.

Computing Domains

The first step is to compute the domains, or rather superk#éie domains, of all pred-
icates and functions of the game description. This is dongdmerating a dependency
graph from the rules of the game description, following [IBje nodes of the graph
are the arguments of functions and predicates in game gésariand there is an edge
between two nodes whenever there is a variable in a rule afdhge description that
occurs in both arguments. Connected components in the gregph a (super-)domain.

Take, for example, the Monty Hall rules, line 3 and 6 give usdlomain graph in
Fig. 2, from which it can be seen that the argument of kétked andhide_car ranges
over the domaif1, 2, 3}.
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Fig. 2. A domain graph for calculating domains of functions and jates.

Once we have computed the domains, we instantiate all thi@es inG. E.g., the
rule in line 6-7 in the above example are turned into threesrul
| egal (random hide_car(1)) <= true(step(l)), true(closed(1)).

| egal (random hide_car(2)) <= true(step(l)), true(closed(2)).
| egal (random hi de_car(3)) <= true(step(1)), true(closed(3)).

Deriving MCK Variables

The second step is to derive all the variables#0&). For this, we distinguish pred-
icates that occur as argumentsiafit or true, and those that do not. The former
are translated to boolean variables. For examptep(1) and closed(1) appear in
W(GMH) as

step_1: Bool

cl osed_1: Bool

Predicates of the second type typically depend on the fipst 6f expressions. E.g.,
the following rule shows that thiegal predicate depends on tweue predicates:

| egal (random hide_car(1)) <= true(step(l)), true(closed(1)).

There are two ways to deal with these cases: (1) translate it® booleans like
above and then use valuation statements or (2) diretfinethem in terms of the
booleans translated from the first type of predicates. Famgte, we can translate
legal(random, hide car(1)) to a boolean (and assign a proper value later):

| egal _random hi de_car _1: Bool
| egal _random hide_car_1:= step_1 /\ closed_1

or as a definition,

define | egal _random hide_car_1 = step_1 /\ closed_1

wherestep_1 andclosed_1 are both booleans and is the symbol for conjunction.

The advantage of using definitions is that no new variablesraroduced to the
state representation. This reduces the number of variabthe overall translation and
therefore potentially saves model checking time. The padsterminal andgoal
can also be treated this way.

In GDL-II, sees predicates specify the perceptions of agents. Such predidea-
pend on the first type of predicates as well but they cannoiMem@s definitions in the
translation because they have to be observable for thearglagents in agent protocols
(given below). Therefore we translate such predicatesseparate boolean variables.

Since agents can recall their past moves, we make moves asfghe history,
along with the perceptions of agents. While MCK’s algorithfor CTLK with perfect



recall semantics do not include moves as part of the histegyneed to embed such
information as part of a state. Therefore we introduce araddolean for eachegal
instance, and repladegal with did. E.g., forlegal(random, hide car(1)), we add

di d_random hi de_car _1: Bool .

The above procedure can already generate all the variabésted. We can do fur-
ther optimisation on two kinds of predicates: these appegadri the rules with empty
bodies and those never appearing in the head of rules. Uridledlemantics, the first
kind is always true and the second kind is always false. Thezave can replace them
universally with their corresponding truth values. E.gnsider the following program:

1 succ(1, 2)

2 succ(2,3)
next (step(?y)) <= true (step(?x)), succ(?x, ?y).

w

We can first translate the program to the following by usirggdependency graph:

succ(1, 2)
succ( 2, 3)
next(step(2)) <= true(step(1l)), succ(1l,?2).
next(step(2)) <= true(step(2)), succ(2,2).
next (step(3)) <= true(step(2)), succ(2,3).
next (step(3)) <= true(step(3)), succ(3,3).

