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Abstract. In formal systems for reasoning about actions, the ramification problem denotes
the problem of handling indirect effects. These effects are not explicitly represented in ac-
tion specifications but follow from general laws describing dependencies among components of
the world state. An adequate treatment of indirect effects requires a suitably weakened ver-
sion of the general law of persistence. It also requires a method to avoid unintuitive changes
suggested by the aforementioned dependency laws. We propose a solution to the ramification
problem that uses directed relations between two single effects, stating the circumstances under
which the occurrence of the first causes the second. We argue for the necessity of an approach
based on causality by elaborating the limitations of common paradigms employed to handle
ramifications—the principle of categorization and the policy of minimal change. Our abstract
solution is realized on the basis of a particular action calculus, namely, the fluent calculus.
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1 Introduction

The ability to reason about changing environments, which involves predicting the effects of one’s
own actions and explaining observed phenomena, serves humans as a basis for understanding
the world to an extent sufficient to survive and to act intelligently in their habitat. Formal
approaches to model this ability have a long tradition in AI. This research area was initiated by
McCarthy [30], who claimed that reasoning about actions plays a fundamental role in common
sense.

Drawing conclusions about dynamic environments is grounded on formal specifications of
what effects are caused by the execution of a particular action. Since it is obviously infeasible
to provide an exhaustive description defining the result of executing an action in each possible
state of the world, action specifications should be restricted to the part of the world that they
affect—while the rest of the world is subject to the law of persistence, i.e., is assumed to remain
stable. Yet even this approach becomes unmanageable in complex domains if one tries to put
all effects into a single, complete specification. Although an action may cause only a small
number of direct changes, they in turn may initiate a long chain of indirect effects that can be
hard to foresee. For instance, consider the action of toggling a switch, which in the first place
causes nothing but a change of the switch’s position. However, the switch may be part of an
electric circuit so that, say, some light bulb is turned off as a side effect, which in turn may
cause someone to hurt himself in a suddenly darkened room by running against a chair that, as
a consequence, falls into a television set whose implosion activates the fire alarm and so on and

1 On leave from FG Intellektik, TH Darmstadt
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Figure 1: An electric circuit consisting of a battery, two switches, and a light bulb, which is
on if and only if both switches are closed. The respective state of each of the three dynamic
components involved is described by a unique propositional constant, where negation is denoted
by a bar on top of the respective symbol.

so forth.2

The task, then, is to design a framework to formalize action scenarios where action specifica-
tions are not assumed to completely describe all possible effects. This is called the ramification
problem.3 A satisfactory solution to this problem requires a successful treatment of the following
two major issues.

First, we need an appropriately weakened version of the aforementioned law of persistence
that applies only to those parts of the world description that are unaffected by the action’s direct
and indirect effects. As a solution to this problem, we suggest keeping the law of persistence
as it stands while considering the world description obtained through its application merely as
an intermediate result. Indirect effects are then accommodated by further reasoning until an
overall satisfactory successor state obtains. This method accounts perfectly both for rigorous
persistence of unaffected parts and for arbitrarily complex chains of indirect effects.

Second, indirect effects typically are consequences of additional, general knowledge of domain-
specific dependencies between world description components (usually called fluents)—but not
all effects suggested from this perspective are desirable from the standpoint of causality. As an
example, consider the simple electric circuit depicted in Figure 1, which consists of a battery,
two switches and a light bulb. The obvious connection between these components may formally
be described by the logic expression sw 1 ∧ sw 2 ≡ light , i.e., the light is on if and only if both
switches are on. Now suppose we toggle the first switch in the particular state displayed, where
both sw1 and light are false while sw 2 is true. Then, besides the direct effect of sw1 becoming
true, we also expect that the light bulb turns on. This indirect effect is inspired by the formula

2 A crucial question in this context concerns the distinction between indirect effects occurring during a single
world’s state transition step and those which deserve separate state transitions (also called delayed effects).
E.g., the above may not only be described as “the fire alarm is activated in the successor state after having
toggled the switch,” but also as, say, “the chair is falling in the successor state (and presumably hits the
television set during the next state transition).” As a reasonable, albeit informal, guidance we suggest a
single state transition should summarize what happens until someone, e.g. the reasoning agent himself, has
the possibility to intervene by acting again (stopping the chair from falling, for instance).

