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Abstract. Successor state axioms provide a solution to the famous Frame Problem as far as
the representational aspect is concerned. Solving in classical, monotonic logic the additional
inferential Frame Problem, on the other hand, was the major motivation for the development
of the Fluent Calculus a decade or so ago. Yet the expressiveness of the latter in comparison
to the Situation Calculus remained a largely open question until today. In this note, we derive
a novel version of the Fluent Calculus by gradually applying the principle of reification to
successor state axioms in order to address the inferential Frame Problem without losing the
representational merits. Our approach results in a fully mechanic method for the generation of
state update axioms from any collection of Situation Calculus-style effect axioms for deterministic
actions, provided the actions do not have potentially infinitely many effects. The axiomatization
thus obtained is proved essentially equivalent to the corresponding axiomatization which uses
successor state axioms.
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1 Introduction

Research in Artificial Intelligence aims at explaining and modeling intelligent behavior in terms
of computational processes [36]. The classical approach towards this goal assumes intelligent
behavior to be a result of correct reasoning on correct representations. In turn, this reasoning
is understood by means of formal logic [26]. In the research area of Cognitive Robotics [21, 38],
this approach to AI is applied to a crucial aspect of intelligent behavior, namely, acting in a dy-
namic world. The famous Frame Problem [30] inevitably arises in this context. Straightforward
solutions exist only for such cases where it is possible for an intelligent agent to acquire complete
information about world states. The early Strips approach [8] and modern efficient planning
techniques such as [18], for instance, are restricted to problems in which this assumption can
be made. Yet most of intelligent behavior concerns acting under partial information, and this
is where the Frame Problem becomes a fundamental challenge, which, thirty years after its
discovery, is still in the focus of attention [40]. While achieving the ultimate goal of Cognitive
Robotics—building robots equipped with high-level cognitive functions—remains a long-term
research project, advances in solving the Frame Problem have already led to a wide range of ap-
plications for modeling dynamic systems, such as progressing databases [24], dynamic diagnosis
[43, 31], agent programming [22], robot control [9], and planning [11, 18, 39].

1 On leave from Darmstadt University of Technology
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Much like research in AI is concerned with both understanding and reproducing intelligent
behavior, the Frame Problem comes with two facets: a representational one, which concerns
the effort needed to specify non-effects of actions, and an inferential one, which concerns the
effort needed to actually compute these non-effects. The Fluent Calculus, introduced in [15] and
christened in [5], provides an axiomatization strategy that particularly aims at both aspects.
For a long time, this calculus has been viewed exclusively as a close relative of approaches to the
Frame Problem which appeal to non-classical logics, namely, linearized versions of, respectively,
the connection method [2, 3] and Gentzen’s sequent calculus [25]. The affinity of the Fluent
Calculus and these two formalisms has been emphasized by several formal comparison results.
In [12], for example, the three approaches have been proved to deliver equivalent solutions to
a resource-sensitive variant of Strips planning [8]. Yet the Fluent Calculus possesses a feature
by which it stands out against the two other frameworks: It stays entirely within classical logic.
Nonetheless, the expressiveness of the Fluent Calculus in relation to the mainstream calculi, and
in particular to the classical Situation Calculus [27], has not yet been convincingly elaborated.
The early comparison of [4], which links the aforementioned linear connection method to the
Situation Calculus, covers only a restricted form of Strips domains and thus concerns a mere
fraction of the calculi.

The purpose of this paper is to present new approach to the Fluent Calculus where we start off
from the Situation Calculus in the version where successor state axioms are used as a solution to
the representational aspect of the Frame Problem [34]. We illustrate how the Fluent Calculus,
or a novel version thereof, can be viewed as the result of gradually improving this approach
in view of the inferential aspect but without losing its representational merits. The key is to
gradually apply the principle of reification, which means to use terms instead of atoms as the
formal denotation of statements. Along the path leading from successor state axioms to the
Fluent Calculus lies an intermediate approach, namely, the alternative formulation of successor
state axioms described by [19], in which atomic fluent formulas are reified. This alternative
design inherits the representational advantages and additionally addresses the inferential Frame
Problem. Yet it does so only under the important restriction that complete knowledge is available
of the values of the relevant fluents in the initial situation. The Fluent Calculus can then be
viewed as a further improvement in that it overcomes this restriction by carrying farther the
principle of reification to conjunctions of fluents.

In the following section we illustrate by means of examples how successor state axioms can
thus be reified to what we call state update axioms. We then present a fully mechanic method to
derive state update axioms from an arbitrary collection of Situation Calculus-style effect axioms
for deterministic actions, provided the actions do not have potentially infinitely many effects.
As the main result, the axiomatization thus obtained is proved essentially equivalent to the
corresponding axiomatization using successor state axioms. We also briefly discuss how the new
Fluent Calculus allows the incorporation of two important ontological extensions, namely, non-
deterministic actions and ramifications, i.e., indirect effects of actions. Our results are assessed
in a concluding discussion.

2 From Situation Calculus to Fluent Calculus

2.1 From Successor State Axioms (I) . . .

As an example which will be used throughout the paper, we will formalize the reasoning that
led to the resolution of the following little mystery:
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A reliable witness reported that the murderer poured some milk into a cup of tea before
offering it to his aunt. The old lady took a drink or two and then she suddenly fell into the
armchair and died an instant later, by poisoning as has been diagnosed afterwards. According
to the witness, the nephew had no opportunity to poison the tea beforehand. This proves
that it was the milk which was poisoned and by which the victim was murdered.

The first and fundamental challenge of formalizing reasoning about actions is to account for
the fact that most properties in the real world possess just a limited period of validity. The
Situation Calculus paradigm [30] is to attach a situation argument to such unstable properties,
also called fluents, thus limiting their range of validity to a specific situation. The performance
of an action then brings about a new situation in which certain fluents may no longer hold. For
the formalization of the pieces of commonsense knowledge relevant to our example story, let
us use the two fluents Poisoned(x, s), representing the fact that x is poisoned in situation s,
and Alive(x, s), representing the property of x being alive in situation s.2 Furthermore, we
need the two action terms Mix (p, x, y), denoting the action carried out by agent p of mixing x
into y, and Drink(p, x), denoting that p drinks x. Finally, let Do(a, s) be a binary function
whose value denotes the situation to which leads the performance of action a in situation s.
With this signature and its semantics the following effect axiom formalizes the fact that if x is
poisoned in situation s then y, too, is poisoned in the situation that obtains when someone
mixes x into y:

Poisoned(x, s) ⊃ Poisoned(y,Do(Mix (p, x, y), s)) (1)

This effect axiom encodes the fact that if x is poisoned then person p ceases to being among
the livings after she had drunk x:

Alive(p, s) ∧ Poisoned(x, s) ⊃ ¬Alive(p,Do(Drink(p, x), s)) (2)

These two formulas, however, do not suffice to solve the mystery due to the Frame Problem,
which has been uncovered as early as in [30]. To see why, let S0 be a constant by which we
denote the initial situation, and consider the assertion,

¬Poisoned(Tea, S0) ∧Alive(Nephew , S0) ∧Alive(Aunt , S0) (3)