© o N o oA

Because botlucc(2,2), succ(3, 3) are always false, angucc(1,2), succ(2,3)
are always true, we replace them using their truth valuesnTe can further simplify
this program by removing the rules with a “False” conjunot] &y removing the “True”
conjuncts universally:

10 next (step(2)) <= true(step(l1)).
11 next (step(3)) <= true(step(2)).
It is easy to check that lines 10-11 are equivalent to lines(&ad also lines 4-9)
in terms of changes ovestep predicates. This will effectively reduce the number of
variables in the translation.

Initial Conditions

This step specifies the initial condition afG). All the booleans translated from the
predicates included withinni t are made true and all other predicates are made false.
TakingGasm (lines 3-4) for example, we have

init_cond =

closed_1 == True /\ closed_2 == True /\ closed_3 == True /\

step_1 == True /\ step_2 == False /\ step_3 == False /\ step_4 == False /\
car_1 == False /\ car_2 == False /\ car_3 == False /\ ...

Agent Protocols

This step specifies the agents and their protocols duringatres play. The agent bind-
ing operation binds distinct agent names to the protocelg thn, and instantiate each
protocol’'s parameters. In GDL-II, the names of the agergsead off from the rules for
therole predicate, and moves are read off from lkgal predicates. Each agent has
its own protocol. In MCK, protocol parameters are typed amthes havevbservable
before the type to indicate that agents sapthese parameters, which are then used for
agents’ accessibility relations. Taking the relendidate in G for example, the
following protocol is constructed in(Gas ),



protocol "candidate" (
step_1: Bool, step_2: Bool, step_3: Bool, ... ,
sees_Candi date_1: observabl e Bool, sees_Candi date_2: observabl e Bool,
di d_Candi dat e_Choose_1: observable Bool, ... )
begi n do
| egal _Candi dat e_Choose_1 -> <<Choose_1>>
[1 I egal _Candi date_Choose_2 -> <<Choose_2>>
[1 legal _Candi date_Choose_3 -> <<Choose_3>>
[1 | egal _Candi dat e_Noop -> <<Noop>>
[1 Il egal _Candidate_Switch -> <<Swi tch>>
od
end
Here the parameters prefixed withes_or did_ are observable to theandidate.
The variables prefixed withegal_ are booleans or definitions (explained above) and
they represent the preconditions of moves, e.ggal _Candidate Choose_1 is the
precondition for agent to chose mowve< Choose_1 >>. “[|” means non-deterministic
choice, so in each step, one of these statements vdithirod will be non-determinstically
executed whenever their guards are true.

We bind agentandidate to the above protocalandidate as this:

agent Candi date "candi date" ( paraneter variables )

A protocol can be bound to multiple names, so this gives pi@teto code reuse
when several agents share the same protocol.

State Transition
This step specifies the statements that update the variafitgsagents have decided
which moves to make. The first part is update the variabldsprewithdid._. E.g., the
following lines in7(G i) indicates that ageritandidate made move&hoose_1 on
the previous state.

i f Candi dat e. Choose_1 -> di d_Candi date_Choose_1 := True

H . ot herwi se -> di d_Candi date_Choose_1 : = Fal se

Essentially, the effects of the agents’ joint actions wéldbmputed so this section
is connected to th@oes andnext predicates in the description G. Here we use Clark
Completion to update these variables. This can be illesdrby the variablehosen_1
from our running example. First take all the rules that hawesen(1) in the head from
the original descriptiold,; ; and instantiat@d with 1:

1 next (chosen(1l)) <= does(candi date, choose(1)).
2 next (chosen(1)) <= true(chosen(1l)),

3 not does(candi date, switch).
4 next (chosen(1)) <= does(candi date, switch),

5 true(cl osed(1)),

6 not true(chosen(1)).

Then translate the bodies of these three rules and takedisg@inction to be the
guard of the resulting ‘if’ statement as follows: (note thabsen(1) is translated to
chosen_1 and so are the other ground atoms)

if (did_Candidate_Choose_1) \/ (chosen_1 /\ neg did_Candi date_Swi tch) \/

(did_Candidate_Switch /\ closed_1 /\ neg chosen_1l) -> chosen_1 := True

[] otherwi se -> chosen_1 : = Fal se
fi;



In addition, we may need to arrange the order of MCK statesngarefully, because
MCK'’s input language is imperative, which means that théest@nts are executed in
a given order. In contrast, GDL-II is a declarative languagd the order of the rules
does not change the meaning (or semantics) of the wholeigisor Take the following
example:

1 next(step(2)) <= true(step(l)).