3 The naming was suggested in [15], inspired by [10]. The latter, however, was not devoted to the ramification
problem in exactly the above sense, contrary to what is often claimed; rather, this thesis describes how to
exploit logical consequences (called ramifications) of goal specifications in planning problems, with the aim
of restricting search space.
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just mentioned, which includes the implication sw1 ∧ sw2 ⊃ light . However, despite this being
the intuitively expected result, the mere knowledge of the connection between the switches and
the bulb is not sufficient: Notice that the above formula, sw 1 ∧ sw2 ≡ light , also entails the
implication sw 1 ∧ light ⊃ sw2 , which suggests that instead of the light being turned on, the
indirect effect of toggling the first switch is that the second one jumps its position—a result
which contradicts our intuition.

The reason for the inadequacy of merely taking into account formalizations of dependencies as
pure logical formulas—usually called domain constraints—is that these formulas do not include
causal information. More precisely, the implication sw1∧ light ⊃ sw2 is clearly true in any state
and, therefore, contains evidential information, that is, if one observes sw 1 to be true and light
to be false then it is safe to conclude that sw 2 is false. However, exploiting this implication for
reasoning about causality is misleading.4

As a solution to the second problem, we propose to incorporate causality in the form of
so-called causal relationships, which formalize statements like

A change of sw1 to sw 1 causes a change of light to light , provided sw 2 is true.

After computing the direct effects of executing an action in a particular state of the world,
we will apply suitable causal relationships, one by one, to accommodate indirect effects until a
satisfactory result obtains. Employing a collection of single causal relationships, each of which
only relates two particular effects, accounts for several indirect effects caused by a direct one and
also for indirect effects in turn causing further indirect effects. To illustrate the latter, consider
the relationship

A change of light to light causes a change of light-detector to light-detector , pro-
vided detector-activated is true.

in addition to the one above. Since we do not expect the designer of a formal domain specifica-
tion to create a complete set of suitable causal relationships, we will also present an automated
procedure to extract them from given domain constraints plus some general information specify-
ing which fluents may possibly influence other fluents. On the basis of a formal theory of actions
(to be defined in Section 2), causal relationships and their automatic generation are formally
introduced in Section 3.

Yet the purpose of this article is not only to suggest incorporating causal information by
means of our causal relationships but also to supply evidence that something like this approach
is inevitable when trying to cope with the ramification problem. To this end, in Section 5
we illustrate the limited expressiveness of existing paradigms aimed at handling ramifications,
namely, the principle of categorization and the policy of minimal change. Roughly speaking,
categorization-based approaches distinguish fluents that are more likely to change than other
fluents (e.g., a change of light is considered more likely than a change of sw2 ). However, we
will show that some fluents resist any unique categorization (Section 5.1). Even more common is
the assumption of minimal change, which amounts to rejecting a resulting state if it is obtained
by changing the values of strictly more fluents than necessary. While we will offer a formal
proof that our method captures all intuitively expected resulting states with minimal distance
to the original state (Section 4), in Section 5.2 we will illustrate that we are also able to find
non-minimal solutions, which are perfectly acceptable provided all changes are reasonable from
the standpoint of causality. On the basis of these observations, a detailed comparison with
related work can be found in the concluding discussion.

4 See [33] for a general discussion on the different natures of causal and evidential implications.
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In the second part of the paper, Section 6, we integrate the concept of causal relationships into
a particular action calculus, namely, the fluent calculus [19, 20]. While for the sake of simplicity
states are described via a set of propositional constants in the first part (see Section 2), our
calculus itself employs a more complex notion of fluent, which involves fluent formulas that
include quantification. The encoding will be proved correct wrt. the formal semantics induced
by causal relationships and their application as a solution to the ramification problem.

2 A Basic Theory of Actions

In the first part of the paper, we employ a suitably simple theory of actions and change, which
enables us to stress solely on the problem of domain constraints and ramifications. The basic
entities in this theory are states. A state is a snapshot of the underlying dynamic system, i.e.,
the part of the world being modeled, at a particular instant of time. Formally, we describe a
state by assigning truth-values to a fixed finite set of propositional constants.

Definition 1 Let F be a finite set of symbols called fluent names. A fluent literal is either
a fluent name f ∈ F or its negation, denoted by f . A set of fluent literals is inconsistent iff it
contains some f ∈ F along with f . A state is a maximal consistent set of fluent literals.