Even if we added the fact that Poisoned(Milk , S0), the intended conclusion ¬Alive(Aunt , S2)
does not yet follow (where S2 = Do(Drink(Aunt ,Tea),Do(Mix (Nephew ,Milk ,Tea), S0))), be-
cause Alive(Aunt ,Do(Mix (Nephew ,Milk ,Tea), S0)) is needed for axiom (2) to apply but cannot
be derived. In order to obtain this and other intuitively expected conclusions, a number of non-
effect axioms (or “frame axioms”) need to be supplied, like the following, which says that people
survive the mixing of substances:

Alive(x, s) ⊃ Alive(x,Do(Mix (p, y, z), s)) (4)

Now, the Frame Problem is concerned with the problems that arise from the apparent need
for non-effect axioms like (4). Actually there are two aspects to this famous problem: The
representational Frame Problem is concerned with the proliferation of all the many frame axioms.
The inferential Frame Problem describes the computational difficulties raised by the presence of
many non-effect axioms when it comes to making inferences on the basis of an axiomatization:

2 A word on the notation: Predicate and function symbols, including constants, start with a capital letter
whereas variables are in lower case, sometimes with sub- or superscripts. Free variables in formulas are
assumed universally quantified.
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Suppose that for the proof of a theorem some properties were needed in situations other than the
ones where they are given or obtained as effects of an action (like, e.g., the property Alive(Aunt),
which is given wrt. S0 but needed in the situation Do(Mix (Nephew ,Milk ,Tea), S0)). Then one-
by-one each of these properties has to be carried from the one situation to the other, and past
all intermediate situations, by means of separate frame axioms.

With regard to the representational aspect of the Frame Problem, successor state axioms [34]
provide a solution which is optimal in the sense that it requires no extra frame axioms at all.
The key idea is to combine, in a determined fashion, several effect axioms into a single one.
The result, more complex than simple effect axioms like (1) and (2) but still mentioning solely
effects, is designed in such a way that it implicitly contains sufficient information also about
non-changes of fluents.

The procedure by which these axioms are set up is the following. Suppose F (~x) is among the
fluents one is interested in. On the assumption that a fixed, finite set of actions is considered
relevant, it should be possible to specify with a single formula γ+F (~x, a, s) all circumstances by
which F (~x) would be caused to become true. That is to say, γ+F (~x, a, s) describes all actions a
and conditions relative to situation s so that F (~x) is a positive effect of performing a in s.
For example, among the actions we considered above there is one, and only one, by which the
fluent Poisoned(x) is made true, namely, mixing some poisonous y into x. Hence an adequate
definition of γ+Poisoned (x, a, s) is the formula ∃p, y[a = Mix (p, y, x) ∧ Poisoned(y, s)].

A dual formula, γ−F (~x, a, s), defines the circumstances by which fluent F (~x) is caused to
become false. In our example we consider no way to ‘decontaminate’ a substance, which is why
γ−Poisoned (x, a, s) should be equated with a logical contradiction. For our second fluent, Alive(x),
the situation is just the other way round: While γ+Alive(x, a, s) is false for any instance, the
appropriate definition of γ−Alive(x, a, s) is ∃y[a = Drink(x, y) ∧Alive(x, s) ∧ Poisoned(y, s)].

On the basis of suitable definitions for both γ+F and γ−F , a complete account can be given of
how the truth value of fluent F in a new situation depends on the old one, namely,

F (~x,Do(a, s)) ≡ γ+F (~x, a, s) ∨ [F (~x, s) ∧ ¬ γ−F (~x, a, s) ] (5)

This is the general form of successor state axioms.3 It says that the fluent F holds in a new
situation if, and only if, it is either a positive effect of the action being performed, or it was
already true and the circumstances were not such that the fluent had to become false. Although
both γ+ and γ− talk exclusively about effects (positive and negative), a successor state axiom,
by virtue of being bi-conditional, implicitly contains all the information needed to entail any
non-change of the fluent in question. For whenever neither γ+F (~x, a, s) nor γ−F (~x, a, s) is true,
then (5) rewrites to the simple equivalence F (~x,Do(a, s)) ≡ F (~x, s).

The successor state axioms for our example domain, given the formulas γ+Poisoned , γ−Poisoned ,
γ+Alive , and γ−Alive , respectively, from above, are

Poisoned(x,Do(a, s)) ≡ ∃p, y [ a = Mix (p, y, x) ∧ Poisoned(y, s) ]

∨ Poisoned(x, s)
(6)

Alive(x,Do(a, s)) ≡
Alive(x, s) ∧ ¬∃y [ a = Drink(x, y) ∧Alive(x, s) ∧ Poisoned(y, s) ]

(7)

3 For the sake of clarity we ignore the concept of action precondition in this paper, as it is irrelevant for our
discussion (see Section 5).
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The latter, for instance, suffices to conclude that Alive(Aunt , S0) is not affected by the ac-
tion Mix (Nephew ,Milk ,Tea) —assuming “unique names” for actions, i.e., Mix (p′, x′, y′) 6=
Drink(x, y). Thus we can spare the frame axiom (4).

2.2 . . . via Successor State Axioms (II) . . .

While successor state axioms are a good way to overcome the representational Frame Problem
since no frame axioms at all are required, the inferential aspect is still present. If for a proof
some properties, like Alive(Aunt) above, are needed in situations other than the ones where
they are given or obtained, then they have to be carried through each intermediate situation by
separate instances of successor state axioms.

However, it has been shown in [19] that by formulating successor state axioms in a way that
is somehow dual to the scheme (5), the inferential aspect can be addressed at least to a certain
extent. Central to this alternative is the representation technique of reification. It means that
properties like Poisoned(x) are formally modeled as terms, that is, Poisoned and all other
predicate symbols denoting fluents turn into function symbols. This allows for a more flexible
handling of these properties within first-order logic. Let, to this end, Holds(f, s) be a binary
predicate representing the fact that in situation s holds the fluent f , now formally a term but
still meaning a proposition. This modification is justified by a natural correspondence between
a standard Situation Calculus signature and its reified version; see Appendix A.1 for the formal
details.

The key to the alternative form of successor state axioms is to devise one for each action,
and not for each fluent, which gives a complete account of the positive and negative effects
of that action. Suppose A(~x) is an action, then it should be possible to specify with a sin-
gle formula δ+A(~x, f, s) the necessary and sufficient conditions on f and s so that f is a
positive effect of performing A(~x) in s. In our running example, the appropriate definition
of δ+Mix (p, x, y, f, s), say, is [f = Poisoned(y, s)] ∧ Holds(Poisoned(x), s). A dual formula,
δ−A(~x, f, s), defines the necessary and sufficient conditions on f and s so that f is a nega-
tive effect of performing A(~x) in s. For instance, δ−Mix (p, x, y, f, s) should be false in any case
since Mix (p, x, y) has no relevant negative effect. For a suitable axiomatization of the action
Drink(p, x) we equate δ+Drink (p, x, f, s) with a logical contradiction and δ−Drink (p, x, f, s) with
[f = Alive(p)] ∧Holds(Alive(p), s) ∧Holds(Poisoned(x), s).

On the basis of δ+A and δ−A , a complete account can be given of which fluents hold in situations
reached by performing A, namely,

Holds(f,Do(A(~x), s)) ≡ δ+A(~x, f, s) ∨ [ Holds(f, s) ∧ ¬ δ−A(~x, f, s) ] (8)

That is to say, the fluents which hold after performing the action A are exactly those which
are among the positive effects or which held before and are not among the negative effects. The
reader may contrast this scheme with (5) and in particular observe the reversed roles of fluents
and actions.