2 next(step(3)) <= true(step(2)).
3 next(step(4)) <= true(step(3)).

The first rule means that gtep(1) is true in the current state, themep(2) will
be true in the next state. Note that this rule is the only ruté Weadnext(step(2)),
so we can apply the Clark Completion and get a statenserp_2 := step-1. This is

fine by itself, but we have a problem when the three rules arestated together in the
original order:

step_2 : = step_1,;
step_3 := step_2;
step_4 := step_3;

The problem is this: ifstep-1 is true originally, then after executing this three
statements we have all the variables to be true, whereasinlGExep(3) andstep(4)
would still be false in the next state. In fact, when we upda&value ofstep_3 in
MCK, we need to make sure to use the guard valtiep_2 from the previous state.
When we follow the exact order of above, thetep_2 is updated beforetep-3 is
getting updated. One solution to this problem is to use amtdgrecy graph:

This graph indictaes the order in which the variables neéé tgqpdatedstep 4, ..., step-1.
Thus the correct program in MCK is as follows:

step_4 := step_3;
step_3 := step_2;
step_2 := step_1;

But what if the dependency graph has loops? Consider thisgbea

1 next (hol ds(x,a)) <= true(holds(x,a)).
2 next(control (x)) <= true(control (0)).
3 next(control (0)) <= true(control (x)).

The first loop is a self loop and does not create any problenthausecond one
does pose a problem. The following program does not cagtermeaning of lines 2—3
in the above description:

control _x :
control _o :

control _o;
control _x;

where the second statement uses a boolean updated by the first

Our solution is to break the loop by cutting one dependendythan creating a
new variable to record the last variable in the new dependgraph. Back to the above
example, we can cut the dependency framatrol(o) to control(x), and then use a
new variable to give the following correct translation:



control _x_old := control _x;

control _x := control _o;

control _o := control _x_ol d;

Put in wordscontrol x_old is used to remember the old valuedintrol x.

There is another more general way to solve this problem: givground atoms
a new variable (appended witiid) and use them to record the values of their cor-
responding part in the beginning of the translation. Bus &tan be computationally
expensive for MCK in practice, because the number of vagmbill be doubled. It will
not increase the number of reachable states of the gamdebtdtal state space of the
MCK program will be increased exponentially (i.8" for n new variables). So our
above solution by using dependency graphs will be much nféiogemt in practice.

Specifications

The last step is to encode the temporal and epistemic piepéstbe verified, using:

<specification type> = ... tenporal and epistemc formula ...

The specification types we will use argpec_sprnested”, “ spec_obs_ctl” and
“spec_spr_bmc n”, where spr indicates that the model checking algorithm will use
synchronous perfect recall semantics, ahglindicates observational semantiés;c
means bounded model checking. The first two algorithm use@diBinary Decision
Diagram (OBDD) encoding and the second uses SAT encodingviexplain the
difference when we present the experimental results in ¢x¢ session. Our temporal
and epistemic formulas are given in CTLK syntax.

MCK checks a property on the initial state of the translated gamg&) with
specification typer, and then when the computation is done, it returns eithdd4io
(i.e.,7(GQ) =z ) or ‘fails’ (otherwise).

4 Experimental Results

We present some experimental results on two incompleterivdton games: Monty
Hall and Krieg-Tictactoe. The machines have Intel Core58@®Quad CPU 3.3 GHz
and 8GB Ram running under GNU Linux OS 2.6.32. The MCK ver#ah0.0.

Monty Hall

Following the method presented in the previous section, evepare the efficiency of
two different translations of the Monty Hall game from Fig. The first translation
71 (G pr) is the straightforward one without optimisation. It cong#3 boolean vari-
ables. The second translatian(G ) is the result of applying the various optimisa-
tions given above, resulting in only 28 boolean variables.