Notice that formally any combination of truth-values denotes a state, which, however, might be
considered impossible due to specific dependencies among some fluents (see below). Throughout
the paper we assume the following notational conventions: If ℓ is a fluent literal, then by |ℓ| we
denote its affirmative component, that is, |f | = |f | = f where f ∈ F . This notation extends
to sets of fluent literals S as follows: |S| = {|ℓ| : ℓ ∈ S} . E.g., for each state S we have
|S| = F . Furthermore, if ℓ is a negative fluent literal then ℓ should be interpreted as |ℓ| .

In other words, f = f . Finally, if S is a set of fluent literals then by S we denote the set
{ℓ : ℓ ∈ S} . E.g., F contains all negative fluent literals given a set F of fluent names.

Example 1 To model the electric circuit depicted in Figure 1, we use the three fluents F =
{sw 1, sw 2, light} to denote, respectively, the states of the two switches and the light bulb. The
current state displayed in Figure 1, for instance, is represented by {sw 1, sw 2, light} .

The elements of an underlying set of fluent names can be considered atoms for constructing
(propositional) formulas to allow for statements about states. Truth and falsity of such formulas
wrt. a particular state S are based on defining a literal ℓ to be true if and only if ℓ ∈ S .

Definition 2 Let F be a set of fluent names. The set of fluent formulas is inductively defined
as follows: Each fluent literal in F ∪ F and ⊤ (tautology) and ⊥ (contradiction) are fluent
formulas, and if F and G are fluent formulas then so are F ∧G , F ∨G , F ⊃ G , and F ≡ G .5

Let S be a state and F a fluent formula, then the notion of F being true (resp. false) in S

is inductively defined as follows:

1. ⊤ is true and ⊥ is false in S ;

2. a fluent literal ℓ is true in S iff ℓ ∈ S ;

3. F ∧ G is true in S iff F and G are true in S ;

5 As negation can be expressed through negative literals, we omit the standard connective “ ¬ ”. This is just
for the sake of readability as it avoids too many different forms of negation.
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4. F ∨ G is true in S iff F or G is true in S (or both);

5. F ⊃ G is true in S iff F is false in S or G is true in S (or both);

6. F ≡ G is true in S iff F and G are true in S , or else F and G are false in S .

Fluent formulas provide means to distinguish states that cannot occur due to specific depen-
dencies between particular fluents. Formulas which have to be satisfied in all states that are
possible in a domain are also called domain constraints.

Example 1 (continued) We employ the fluent formula sw1∧sw2 ≡ light as domain constraint
to model the intended relation between the two switches and the light bulb. This formula holds,
for instance, in the state depicted in Figure 1, viz. {sw 1, sw 2, light} , but is false in, say, the
state {sw 1, sw 2, light} .

The second basic entity in frameworks to reason about dynamic environments are actions,
whose execution causes state transitions. Again, since stress shall lie on the ramification problem
rather than on sophisticated methods of specifying the direct effects of actions, we employ a
suitably simple, Strips-style [9, 23] notion of action specification. Each action law consists of

• A condition C , which is a set of fluent literals all of which must be contained in the state
at hand in order to apply the action law.

• A (direct) effect E , which is a set of fluent literals, too, all of which hold in the resulting
state after having applied the action law.

For the sake of simplicity, we assume |C| = |E| (that is, condition and effect refer to the very
same set of fluent names). This enables us to obtain the state resulting from the direct effect by
simply removing set C from the state at hand and adding set E to it. This assumption does
not impose a restriction of expressiveness since we allow several laws for a single action.

Definition 3 Let F be a set of fluent names, and let A be a finite set of symbols, called
action names, such that F ∩ A = {} . An action law is a triple 〈C, a,E〉 where C , called
condition, and E , called effect , are consistent sets of fluent literals such that |C| = |E| ; and
a ∈ A .

If S is a state then an action law α = 〈C, a,E〉 is applicable in S iff C ⊆ S . The application
of α to S yields the state (S \ C) ∪ E .