Given the formulas δ+Mix (p, x, y, f, s), δ−Mix (p, x, y, f, s), δ+Drink (p, x, f, s), and δ+Drink (p, x, f, s),
respectively, from above, we thus obtain these two successor state axioms of type (II):

Holds(f,Do(Mix (p, x, y), s)) ≡ f = Poisoned(y) ∧Holds(Poisoned(x), s)

∨ Holds(f, s)
(9)

Holds(f,Do(Drink(p, x), s)) ≡
Holds(f, s) ∧ ¬ [ f = Alive(p) ∧ Holds(Alive(p), s) ∧ Holds(Poisoned(x), s) ]

(10)
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Notice that as before non-effects are not explicitly mentioned and no additional frame axioms are
required, so the representational aspect of the Frame Problem is addressed with the alternative
notion of successor state axioms just as well. The inferential advantage of the alternative design
shows if we represent the collection of fluents that are true in a situation s by equating the
atomic formula Holds(f, S) with the conditions on f to hold in s. The following formula, for
instance, constitutes a suitable description of the initial situation in our example:

Holds(f, S0) ≡ f = Alive(Nephew) ∨ f = Alive(Aunt) ∨ f = Poisoned(Milk) (11)

The crucial feature of this formula is that the situation argument, S0, occurs only once. With
this representational trick it becomes possible to obtain a complete description of a successor
situation in one go, that is, by singular application of a successor state axiom. Consider, for
example, the axiom which specifies the effects of mixing, (9). If we substitute p, x, and y
by Nephew , Milk , and Tea , respectively, and s by S0, then we can replace the sub-formula
Holds(f, S0) of the resulting instance by the equivalent disjunction as given in axiom (11). So
doing yields the formula,

Holds(f,Do(Mix (Nephew ,Milk ,Tea), S0)) ≡
f = Poisoned(Tea) ∧Holds(Poisoned(Milk), S0)

∨ f = Alive(Nephew) ∨ f = Alive(Aunt) ∨ f = Poisoned(Milk)

which all at once provides a complete description of the successor situation. Given suitable
axioms for equality, the above can be simplified, with the aid of (11), to

Holds(f,Do(Mix (Nephew ,Milk ,Tea), S0)) ≡ f = Poisoned(Tea) ∨ f = Alive(Nephew)

∨ f = Alive(Aunt) ∨ f = Poisoned(Milk)

The reader may verify that we can likewise infer the result of Drink(Aunt ,Tea) in the new
situation by applying the appropriate instance of successor state axiom (10), which, after sim-
plification, yields,

Holds(f,Do(Drink(Aunt ,Tea),Do(Mix (Nephew ,Milk ,Tea), S0))) ≡
f = Poisoned(Tea) ∨ f = Alive(Nephew) ∨ f = Poisoned(Milk)

The alternative design of successor state axioms provides a solution to both aspects of the
Frame Problem: No frame axioms at all are needed, and one instance of a single successor state
axiom suffices to carry over to the next situation all unchanged fluents. However, the proposed
method of inference relies on the very strong assumption that we can supply a complete account
of what does and what does not hold in the initial situation. Formula (11) provides such a
complete specification, because it says that any fluent is necessarily false in S0 which does not
occur to the right of the equivalence symbol. Unfortunately it is impossible to formulate partial
knowledge of the initial state of affairs in a similarly advantageous fashion. Of course one can
start with an incomplete specification like, for instance,

Holds(f, S0) ⊂ [f = Alive(Nephew) ∨ f = Alive(Aunt)] ∧ f 6= Poisoned(Tea)

which mirrors the incomplete description we used earlier (c.f. formula (3)). But then the elegant
inference step from above, where we have simply replaced a sub-formula by an equivalent, is no
longer feasible. In this case one is in no way better off with the alternative notion of successor
state axioms; again separate instances need to be applied, one for each fluent, in order to deduce
what holds in a successor situation.
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2.3 . . . to State Update Axioms

So far we have used reification to denote single properties by terms. The ‘meta’-predicate Holds
has been introduced which relates a reified fluent to a situation term, thus indicating whether
the corresponding property is true in the associated situation. When formalizing collected
information about a particular situation S as to which fluents are known to hold in it, the
various corresponding atoms Holds(fi, S) are conjuncted using the standard logical connectives.
We have seen how the inferential aspect of the Frame Problem is addressed if this is carried out
in a certain way, namely, by equating Holds(f, s) with some suitable formula Ψ. The effects
of an action a can then be specified in terms of how Ψ modifies to some formula Ψ′ such
that Holds(f,Do(a, s)) ≡ Ψ′. We have also seen, however, that this representation technique
is still not sufficiently flexible in that it is impossible to construct a first-order formula Ψ so
that Holds(f, S0) ≡ Ψ provides a correct incomplete specification of S0. Yet it is possible to
circumvent this drawback by carrying farther the principle of reification, to the extent that not
only single fluents but also their conjunctions are formally treated as terms. Required to this
end is a binary function which to a certain extent reifies the logical conjunction. This function
shall be denoted by the symbol “ ◦ ” and written in infix notation, so that, for instance, the term
Alive(Nephew)◦Poisoned(Milk) is the reified version of Alive(Nephew)∧Poisoned(Milk). The
use of the function “ ◦ ” is the characteristic feature of axiomatizations which follow the paradigm
of Fluent Calculus. Appendix A.2 contains the formal details of how to obtain a Fluent Calculus
signature from a Situation Calculus one.

The union of all relevant fluents that hold in a situation is called the state (of the world) in
that situation. Recall that a situation is characterized by the sequence of actions that led to it.
While the world possibly exhibits the very same state in different situations,4 the world is in a
unique state in each situation. A function denoted by State(s) shall relate situations s to the
corresponding states, which are reified collections of fluents.

Modeling entire states as terms allows the use of variables to express mere partial information
about a situation. The following, for instance, is a correct incomplete account of the initial
situation S0 in our mystery story (c.f. (3)):

∃z [ State(S0) = Alive(Nephew) ◦Alive(Aunt) ◦ z ∧
∀z′. z 6= Poisoned(Tea) ◦ z′ ]

(12)

That is to say, of the initial state it is known that both Alive(Nephew) and Alive(Aunt) are
true and that possibly some other facts z hold, too—with the restriction that z must not
include Poisoned(Tea), of which we know it is false.

The binary function “ ◦ ” needs to inherit from the logical conjunction an important property.
Namely, the order is irrelevant in which conjuncts are given. Formally, order ignorance is ensured
by stipulating associativity and commutativity, that is, ∀x, y, z. (x ◦ y) ◦ z = x ◦ (y ◦ z) and
∀x, y. x ◦ y = y ◦x. It is convenient to also reify the empty conjunction, a logical tautology, by a
constant, which is usually denoted by ∅ and which satisfies ∀x. x ◦ ∅ = x. The three equational
axioms, jointly abbreviated AC1, in conjunction with the standard axioms of equality entail the
equivalence of two state terms whenever they are built up from an identical collection of reified
fluents.5 In addition, denials of equalities, such as in the second part of formula (12), need to be

4 If, for example, the tea was already poisoned initially, then the state of the world prior to and after
Mix (Nephew ,Milk ,Tea) would have been the same—in terms of which of the two liquids are poisoned and
who of our protagonists is alive.