The following properties have been checked using MCK onews translations:

-1 = (/\legal(Candidate, m) = Kcandidatelegal (Candidate, m))

m
This property intuitively means tha€Candidate’ knows his legal moves at the
current state Furthermore, we defing, = AXp; which intuitively means that



‘Candidate’ knows his legal moves at all next states = AX AX pq; andp, =
AXAXAX .

— 5 = AXAXAX (terminal A Kcandidateterminal). This property intuitively
means that for all states after three steps, the game isnaramd the candidate
knows this.

— g = "AX AX AX (goal(Candidate, 100)) A\ AX AX AX (goal(Candidate, 0)).
This property intuitively means that it is not always theeetimtCandidatewill win
(i.e.,goal(Candidate, 100) is true) after three steps, nor that he will always lose.

— 7 = AFterminal. This property means the game will eventually reach a tesmin
state.

We checkyp; to @5 using thespr_nested algorithm associated witRynchronous
perfect recall(spr) semantics because they all involve knowledge, am ¢heckpg
and 7 using theobs_ctl algorithm associated with tha&bservationalobs) semantics
because these formulas do not involve knowledge (whichaesithe model checking
time). For comparison, we also chegl under spr semantics. The following table
shows the model checking time (measured in seconds) foe #@&n formulas. These
formulas all hold in the initial state @¥ ;7 and MCK returns corrected results.

Translatioh o1] 2| 3| wa]  ps]ps(spr)es(obs) o7
m1(Garr) | 6.70 20.63 49.37129.66222.06561.24 3.41] 6.47
72(Gar) | 059 3.10 9.01 1959 17.25 39.32 0.50 0.49

We can see that our second translation needs notably less$tan the first transla-
tion under both semantics. Also when a formula contains rremgoral depth, it tends
to need more time. The result g shows that the model checking under obs-semantics
may need much less time than that of spr-semanticspfdt cannot be checked under
spr-semantics because operator AF is not supported.

Krieg-TicTacToe

We also studied a more complex game called Krieg-TicTacanéncomplete infor-
mation version of TicTacToe. In this game, two players carsge their opponent’s
markings, and if one player tries to mark a position that reenlccupied by the oppo-
nent, then the game master will tell the player that the mevet valid and ask it to try
again. The turn-taking and winning conditions remain theearhe GDL-II descrip-
tion of this game (call itG k) can be found on ggpserver.general-game-playing.de.

Our first translationr; (Gxr) has 111 boolean variables, and the optimised trans-
lation 72 (G k1) has 70 boolean variables. Both are around six times larger tie
translations of the Monty Hall game.

We select a few representative properties:

— 1 = (/\legal(mplayer, m) = Kyplayerlegal (zplayer, m)). This property intu-

itively rﬁeans thatxplayer’ knows his legal moves at the current staémilarly
we deﬁnel/Jg = AX’L/Jl, w3 = AXAle andw4 = AXAXAle



— 95 = AX AXcontrol(zplayer). This property says thatfter two steps xplayer
is in control in all the resulting state§ his property would be true for the original
TicTacToe due to the turn taking under complete informatrt under incomplete
information, this is not true anymore. It is because aftee step,oplayer has
control and she might try an invalid move, in that case, sHkebgigiven another
chance to select a move for the next step.

— g = AG(tried(xplayer,1,1) — AXtried(zplayer,1,1)). This property says
that it is always the case that if xplayer already tried toknhe position (1,1), then
in all the next states, this is still true.