Notice that S being a state, C and E being consistent, and |C| = |E| guarantee (S\C)∪E to
be a state again—not necessarily, however, one which satisfies the underlying domain constraints.
Notice also that it is possible to construct a set of action laws which contains more than one
applicable law for an action name and a state. This can be used to describe actions with
non-deterministic effect.6

6 Suppose, as an example, that a gun non-deterministically gets loaded or not when spinning its cylinder [38].
This may be formalized by the two action laws 〈{}, spin, {}〉 and 〈{loaded}, spin, {loaded}〉 . Both of them
are applicable in the state {loaded} , which suggests two possible outcomes, viz. {loaded} and {loaded} .
See [45] for details on how to represent and reason about non-deterministic actions on this basis.
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Example 1 (continued) Suppose our Electric Circuit domain allows for two actions, namely,
toggling either switch. These actions are represented by the action names toggle1 and toggle2 ,
respectively, along with the four action laws

〈 {sw 1} , toggle1 , {sw1} 〉 〈 {sw 2} , toggle2 , {sw 2} 〉

〈 {sw 1} , toggle1 , {sw1} 〉 〈 {sw 2} , toggle2 , {sw 2} 〉
(1)

That is, the only direct effect of these actions is a change of the respective switch’s position.
When executing, say, toggle1 in the state S = {sw 1, sw 2, light} , then the first of the above laws
is applicable due to {sw 1} ⊆ S . Its application yields

(S \ {sw 1}) ∪ {sw 1} = {sw 1, sw 2, light}

Notice that our domain constraint sw1 ∧ sw2 ≡ light is false in the resulting state.

Our example illustrates that a state obtained through the application of an action law may
violate the underlying domain constraints since only direct effects have been specified. In the
next section, we develop a method to further modify such a preliminarily resulting, impossible
state in order to account for additional, indirect effects.

3 Causal Relationships

The ramification problem arises as soon as it does not suffice to compute the direct effects
of actions. This is the case whenever the resulting collection of fluent literals violates un-
derlying domain constraints, which in turn give rise to additional, indirect effects. In theory,
we could of course compile all conceivable indirect effects into action laws by exploiting the
fact that an arbitrary number of different laws for a single action can be formulated. For
instance, in our running example we could replace 〈{sw 1}, toggle1, {sw 1}〉 by the two laws
〈{sw 1, sw 2, light}, toggle1, {sw 1, sw 2, light}〉 and 〈{sw 1, sw 2, light}, toggle1, {sw 1, sw 2, light}〉 . If
now toggle1 is applied to the state {sw 1, sw2, light} , then we obtain the desired result, viz.
{sw 1, sw 2, light} . However, this procedure bears two major problems which demonstrate its
inadequacy. First, it may require an enormous number of action laws to account for every
possible combination of indirect effects. Consider, for example, a model of an electric circuit
where a distinguished switch is involved in n sub-circuits each of which additionally contains
a switch-bulb pair in a similar fashion as in Example 1. Defining all effects of toggling the
separate switch solely by means of action laws would then require 2n+1 different laws, one for
each possible combination of truth-values assigned to the switch being operated and the other n

switches. The second problem with exhaustive action laws is that the introduction of a new
domain constraint may cause, in the worst case, a re-definition of the entire set of action laws
used before.

3.1 Applying Causal Relationships

As a consequence of the above observations, we keep the given action laws but regard a state
obtained after having computed the direct effect merely as intermediate. Any single indirect
effect is then obtained according to a directed causal relation between specific fluents. For
instance, having as direct effect a change of the first switch into its upper position in the state
depicted in Figure 1, this is regarded as additionally causing the light bulb to change its state
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also, for the second switch is on. We will formalize causal relationships of this kind by expressions
like

sw1 causes light if sw2 (2)

Formally, such expressions operate on state-effect pairs (S,E) where S is the current collection
of fluent literals and E contains all (direct or indirect) effects that have been considered so far.
E.g., let S = {sw 1, sw 2, light} be the state obtained after having computed the direct effect of
toggle1 , as described in the preceding section, then E = {sw 1} . The causal relationship formal-
ized in (2) gives rise to the indirect effect light , which supersedes light in S . This new effect
is added to E . Altogether, this results in the state-effect pair ({sw 1, sw 2, light}, {sw 1, light}) .

The reason for maintaining the second component, E , is that identical intermediate states S

can be reached by different sets of effects E , each of which may require a different, sometimes
opposite treatment. Suppose, as an example, there are two switches which are mechanically
connected (say, through a spring) such that they cannot be closed simultaneously. The corre-
sponding domain constraint, sw1 ∨ sw2 , gives rise to two causal relationships, viz.

sw1 causes sw2 if ⊤ (3)

sw2 causes sw1 if ⊤ (4)