5 The reader may wonder why function “ ◦ ” is not expected to be idempotent, i.e., ∀x. x ◦ x = x, which is yet
another property of logical conjunction. The (subtle) reason for this is given below.
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derivable. This requires an extension of the standard assumption of “unique names” for fluents
to uniqueness of states, denoted by EUNA (see Appendix A.2 for the details).

The assertion that some fluent f holds (resp. does not hold) in some situation s can be
formalized by ∃z. State(s) = f ◦ z (resp. ∀z. State(s) 6= f ◦ z). This allows to reintroduce
the Holds predicate, now, however, not as part of the signature but as an abbreviation for an
equality sentence:

Holds(f, s)
def
= ∃z. State(s) = f ◦ z (13)

In this way, any Situation Calculus assertion about situations can be directly transferred to
the Fluent Calculus; e.g., the (quite arbitrary) formula ∃x.Poisoned(x, S0) ∨ ¬Alive(Aunt , S1)
of the Situation Calculus reads ∃x.Holds(Poisoned(x), S0) ∨ ¬Holds(Alive(Aunt), S1) in the
Fluent Calculus. Notice that Holds being a mere macro in the Fluent Calculus, assertions
about states become pure equality sentences.

Knowledge of effects of actions is formalized in terms of specifying how a current state modifies
when moving on to a next situation. The universal form of what we call state update axiom is

∆(s) ⊃ Γ[State(Do(A, s)),State(s)] (14)

where ∆(s) states conditions on s, or rather on the corresponding state, under which the suc-
cessor state is obtained by modifying the current state according to Γ. Typically, condition ∆(s)
is a compound formula consisting of Holds(f, s) atoms, as defined with the foundational ax-
iom (13). The component Γ defines the way the state in situation s modifies according to the
effects of the action under consideration. Actions may initiate and terminate properties. We
will discuss the design of Γ for these two cases in turn.

If an action has a positive effect, then the fluent f which becomes true simply needs to be
coupled onto the state term via State(Do(A, s)) = State(s) ◦ f . An example is the following
axiomatization of the (conditional) effect of mixing a liquid into a second one:

Holds(Poisoned(x), s) ∧ ¬Holds(Poisoned(y), s)

⊃ State(Do(Mix (p, x, y), s)) = State(s) ◦ Poisoned(y)

¬Holds(Poisoned(x), s) ∨Holds(Poisoned(y), s)

⊃ State(Do(Mix (p, x, y), s)) = State(s)

(15)

That is to say, if x is poisoned and y is not, then the new state is obtained from the predecessor
just by adding the fluent Poisoned(y), else nothing changes at all and so the two states are
identical. Notice that neither of the two state update axioms mentions any non-effects.

If we substitute, in the two axioms (15), p, x, and y by Nephew , Milk , and Tea , respectively,
and s by S0, then we can replace the term State(S0) in both resulting instances by the equal
term as given in axiom (12). So doing yields,

∃z [ Holds(Poisoned(Milk), S0) ∧ ¬Holds(Poisoned(Tea), S0)

⊃ State(Do(Mix (Nephew ,Milk ,Tea), S0))

= Alive(Nephew) ◦Alive(Aunt) ◦ z ◦ Poisoned(Tea)

∧ ¬Holds(Poisoned(Milk), S0) ∨Holds(Poisoned(Tea), S0)

⊃ State(Do(Mix (Nephew ,Milk ,Tea), S0))

= Alive(Nephew) ◦Alive(Aunt) ◦ z
∧ ∀z′. z 6= Poisoned(Tea) ◦ z′ ]
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which implies, using the abbreviation S1 = Do(Mix (Nephew ,Milk ,Tea), S0) and the correspon-
dence (13) along with standard properties of equality and assertion (12),

∃z [ Holds(Poisoned(Milk), S0)

⊃ State(S1) = Alive(Nephew) ◦Alive(Aunt)

◦Poisoned(Milk) ◦ Poisoned(Tea) ◦ z
∧ ¬Holds(Poisoned(Milk), S0)

⊃ State(S1) = Alive(Nephew) ◦Alive(Aunt) ◦ z
∧ ∀z′. z 6= Poisoned(Tea) ◦ z′ ]

In this way we have obtained from an incomplete initial specification a still partial description
of the successor state, which includes the unaffected fluents Alive(Nephew) and Alive(Aunt).
These properties thus survived the application of the effects axioms without the need to be
carried over, one-by-one, by separate application of axioms.

If an action has a negative effect, then the fluent f which becomes false needs to be withdrawn
from the current state State(s). The scheme State(Do(A, s))◦f = State(s) serves this purpose.
Incidentally, this scheme is the sole reason for not stipulating that “ ◦ ” be idempotent. For if
it were, then the equation State(Do(A, s)) ◦ f = State(s) would be satisfied if State(Do(A, s))
contained f . Hence this equation would not guarantee that f becomes false. Vital for our
scheme is also to ensure that state terms do not contain any fluent twice or more, i.e.,

∀s, x, z. State(s) = x ◦ x ◦ z ⊃ x = ∅ (16)

These preparatory remarks lead us to the following axiomatization of the (conditional) effect
of drinking:

Holds(Alive(p), s) ∧Holds(Poisoned(x), s)

⊃ State(Do(Drink(p, x), s)) ◦Alive(p) = State(s)

¬Holds(Alive(p), s) ∨ ¬Holds(Poisoned(x), s)

⊃ State(Do(Drink(p, x), s)) = State(s)

(17)

That is to say, if p is alive and x is poisoned, then the new state is obtained from the predecessor
just by terminating Alive(p), else nothing changes at all.6

Applying the two axioms (17) to what we have derived about the state in situation S1 yields,
setting S2 = Do(Drink(Aunt ,Tea), S1) and performing straightforward simplifications,

∃z [ Holds(Poisoned(Milk), S0)

⊃ State(S2) ◦Alive(Aunt) = Alive(Nephew) ◦Alive(Aunt)

◦Poisoned(Milk) ◦ Poisoned(Tea) ◦ z
∧ ¬Holds(Poisoned(Milk), S0)

⊃ State(S2) = Alive(Nephew) ◦Alive(Aunt) ◦ z ]

This partial description7 of the successor state again includes every persistent fluent without
having applied separate deduction steps for each. The concept of state update axioms thus

6 Actions may of course have both positive and negative effects at the same time, in which case the component Γ
of a state update axiom combines the schemes for initiating and terminating fluents. This general case is
dealt with in Section 3.

7 which, since State(S2) = Alive(Nephew)◦Alive(Aunt)◦z implies that Holds(Alive(Aunt), S2), leads directly
to the resolution of the murder mystery: Along with the statement of the witness, ¬Holds(Alive(Aunt), S2),
the formula above logically entails the explanation that Holds(Poisoned(Milk), S0).
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provides a solution to both the representational and the inferential aspect of the Frame Problem
which is capable of dealing with incomplete knowledge about world states.