We first checky to ¢4 using thespr_nested algorithm. The following table only
shows the model checking time (in seconds) for the secondlationrs (G xr):

Translatioh ¢4 () Y3 Y4
m(Ggr) | 86.24 1539.2426782.95 NA

Itindicates that the time complexity increases quicklyhiite depth of the formula.
In the case ofp, we could not obtain a result within 24 hours. This led us tortaad
model checking (BMC) in which the specification is requirecbe a formula in the
so-called universal fragment of a logic. The universalinagt of a logic requires that
the negation operator may apply only to atomic propositiansl the modal operators
canonly bedX, AF, AG, AU andK;. Each specification will also be given a bound
numberm to indicate the depth of the game tree to be checked by MCK fdlleving
table shows the model checking time (in seconds) for bottstations:

Translatiornpl (b 1) wg (b 2) 1/)3 (b 3) w4 (b 4) 1/)5 (b 3) wﬁ (b 5) 1/)6 (b 4)
m1(Grr) 0.274 1.70 4.40 10.34 3.69 11.81 6.87
w2 (Gkr) 4.63 8.69 32.00588.38 24.33 113.62 48.81

Note that each formula is given a bound when being fed to M@K;doundn is
indicated agb n). It is interesting to see that under BMC, the first transtatias a
better efficiency now. The main disadvantage of BMC is thahiy check the model
up to boundh. So if there is no counter example found under bouni usually does
not mean that no counter example can be found at baund. E.g., formulapg has
no counter example under bound 4, but it has a counter exampgkr bound 5.

We can partially answer why a seemingly more optimised tatios yields a worse
resultin BMC. Unlike the OBDDs, SAT algorithms are more sévesto the complex-
ity of boolean statements which can express complicatedioak between booleans,
rather than to the number of booleans. In the optimised®ersi(G i), we use tef-
initions” to reduce the number of variables but that, on the other hiretdeases the
complexity of boolean statements.

5 Related Work and Further Research

There are a few papers on reasoning about games in GDL anddtssén GDL-II. [8]
uses Answer Set Programming for verifying finitely-bountisdporal invariance prop-
erties against a given game description by structural itiolic[9] extends [8] to deal



with epistemic properties for GDL-Il. That formalism résts on positive-knowledge
formulas while the approach in this paper does not have ssthgtion and can handle
more expressive epistemic and temporal formulas. [15]ides/a reasoning mecha-
nism for strategic and temporal properties but it is retdoon the original GDL for
complete information games. [16] exams the epistemic lbgiind GDL-II and in
particular shows that the situation at any stage of a gamebearharacterised by a
multi-agent epistemic (i.e., S5-) model. [18], an extens®[15, 16], provides both se-
mantic and syntactic characterisations of GDL-II desaip in terms of a strategic and
epistemic logic, and shows the equivalence of these twaackenisations. The current
paper does not handle strategies but is more applied thda$h8e can directly using
a model checker.

Some other work are related to this paper more generallymg®f planning and
model checking. [1] applies symbolic planning to solve fyagames equivalent to-
calculus model checking problems. [2] solves planning |enmis based on a high-level
action language and model checking; and [3] gives autorp&it generation for non-
deterministic domains using OBDD (which is also used by MCK3] introduces an
approach to conformant planning (where the initial sitatis not fully known and
actions may have non-deterministic effects) by convewimgh problems into classical
planning problems. It is similar to our approach in sprit the actual formalisms are
rather different.

We conclude by pointing out some directions for further agsk. Our case study
on Krieg-TicTacToe suggests that the optimisation we haydied allows us to verify
some formulas in a reasonable amount of time but is not yit fuhctional for more
complex formulas. However a hand-made version of KriegF@adoe (with more ab-
straction) in MCK does suggest that MCK has no problem to euifethe amount of
reachable states of Krieg-TicTacToe. So the question igt wther optimisation tech-
nigues can we find for the translation? On the other hand, weédnike to investigate
how to make MCK language more expressive by allowing n-aegimates, fixpoints,
loops in transition relations. This may result in a more cliteanslation.

Also there are logics that deal with strategic and episten@ésoning, so we are
interested in generalising this model checking approaduth logics (see [18] for a
first theoretical result). Similar to [1-3, 13], we woulddiko also explore how plans (or
strategies) can be generated via model checking for geganad playing.
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