Now, toggling the first switch in the state {sw 1, sw 2} yields the intermediate state {sw 1, sw 2}
if we apply the corresponding action law in (1). The very same intermediate state is obtained
by toggling the second switch in the state {sw 1, sw 2} . Yet the intended outcomes differ consid-
erably: In the first case, the final result should be {sw 1, sw 2} , while {sw 1, sw 2} is expected in
the second case. This distinction can only be achieved by referring to the differing direct effects,
{sw 1} and {sw 2} . The former enables only the application of (3) to the intermediate result,
{sw 1, sw 2} , the latter only the application of (4). In both cases, this leads to the desired unique
successor state.7

The formal definition of causal relationships and their application is as follows:

Definition 4 Let F be a set of fluent names. A causal relationship is an expression of the
form ε causes ̺ if Φ where Φ is a fluent formula based on F and ε and ̺ are fluent literals.

Let (S,E) be a pair consisting of a state S and a set of fluent literals E , then a causal
relationship ε causes ̺ if Φ is applicable to (S,E) iff Φ ∧ ̺ is true in S and ε ∈ E . Its
application yields the pair (S′, E′) where S′ = (S \ {̺}) ∪ {̺} and E′ = (E \ {̺}) ∪ {̺} .

Let R be a set of causal relationships, then by (S,E)  R (S′, E′) we denote the existence
of an element in R whose application to (S,E) yields (S′, E′) .

In words, a causal relationship is applicable if the associated condition Φ holds, the particular
indirect effect ̺ is currently false, and its cause ε is among the current effects. Notice that
if S is a state and E is consistent, then (S,E)  R (S′, E′) implies that S′ is a state and
E′ is consistent, too.8 In what follows, we say that a sequence of causal relationships r1, . . . , rn

is applicable to a pair (S0, E0) iff there exist pairs (S1, E1), . . . , (Sn, En) such that for each
1 ≤ i ≤ n , ri is applicable to (Si−1, Ei−1) and yields (Si, Ei) . We adopt a standard notation

7 Other examples that require taking into account how an intermediate state is obtained will be discussed in
Sections 3.3 and 5.3.

8 In order to guarantee consistency of E′ , we remove the negation ̺ from E prior to adding ̺ . This is
necessary because ̺ may have been generated as a direct or indirect effect before, which has to be withdrawn.
An example where this situation occurs will be discussed below, in Section 5.2.
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in writing (S,E)
∗
 R (S′, E′) to indicate the existence of a (possibly empty) sequence of causal

relationships in R which is applicable to (S,E) and yields (S′, E′) .
Now suppose we are given a suitable set of causal relationships and have obtained a set of

fluent literals S after having computed the direct effects of an action via Definition 3. State S

may violate the underlying domain constraints. In order to obtain a satisfactory resulting
state, we compute additional, indirect effects by (non-deterministically) selecting and (serially)
applying causal relationships. If this procedure eventually results in a state satisfying the domain
constraints, then this is called a successor state.

Definition 5 Let F be a set of fluent names, A a set of action names, L a set of action
laws, D a set of domain constraints, and R a set of causal relationships. Furthermore, let S

be a state satisfying D , and let a ∈ A be an action name. A state S′ is a successor state of S

and a iff there exists an applicable (wrt. S ) action law 〈C, a,E〉 ∈ L such that

1. ((S \ C) ∪ E,E)
∗
 R (S′, E′) for some E′ , and

2. S′ satisfies D .

Example 1 (continued) An adequate set of causal relationships for our Electric Circuit
domain consists in the following four elements:

sw1 causes light if sw2 sw2 causes light if sw 1

sw1 causes light if ⊤ sw2 causes light if ⊤
(5)

In words, if either switch gets closed, then this causes the light bulb to turn on provided the
other switch is already on. Conversely, opening either switch results in a dark bulb regardless
of the other switch.

Applying the first action law in (1) to the state depicted in Figure 1, viz. {sw 1, sw 2, light} ,
yields the state-effect pair ({sw 1, sw 2, light}, {sw 1}) . Then the first of the given causal rela-
tionships is applicable, and its application results in ({sw 1, sw 2, light}, {sw 1, light}) . The first
component of this pair satisfies the underlying domain constraint, sw1 ∧ sw2 ≡ light , hence is a
successor state. Moreover, it is the unique successor since no other causal relationship in (5) is
applicable to ({sw 1, sw 2, light}, {sw 1}) and since ({sw 1, sw2, light}, {sw 1, light}) does not allow
for further application of causal relationships.