3 The General Method

Having illustrated the design and use of state update axioms by example, in this section we will
present a general, fully mechanic procedure by which is generated a suitable set of state update
axioms from a given collection of Situation Calculus effect axioms, like (1) and (2). One restric-
tion turns out necessary for our method to be feasible, namely, actions may not potentially have
infinitely many effects, or so-called open effects. An example of a violation of this assumption is
the following effect axiom, which specifies an open effect: ∀x, y, s. Bomb(x) ∧Nearby(x, y, s) ⊃
Destroyed(y,Do(Explodes(x), s)). Even after instantiating the action expression Explodes(x)
and the situation term s, the effect literal still carries a variable, y, so that the action may have
an infinite number of effects. State update axioms for actions with open effects are discussed in
Section 5.

We consider a standard Situation Calculus signature, which is a many-sorted first-order lan-
guage that includes the sort sit for situations. Positive effect specifications are of the following
form, where A denotes an action and F a fluent:

ε+A,F (~x, s) ⊃ F (~y,Do(A(~x), s)) (18)

Here, ε is a first-order formula whose free variables are among ~x, s; and ~y contains only vari-
ables from ~x. Notice that it is the very last restriction which ensures that the effect specification
does not describe an open effect: Except for the situation term, all arguments of the effect F
are bound by the action term A(~x). Likewise, negative effect specifications are of the form,

ε−A,F (~x, s) ⊃ ¬F (~y,Do(A(~x), s)) (19)

where again ε is a first-order formula whose free variables are among ~x, s and where ~y contains
only variables from ~x. Our two effect axioms at the beginning of Section 2.1, for instance, fit this
scheme, namely, by equating ε+Mix ,Poisoned (p, x, y, s) with Poisoned(x, s) and ε−Drink ,Alive(p, x, s)
with Alive(p, s) ∧ Poisoned(x, s). We assume that a given set E of effect axioms is consistent
in that for all A and F the assumption of unique names entails,

¬∃~x, s [ ε+A,F (~x, s) ∧ ε−A,F (~x, s) ] (20)

Fundamental for any attempt to solve the Frame Problem is the assumption that a given
set of effect axioms is complete in the sense that all relevant effects of all involved actions are
specified.8 Our concern, therefore, is to derive state update axioms from a given set of effect
specifications in such a way that the assumption of completeness is suitably reflected by the
resulting axioms. The following instance of scheme (14) is the general form of state update
axioms for deterministic actions with only direct effects:

∆(s) ⊃ State(Do(A, s)) ◦ ϑ− = State(s) ◦ ϑ+

where ϑ− are the negative effects and ϑ+ the positive effects, respectively, of action A under
condition ∆(s). The main challenge for the design of these state update axioms is to make sure

8 If actions have additional, indirect effects, then this gives rise to the so-called Ramification Problem; see
Section 4.2.
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that condition ∆ is strong enough for the equation in the consequent to be sound. Neither
must ϑ+ include a fluent that already holds in situation s (for this would contradict the
foundational axiom about multiple occurrences, (16)), nor should ϑ− specify a negative effect
that is already false in s (for then EUNA implies that the equation be false). This is the
motivation behind step 1 and 2 of the procedure below. The final and main step 3 reflects
the fact that actions with conditional effects require more than one state update axiom, each
applying in different contexts:

1. Rewrite to ε+A,F (~x, s) ∧ ¬F (~y, s) ⊃ F (~y,Do(A(~x), s)) each positive effect axiom of the
form (18).

2. Similarly, rewrite to ε−A,F (~x, s)∧F (~y, s) ⊃ ¬F (~y,Do(A(~x), s)) each negative effect axiom
of the form (19).

3. For each action A, let the following n ≥ 0 axioms be all effect axioms thus rewritten
(positive and negative) concerning A:

ε1(~x, s) ⊃ F1(~y1,Do(A(~x), s)), . . . , εm(~x, s) ⊃ Fm(~ym,Do(A(~x), s))

εm+1(~x, s) ⊃ ¬Fm+1(~ym+1,Do(A(~x), s)), . . . , εn(~x, s) ⊃ ¬Fn(~yn,Do(A(~x), s))

For any pair of subsets I+ ⊆ {1, . . . ,m}, I− ⊆ {m+1, . . . , n} (including the empty ones)
introduce the following state update axiom:9∧

i∈I+∪I− HOLDS (εi(~x, s)) ∧
∧
j 6∈I+∪I− HOLDS (¬εj(~x, s))

⊃ State(Do(A(~x), s)) ◦ ϑ I− = State(s) ◦ ϑ I+
(21)

where ϑ I− is the term F1 ◦ . . . ◦ Fk if {F1, . . . , Fk} = {Fi(~yi) : i ∈ I−} and, similarly,
ϑ I+ is the term F1 ◦ . . . ◦ Fk if {F1, . . . , Fk} = {Fi(~yi) : i ∈ I+}.10

Step 3 blindly considers all combinations of positive and negative effects. Some of the state
update axiom thus obtained may have inconsistent antecedent, in which case they can be re-
moved. To illustrate the interaction of context-dependent positive and negative effects, we apply
our procedure to two effect axioms which encode the Yale Shooting scenario [14]:11

Loaded(x, s) ⊃ Dead(y,Do(Shoot(x, y), s))
true ⊃ ¬Loaded(x,Do(Shoot(x, y), s))

After rewriting according to steps 1 and 2, step 3 produces four state update axioms, viz.

¬ [ Holds(Loaded(x), s) ∧ ¬Holds(Dead(y), s) ] ∧ ¬ [ true ∧Holds(Loaded(x), s) ]
⊃ State(Do(Shoot(x, y), s)) ◦ ∅ = State(s) ◦ ∅

¬ [ Holds(Loaded(x), s) ∧ ¬Holds(Dead(y), s) ] ∧ true ∧Holds(Loaded(x), s)
⊃ State(Do(Shoot(x, y), s)) ◦ Loaded(x) = State(s) ◦ ∅

Holds(Loaded(x), s) ∧ ¬Holds(Dead(y), s) ∧ ¬ [ true ∧Holds(Loaded(x), s) ]
⊃ State(Do(Shoot(x, y), s)) ◦ ∅ = State(s) ◦Dead(y)

Holds(Loaded(x), s) ∧ ¬Holds(Dead(y), s) ∧ true ∧Holds(Loaded(x), s)
⊃ State(Do(Shoot(x, y), s)) ◦ Loaded(x) = State(s) ◦Dead(y)

9 Below, we use the notation HOLDS(Ψ) to denote the formula that results from transforming a Situation
Calculus-style formula Ψ into its reified counterpart, which is obtained by replacing each fluent atom P (~τ, σ)
by Holds(P (~τ), σ).

10 Thus ϑ I− contains the negative effects and ϑ I+ the positive effects specified in the update axiom. If either
set is empty then the respective term is the unit element, ∅.

11 Below, the fluents Loaded(x) and Dead(y) mean that gun x is loaded and animal y is dead, respectively,
and Shoot(x, y) represents the action of shooting with x at y .
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Logical simplification of the premises of the first two axioms yields,

¬Holds(Loaded(x), s) ⊃ State(Do(Shoot(x, y), s)) = State(s)
Holds(Dead(y), s) ∧Holds(Loaded(x), s) ⊃ State(Do(Shoot(x, y), s)) ◦ Loaded(x) = State(s)

The third axiom can be abandoned because of an inconsistent antecedent, while the fourth axiom
simplifies to

Holds(Loaded(x), s) ∧ ¬Holds(Dead(y), s)
⊃ State(Do(Shoot(x, y), s)) ◦ Loaded(x) = State(s) ◦Dead(y)

(The interested reader may verify that applying the general procedure to our effect axioms (1)
and (2) yields four axioms which, after straightforward simplification, turn out to be (15)
and (17), respectively.)