Later in this paper, in Section 5.2, we will see that the order in which causal relationships
are applied, might be crucial insofar as a different ordering may allow the application of dif-
ferent relationships. On the other hand, we can prove the following important result of order
independence in case a unique set of relationships is applied:

Proposition 6 Let F be a set of fluent names, S a state, and E a set of fluent literals.
Furthermore, let r1, . . . , rn be a sequence of causal relationships ( n ≥ 0 ) applicable to (S,E)
which yields

(S,E)  {r1} (S1, E1)  {r2} . . .  {rn} (Sn, En) (6)

Then, for any permutation rπ(1), . . . , rπ(n) which is also applicable to (S,E) and which yields

(S,E)  {rπ(1)} (S′
1, E

′
1)  {rπ(2)} . . .  r{π(n)} (S′

n, E′
n) (7)

we have Sn = S′
n and En = E′

n .
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Proof: For each fluent name f ∈ F , let k+
f be the number of causal relation-

ships ri = εi causes f if Φi , and let k−
f be the number of causal relationships

ri = εi causes f if Φi ( 1 ≤ i ≤ n ). The application of a causal relationship
εi causes ̺i if Φi requires that ̺i be true in the state at hand. Therefore, the
finally resulting truth-value of f depends only on k+

f and k−
f .9 Since (6) and (7)

do not differ in this respect, we know f ∈ Sn iff f ∈ S′
n . Likewise, we have f ∈ En

iff f ∈ E′
n and f ∈ En iff f ∈ E′

n .

It is important to realize that neither uniqueness of a successor state nor even its existence
is guaranteed in general. The former characterizes actions with non-deterministic behavior—
examples of this kind will be discussed in detail later, e.g. in Section 5.2. The meaning of the
latter will be elucidated in Section 3.3. First of all we raise another crucial issue, namely, how
to obtain an adequate set of causal relationships on the basis of given domain constraints.

3.2 Influence Information

Obtaining the intended result by applying causal relationships to compute the indirect effects
of actions relies, of course, on a suitable set of these relationships. Any of these sets should be
sound insofar as each element represents an intuitively plausible causal relation, and it should
also be complete insofar as it covers all conceivable indirect effects.10 The four causal rela-
tionships (5), for instance, constitute a set suitable for the Electric Circuit domain. There is
obviously a close correspondence between the elements of this set and the domain constraint
underlying this example scenario, which is why the following analysis is devoted to the problem
of how an adequate set of causal relationships can be automatically extracted from given domain
constraints.

There is, however, a crucial, well-known obstacle to be considered towards this end [24]: De-
spite the fact that the causal relationships in (5) are inspired by the underlying domain constraint
sw1 ∧ sw2 ≡ light , this formula would give rise to additional, unintended causal relationships if
evaluated purely syntactically. For instance, recall the causal relationship sw1 causes light if sw 2

in (5). The fact that if sw 1 becomes true then it is impossible to have both sw 2 and light ,
equally well suggests the following causal relationship:

sw1 causes sw2 if light (8)

This would, however, sanction the state {sw1, sw2, light} to be possible successor state of turning
on sw1 in the state depicted in Figure 1. In other words, the second switch would magically jump
its position in order to satisfy the domain constraint. Though this is an unintuitive outcome, the
mere domain constraint does not provide enough information to rule out (8). Hence, we need
some additional domain knowledge to be able to automatically design a suitable set of causal
relationships.

More precisely, we will exploit general information of potential influence of some fluents upon
others. For instance, we provide the knowledge that changing a switch’s position might influence

9 More precisely, if f ∈ S then either k+
f = k−

f or k+
f = k−

f − 1 . In the first case, we have f ∈ Sn (and

f ∈ En iff k+
f > 0 ), in the second case f ∈ Sn (and f ∈ En ). The analogue holds for f ∈ S .

10 Here, “conceivable” can—to state the obvious—refer only to what is potentially derivable given the domain
constraints. One cannot expect to obtain an indirect effect desired in some scenario if the scenario’s formal-
ization does not include a piece of knowledge hinting at the possible existence of this effect.
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the state of a light bulb rather than directly causing other switches to move.11 This kind of
information is formalized as follows:

Definition 7 Let F be a set of fluent names. A binary relation I ⊆ F × F on these fluent
names is called influence information.

If (f1, f2) ∈ I , then this is intended to denote that a change of f1’s truth-value potentially
affects the truth-value of f2 . Regarding the Electric Circuit domain, for instance, we choose
I = {(sw 1, light), (sw 2, light)} , that is, both switches might influence the light but not vice versa
nor do they mutually interfere.

Domain constraints plus influence information provide enough information for automatically
generating an adequate set of causal relationships. The basic idea is to investigate all possible
violations of a domain constraint and to formalize causal relationships which help to ‘correct’
this. More precisely, let D be the set of underlying domain constraints. We first construct
the conjunctive normal form (CNF, for short) of

∧
D , i.e, of the conjunction of all constraints.

Then D is violated iff some conjunct ℓ1 ∨ . . . ∨ ℓm in the CNF is violated. This in turn means
that ℓ1 ∧ . . . ∧ ℓm holds. Since the initial state supposedly has satisfied D , the reason for
ℓ1 ∧ . . . ∧ ℓm being true must be some (direct or indirect) effect ℓj , and this ‘flaw’ can be
‘corrected’ by changing some other literal ℓk to ℓk via a causal relationship—but only in case
the fluent |ℓj| potentially affects the fluent |ℓk| according to I . All this is formalized in the
following definition:

Definition 8 Let F be a set of fluent names and D a set of domain constraints. An influence
information I then determines a set of causal relationships R following this procedure:

1. Let R := {} .

2. Let D1 ∧ . . . ∧ Dn be the CNF of
∧
D . For each Di = ℓ1 ∨ . . . ∨ ℓmi

( i = 1, . . . , n ) do
the following:

3. For each j = 1, . . . ,mi do the following:

4. For each k = 1, . . . ,mi , k 6= j such that (|ℓj|, |ℓk|) ∈ I , add this causal relationship
to R :

ℓj causes ℓk if

∧

l = 1, . . . , mi

l 6= j, l 6= k

ℓl (9)

Notice that none of the causal relationships ε causes ̺ if Φ generated by this procedure
(c.f. (9)) exploits the general expressiveness insofar as the condition Φ is, in any case, a con-
junction of literals—whereas Definition 4 allows arbitrary formulas. However, this does not
imply that some causal information otherwise being representable cannot be obtained by apply-
ing Definition 8. This is so because any causal relationship can be transformed into an equivalent
set of causal relationships of the form (9). On the other hand, employing the general notion may
lead to considerably more compact representations. More sophisticated means to extract causal

11 The word “directly” is crucial here since switches do have the ability to influence the position of other switches
indirectly, e.g., through activating a relay (see Example 3, below).
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relationships from domain constraints without constructing normal forms should be developed
to this end; yet this goes beyond the scope of this paper.12 ,13

Example 1 (continued) Given domain constraint D = sw1∧sw 2 ≡ light and influence infor-
mation I = {(sw 1, light), (sw 2, light)} , by applying Definition 8 we obtain causal relationships
as follows:

• The CNF of D is (sw 1 ∨ sw 2 ∨ light) ∧ (sw 1 ∨ light) ∧ (sw 2 ∨ light) .

• As regards the first disjunct, D1 = sw1 ∨ sw 2 ∨ light , we obtain the following:

– In case j = 1, k = 2 we have (sw 1, sw 2) 6∈ I .

– In case j = 1, k = 3 we have (sw 1, light) ∈ I , which yields

sw1 causes light if sw2

– In case j = 2, k = 1 we have (sw 2, sw 1) 6∈ I .

– In case j = 2, k = 3 we have (sw 2, light) ∈ I , which yields

sw2 causes light if sw1

– In case j = 3, k = 1 we have (light , sw 1) 6∈ I .

– In case j = 3, k = 2 we have (light , sw 2) 6∈ I .

• As regards the second disjunct, D2 = sw 1 ∨ light , we obtain the following:

– In case j = 1, k = 2 we have (sw 1, light) ∈ I , which yields

sw1 causes light if ⊤

– In case j = 2, k = 1 we have (light , sw 1) 6∈ I .

• As regards the third disjunct, D3 = sw2 ∨ light , we obtain the following:

– In case j = 1, k = 2 we have (sw 2, light) ∈ I , which yields

sw2 causes light if ⊤

– In case j = 2, k = 1 we have (light , sw 2) 6∈ I .

Altogether, we obtain exactly the four causal relationships listed in (5), which we have granted
above to obtain the desired solution.