The following primary theorem for the Fluent Calculus shows that the resulting set of state
update axioms correctly reflects the effect axioms if the fundamental completeness assumption
is made (see the appendix for a proof).

Theorem 1 Consider a finite set E of effect axioms which complies with the assumption of
consistency (c.f. (20)), and let SUA be the set of state update axioms for E . Suppose M is a
model of SUA∪{(13), (16)}∪EUNA,12 and consider a fluent term F (~τ), an action term A(~ρ ),
and a situation term σ. Then M |= Holds(F (~τ),Do(A(~ρ ), σ)) iff

1. M |= ε+A,F (~ρ, σ), for the instance ε+A,F (~ρ, σ) ⊃ F (~τ ,Do(A(~ρ ), σ)) of some axiom in E ;

2. or M |= Holds(F (~τ), σ) and there is no instance ε−A,F (~ρ, σ) ⊃ ¬F (~τ ,Do(A(~ρ ), σ)) of an

axiom in E such that M |= ε−A,F (~ρ, σ).

Our theorem coincides with the main result of [34] concerning the collection of successor state
axioms obtained from a given set of positive and negative effect specifications. This shows
that provided no open effects occur, the state update axioms, by which is solved the additional
inferential Frame Problem, express essentially the same as successor state axioms.

4 Extensions

In the following we briefly discuss how the concept of state update axioms is amenable to two
important ontological extensions, namely, nondeterministic actions and ramifications.

4.1 Nondeterministic Actions

Nondeterministic actions can be very elegantly specified by means of disjunctive state update
axioms ∆(s) ⊃ Γ[State(Do(A, s)),State(s)], where Γ is a disjunction of the possible effects,
i.e., state updates, of the respective action. The following two axioms, for instance, specify the

12 Recall that EUNA, the extended unique names assumption, axiomatizes equality and inequality of terms with
the function “ ◦ ”.
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alternative outcomes of tossing a coin x in terms of the fluent Heads(x):

¬Holds(Heads(x), s) ⊃ State(Do(Toss(x), s)) = State(s) ◦Heads(x)
∨
State(Do(Toss(x), s)) = State(s)

Holds(Heads(x), s) ⊃ State(Do(Toss(x), s)) ◦Heads(x) = State(s)
∨
State(Do(Toss(x), s)) = State(s)

That is, if Heads(x) is false in situation s, then it may or may not become true by performing
Toss(x); whereas if it is true, then it may or may not become false. Generally, disjunctive
state update axioms have the same flavor as disjunctions of successor state axioms to encode
nondeterministic actions in the Situation Calculus [23].

4.2 Ramifications

The Ramification Problem [10] denotes the problem of handling indirect effects of actions. These
effects are not explicitly represented in action specifications but follow from general laws, so-
called state constraints, describing dependencies among fluents. Approaches based on the idea
of causal propagation [42, 35] are the most general solution to the Ramification Problem known
today. The theory of causal relationships [42, 44] furnishes a ready approach to accommodate
indirect effects in state update axioms. As an example, we consider the extension of the Yale
Shooting domain by the state constraint Walking(y) ⊃ ¬Dead(y). The state constraint itself is
straightforwardly axiomatized as,

Holds(Walking(y), s) ⊃ ¬Holds(Dead(y), s) (22)

As argued in [1], this constraint gives rise to the indirect effect that the turkey stops walking
as soon as it is shot. More precisely, if both Walking(Turkey) and ¬Dead(Turkey) happen to
be true when an action is performed which causes Dead(Turkey), then this action additionally
causes ¬Walking(Turkey). Such indirect effects can be accounted for by the successive appli-
cation of so-called causal relationships. Their axiomatization is based on defining a predicate
Causes(state, effects,new state,new effects), which means that in the current state state the
occurred effects effects give rise to an additional, indirect effect resulting in the updated state
new state and the updated current effects new effects . In this way, the indirect effect in the
example is accommodated via the following definition:

Causes(state, effects,new state,new effects) ≡ ∃z. effects = Dead(y) ◦ z ∧
new state ◦Walking(y) = state ∧
new effects = effects ◦ −Walking(y)

where a sub-term −F represents the occurrence of a negative effect. From this definition we
can derive, for instance, that whenever the turkey is dead but still walking after an action
has occurred with the effects −Loaded(Gun) and Dead(Turkey), then −Walking(Turkey) is
additionally caused; that is, formally,

Causes(Dead(Turkey) ◦Walking(Turkey) ◦ z, −Loaded(Gun) ◦Dead(Turkey),
Dead(Turkey) ◦ z, −Loaded(Gun) ◦Dead(Turkey) ◦ −Walking(Turkey))

State update axioms which account for indirect effects are of the form,

∆(s) ⊃ [ z ◦ ϑ− = State(s) ◦ ϑ+ ⊃ Ramify(z, −ϑ− ◦ ϑ+, State(Do(A, s))) ] (23)
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where

• ϑ− are the negative direct effects;

• ϑ+ are the positive direct effects;

• Ramify(state, effects,new state) means that the successive application of (zero or more)
causal relationships to state state and effects effects results in state new state .

As in [42], the definition of the predicate Ramify requires a standard second-order axiom to
characterize the reflexive and transitive closure of Causes . The axioms which encode the under-
lying state constraints, such as (22), guarantee that the overall resulting state, State(Do(A, s))
in (23), satisfies all constraints. In this way, the state update axiom,

Holds(Loaded(x), s) ∧ ¬Holds(Dead(y), s)
⊃ z ◦ Loaded(x) = State(s) ◦Dead(y)
⊃ Ramify(z,−Loaded(x) ◦Dead(y),State(Do(Shoot(x, y), s)))

in conjunction with the axioms above, including the definition of Ramify in terms of Causes ,
entails Holds(Loaded(Gun), S0) ⊃ ¬Holds(Walking(Turkey),Do(Shoot(Gun,Turkey), S0)).

5 Discussion

Starting with the concept of successor state axioms as a solution to the representational aspect of
the Frame Problem, we have derived a novel version of the Fluent Calculus by gradually applying
the principle of reification in order to solve the inferential Frame Problem. The intermediate
approach, an alternative form of successor state axioms, roots in the axiomatization technique
of [20] in a similar way as the foundations for the original successor state axioms were laid
in [13, 37]. In fact, the conjunction of all axioms (8) for a domain plus a complete specification
of an initial state in the flavor of axiom (11) is equivalent to Clark’s completion [7] of the
corresponding logic programming clauses used in [20]. A restricted version of the second form
of successor state axioms has previously been used in [28] to axiomatize Strips domains using
the Situation Calculus. The version of the Fluent Calculus we arrived at in this paper differs
considerably from its roots [15], e.g. in that it exploits the full expressive power of first-order
logic. In so doing it is much closer to the variant introduced in [42], but still novel is the notion
of state update axioms. In particular the new function State(s) lends more elegance to effect
specifications and at the same time emphasizes the relation to the Situation Calculus.

We have demonstrated the expressive power of state update axioms by proving that, much
like in [34], a suitable collection of these axioms can be automatically derived from a complete
(wrt. the relevant fluents and actions) set of single effect axioms, provided actions have no
open effects. A state update axiom formalizes an equational relation between the states at
two consecutive situations. These equations being perfectly symmetric, a state update axiom
can be used equally for reasoning forward and backward in time. The versatility of the Fluent
Calculus promises it to be applicable to more complex problems of reasoning about actions. We
have substantiated this expectation by illustrating how the concept of state update axioms is
applicable to problems which involve nondeterministic actions and actions with indirect effects.

The problem of action preconditions has been ignored in this paper for the sake of clarity.
Their dealing with requires no special treatment in the new Fluent Calculus since each Situation
Calculus assertion about what holds in a situation corresponds directly to a Fluent Calculus
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assertion via the fundamental relation (13). The restriction to actions without open effects, on
the other hand, is inevitable if one aims at an explicit description of the direct effects. Open
effects can only implicitly be specified in state update axioms, as is done in this example axiom:

∀s, x, ϑ+. Bomb(x) ⊃

 ∀f, y
[
f = Destroyed(y) ∧Holds(Nearby(x, y), s) ∧ ¬Holds(f, s)

≡ ∃z. ϑ+ = f ◦ z

]
⊃ State(Do(Explodes(x), s)) = State(s) ◦ ϑ+


in which the positive effect of the action, ϑ+, is defined rather than explicitly given. It lies in
the nature of open effects that a suitable state update axiom provides just an implicit definition
of the required update and so does no longer solve the inferential Frame Problem at the point
where such an action is performed—but of course it still covers the representational aspect.

Moving from Situation Calculus to Fluent Calculus involves the introduction of the equational
theory AC1. While the simple addition of equality axioms may constitute a considerable handi-
cap for theorem proving, a variety of efficient constraint solving algorithms have been developed
for the particular equational theory needed for the function “ ◦ ”; for a survey see [32]. Solving
the inferential Frame Problem by means of state update axioms relies on the fact that the latter
always cover the entire change an action causes. The tradeoff is that the number of update
axioms is, in the worst case, exponentially larger than the number of single effect axioms. How-
ever, this is perfectly acceptable as long as we can assume that actions have very few effects
compared to the overall number of fluents. This assumption, in fact, plays an almost axiomatic
role in commonsense reasoning about actions:

Yet, in practice, people teach each other rather quickly what actions normally do to the world,
people predict the consequences of any given action without much hustle, and AI researchers
are writing languages for actions as if it is a God given truth that action representations
should be compact, elegant and meaningful. Why? [. . .] Because the actions we normally
invoke in common reasoning tasks are local surgeries. The world consists of a huge number
of autonomous and invariant linkages [. . .], each corresponding to a physical process that
constrains the behavior of relatively small groups of variables. ([33], p. 3.)

The essential motivation for using the Fluent Calculus is that state update axioms provide
a solution not only to the representational Frame Problem, since they talk exclusively about
effects, but also to the inferential Frame Problem, since one such axiom always specifies the
entire relation between two consecutive situations. The inferential aspect of the Frame Problem
concerns each single fluent needed by the proof of a theorem in a situation other than the one
where it is given or arises. In the Situation Calculus, for instance, this holds regardless of whether
successor state axioms are used for reasoning forward in time or as a basis for regression [34]. If
all fluents are needed in exactly the situations they are given or obtained, then the inferential
Frame Problem causes no computational burden at all and the presence of EUNA in the Fluent
Calculus only adds to the computational complexity. However, the more fluents need to be
carried unchanged through many intermediate situations, the more valuable can be a solution
to the inferential Frame Problem. It remains a topic for future research to determine for which
problem classes and precisely to what extent the solution to the inferential Frame Problem
offered by the Fluent Calculus leads to gains in efficiency when modeling dynamic systems.
This includes the hope that the Fluent Calculus can be employed to improve current techniques
of planning by local search along the line of [18], which just as well have to cope with the Frame
Problem and, to this end, employ techniques on which also successor state axioms are based.
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A Technical details

Appendix A.1 contains the formal underpinnings and justification for the alternative form of
successor state axioms of Section 2.2. Appendix A.2 contains the formal underpinnings of the
Fluent Calculus and the proof of the primary theorem.

A.1 Reification (I)

Let Σ be a standard signature for Situation Calculus, that is, a many-sorted first-order language
with equality which includes the special sort sit for situations. Some predicate symbols in Σ
are fluent denotations; these are of arity ≥ 1 with the last argument being of sort sit . The
corresponding reification signature ΣHolds is obtained from Σ by

1. replacing each n + 1-place predicate symbol which denotes a fluent and whose argument
is of sort sorts × sit by an n-place function symbol whose argument is of sort sorts ;

2. adding a sort fluent , to which belong all well-sorted terms with leading function symbol
obtained in step 1;

3. adding the binary predicate Holds , whose argument is of sort fluent × sit .

The additional sort fluent in signature ΣHolds allows formulas like ∃f.Holds(f, S0), which
have no natural correspondence in Σ. We will discard such cases and only consider what we
call conventional formulas over ΣHolds , in which no variables of sort fluent occur. Then each
formula φ over Σ has a natural, conventional counterpart over ΣHolds , which is obtained by
replacing, in φ, each fluent atom P (~τ , σ) by Holds(P (~τ), σ). Conversely, each conventional ψ
over ΣHolds corresponds to a formula over Σ.

This way of reifying fluents is justified (a) by the observation that each interpretation for
the original signature Σ corresponds to some interpretation for the modified ΣHolds and vice
versa, and (b) by the fact that corresponding interpretations interpret corresponding formulas
alike. To prove this formally, we define two interpretations I, ζ and J , ξ for Σ and ΣHolds ,
respectively, as corresponding iff the following holds:

1. The domains of I and J are identical except for arbitrary domain elements of sort fluent
additionally contained in the domain of J .

2. The variable assignments ζ and ξ are identical except for arbitrary additional assignments
to variables of sort fluent in ξ.

3. I and J agree on the interpretation of the predicate symbols in Σ which do not denote
a fluent.

4. I and J agree on the interpretation of the function symbols in Σ.

5. Whenever P is an n+ 1-place fluent denotation in Σ and ~d, dn+1 are domain elements
of the right sort (that is, in particular, dn+1 is of sort sit ), then the following holds: Let
d be the domain element of sort fluent which results from applying to ~d the n-place
function by which J interprets P . Then (~d, dn+1) ∈ P I iff (d, dn+1) ∈ HoldsJ .
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Now, suppose I, ζ is an interpretation for Σ, then a corresponding interpretation J , ξ for
ΣHolds can be obtained by adding a domain element of sort fluent for each n+ 1-place fluent
denotation P and each n-tuple ~d of the right sort, and by setting the functional assignment PJ

and the relation HoldsJ in the right way. Conversely, each interpretation J , ξ for ΣHolds can
be mapped onto a corresponding interpretation I, ζ for Σ. The significance of this observation
lies in the fact that corresponding interpretations interpret corresponding formulas alike:

Proposition 2 Let Σ be a signature and ΣHolds the corresponding reification signature.
Let I, ζ be an interpretation for Σ and J , ξ an interpretation for ΣHolds so that the two
correspond. Furthermore, let φ be formula over Σ and ψ a conventional formula over ΣHolds

so that the two correspond. Then I, ζ |= φ iff J , ξ |= ψ.

Proof: If A is a non-fluent atom over Σ, then I, ζ |= A iff J , ξ |= A since the two
interpretations agree on all relevant variable assignments, on all non-fluent predicate symbols,
and on all function symbols in Σ. If P (~τ , σ) is a fluent atom of Σ, then I, ζ |= P (~τ , σ)
iff J , ξ |= Holds(P (~τ), σ) according to the definition of corresponding interpretations. Like-
wise, if Holds(P (~τ), σ) is a conventional atom over ΣHolds , then I, ζ |= P (~τ , σ) iff J , ξ |=
Holds(P (~τ), σ). With these three base cases the claim follows by straightforward structural
induction.

It is an immediate consequence of these results that a set of formulas over Σ entails a formula
over this signature if and only if the set of corresponding formulas over ΣHolds entails the
corresponding formula, and vice versa provided only conventional formulas over ΣHolds are
considered.

A.2 Reification (II)

Let Σ be a standard signature for Situation Calculus as above. The corresponding Fluent
Calculus signature ΣFC is obtained from Σ by

1. replacing each n + 1-place predicate symbol which denotes a fluent and whose argument
is of sort sorts × sit by an n-place function symbol whose argument is of sort sorts ;

2. adding the constant ∅ and the binary function symbol ◦;

3. adding a sort fluent , to which belong all well-sorted terms with leading function symbol
obtained in step 1, and a sort state , which is the least set to which belong the constant ∅,
each fluent , and each t1 ◦ t2 where t1, t2 are of sort state ;

4. adding the unary function State , whose argument is of sort sit .

Notice that a Fluent Calculus signature does not include the predicate Holds , which is merely
a macro standing for an equality sentence (c.f. (13)).

Fundamental for any Fluent Calculus axiomatization is the axiom set EUNA (the extended
unique names-assumption) [16]. Its definition relies on a complete AC1-unification algorithm
(see, e.g., [6]), and it comprises the following equational axioms:

1. The axioms AC1 for ◦ and ∅,

(x ◦ y) ◦ z = x ◦ (y ◦ z)
x ◦ y = y ◦ x
x ◦ ∅ = x
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All variables are universally quantified.

2. For any two terms t1 and t2 of sort other than state and with variables ~x,

(a) if t1 and t2 are not unifiable, then

¬∃~x. t1 = t2

(b) if t1 and t2 are unifiable with mgu θ, then

∀~x [ t1 = t2 ⊃ ∃~y. θ= ]

where ~y denotes the variables which occur in θ= but not in ~x .13

3. For any two terms t1 and t2 of sort state and with variables ~x,

(a) if t1 and t2 are not AC1-unifiable, then

¬∃~x. t1 = t2

(b) if t1 and t2 are AC1-unifiable with the complete set of unifiers cUAC1(t1, t2), then

∀~x

 t1 = t2 ⊃
∨

θ∈cUAC1(t1,t2)

∃~y. θ=


where ~y denotes the variables which occur in θ= but not in ~x .

The axioms of item 3, in conjunction with the standard uniqueness of names-assumption in
item 2, ensure that EUNA is unification complete [17, 41] wrt. state terms and the equational
theory AC1. The latter axiomatizes the arbitrary re-arranging of the fluent terms that occur in
a state term; hence, the following observation, which will be needed below, is a consequence of
EUNA being AC1-unification complete:

Observation 3 Let I, ζ be an interpretation for ΣFC such that I, ζ |= EUNA, and consider
two state terms t1 and t2. Then I, ζ |= ∃z. t1 = t2◦z iff each fluent term occurs n ≥ m-times
in t1 if it occurs m ≥ 1-times in t2.

A.3 Proof of Theorem 1

We are now prepared to prove our main result.

Theorem 1 Consider a finite set E of effect axioms which complies with the assumption of
consistency (c.f. (20)), and let SUA be the set of state update axioms for E . Suppose M is a
model of SUA ∪ {(13), (16)} ∪ EUNA, and consider a fluent term F (~τ), an action term A(~ρ ),
and a situation term σ. Then M |= Holds(F (~τ),Do(A(~ρ ), σ)) iff

1. M |= ε+A,F (~ρ, σ), for the instance ε+A,F (~ρ, σ) ⊃ F (~τ ,Do(A(~ρ ), σ)) of some axiom in E ;

2. or M |= Holds(F (~τ), σ) and there is no instance ε−A,F (~ρ, σ) ⊃ ¬F (~τ ,Do(A(~ρ ), σ)) of an

axiom in E such that M |= ε−A,F (~ρ, σ).

13 By θ= we denote the equational formula x1 = r1 ∧ . . . ∧ xn = rn constructed from the substitution
θ = {x1 7→ r1, . . . , xn 7→ rn} .
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Proof. According to (13), M |= Holds(F (~τ),Do(A(~ρ ), σ)) stands for

M |= ∃z [State(Do(A(~ρ ), σ)) = F (~τ) ◦ z ]

From Observation 3 it follows that the latter holds iff F (~τ) is contained in State(Do(A(~ρ ), σ)).
The state update axioms (21) in SUA for action A(~x) are designed in such a way that each
distribution of truth values of the members of {HOLDS (εi(~x, s)) : 1 ≤ i ≤ n} occurs as
antecedent of one, and only one, axiom. Hence, there is a unique state update axiom whose
antecedent, if instantiated with A(~ρ ) and σ, is true in M. We distinguish three cases:

1. If E contains some ε+A,F (~x, s) ⊃ F (~y,Do(A(~x), s)) such that M |= ε+A,F (~ρ, σ) and {~x \
~ρ} binds ~y to ~τ , and if M |= ¬Holds(F (~τ), σ), then F (~y) ∈ {Fi(~yi)}i∈I+ (wrt. the
state update axiom which applies; c.f. (21)). Moreover, consistency of E ensures that
F (~y) 6∈ {Fi(~yi)}i∈I− . Hence, F (~τ) occurs in ϑI+ but not in ϑI− and so is contained in
State(Do(A(~ρ ), σ)) according to Observation 3.

2. If E contains some ε−A,F (~x, s) ⊃ ¬F (~y,Do(A(~x), s)) such that M |= ε−A,F (~ρ, σ) and
{~x \ ~ρ} binds ~y to ~τ , and if M |= Holds(F (~τ), σ), then F (~y) ∈ {Fi(~yi)}i∈I− . Moreover,
consistency of E ensures that F (~y) 6∈ {Fi(~yi)}i∈I+ . Hence, F (~τ) occurs in ϑI− but not
in ϑI+ and so is not contained in State(Do(A(~ρ ), σ)) since it does not occur twice in
State(σ) according to foundational axiom (16) and Observation 3.

3. If no effect axiom of E at all for A(~ρ ) and F (~τ) applies in situation σ, or if a positive
one applies with F (~τ) being contained in State(σ) already, or a negative one applies with
F (~τ) not present in State(σ) already, then F (~τ) does not occur in {Fi(~yi)}i∈I+{~x \ ~ρ}
nor in {Fi(~yi)}i∈I−{~x \ ~ρ}. Hence, F (~τ) does not occur in ϑI+ nor in ϑI− and so is
contained in State(Do(A(~ρ ), σ)) iff so it is in State(σ) according to Observation 3.
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