12 To be more precise, the task would be to construct, for any two literals ε and ̺ such that (|ε|, |̺|) ∈ I , a
causal relationship ε causes ̺ if Ψ where Ψ is most simple in describing the circumstances under which
effect ε gives rise to indirect effect ̺ . This might, for instance, be accomplished by collecting all causal
relationships obtained via Definition 8 for ε and ̺ , i.e., ε causes ̺ if Φ1, . . . , ε causes ̺ if Φm , and
defining Ψ as the most compact formula equivalent to Φ1 ∨ . . . ∨ Φm .

13 A related challenge would be to find suitable deductive representations of the way domain constraints in con-
junction with influence information give rise to causal relationships. This may, roughly speaking and without
going into details, look like Causes(ε, ̺,Φ) ≡ Infl(|ε|, |̺|)∧∀s [Holds(Φ, s)∧Holds(ε, s) ⊃ Holds(̺, s)] . Such
a deductive characterization could prove useful in a variety of particular action calculi.
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A crucial issue regarding the concept of causal relationships is of course its complexity. Notice
that in the worst case exponentially many causal relationships have to be generated due to
the potential combinatorial explosion of the size of the domain constraints during the CNF
construction. Up to quadratic many relationships exist for each resulting conjunct. Despite
these pathological cases, there is, however, a decisive characteristic due to which especially in
large domains the number of causal relationships is small compared to the worst case: The
domain constraints do not interfere. In general, large domains tend to be locally structured
insofar as each single domain constraint relates only a small number of fluents. Suppose the
maximum size of a domain constraint (i.e., the number of fluent names involved) be fixed and
small compared to their overall number n . Then the number of causal relationships being
generated is linear in n . As an example, recall the situation discussed at the beginning of
this section, where a distinguished switch, sw 0 , affects n different sub-circuits each containing
another switch, sw i , and a bulb, light i ( 1 ≤ i ≤ n ). The dependencies are described by n

domain constraints of the form sw 0 ∧ sw i ≡ light i . As argued above, compiling all indirect
effects into action laws requires 2n+1 different laws for toggling sw 0 . In contrast, only 4n

causal relationships are needed, viz. four for each sub-circuit similar to the ones listed in (5).
Notice that it still pays regarding the computational effort when actually computing successor
states since in any case at most n causal relationships have to be applied when toggling sw 0 .
Hence, we have avoided the exponential factor of this example in any respect.

The fact that domain constraints do not interfere in determining causal relationships avoids
the second crucial problem mentioned at the beginning. No existing causal relationship has to
be modified or removed if new domain constraints are added.

Before we conclude this section, let us stress that influence information always reflects the
desired direction of chains of indirect effects. As argued in [41], it may sometimes be desirable
to define a direction of reasoning which does not correspond to the physical reality. Consider,
as an example, a light bulb being connected with two parallel switches, that is, either switch
can be used to turn on the light. This is expressed by the domain constraint sw1 ∨ sw2 ≡ light .
Suppose we define an action turn-on-light in addition to toggle1 and toggle2 (c.f. (1)). The
corresponding action law shall be 〈{light}, turn-on-light , {light}〉 . If this action is applied to
the state S = {sw 1, sw 2, light} , then, as argued in [41], one expects ramification to tell us that
either sw1 or else sw2 becomes true in addition to the direct effect, light .14 Obtaining this
by means of causal relationships requires the consideration of additional directions of influence,
namely, that a change of light may affect sw1 and sw 2 . This is formally represented by
extending the influence information used in Example 1 by (light , sw 1) and (light , sw 2) . Based
on the resulting I = {(sw 1, light), (sw 2, light), (light , sw 1), (light , sw 2)} , the domain constraint
sw1 ∨ sw2 ≡ light gives rise to the following causal relationships according to Definition 8:

sw1 causes light if ⊤ sw2 causes light if ⊤

sw1 causes light if sw2 sw2 causes light if sw1

light causes sw 1 if sw2 light causes sw 2 if sw1

light causes sw 1 if ⊤ light causes sw 2 if ⊤

(10)

Recall the state S = {sw 1, sw 2, light} and the action turn-on-light . The application of the
aforementioned action law for turn-on-light yields the state-effect pair

( {sw 1, sw 2, light} , {light} )

14 This may not correspond to everyone’s intuition, but let us accept it for the sake of argument.
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{alive ,walking} {alive,walking}shoot

(a)

(b)

{alive ,walking} {alive,walking} {alive,walking}shoot
 {(11)}

Figure 2: The application of 〈{alive}, shoot , {alive}〉 to the initial state depicted in (a), where
the turkey is not walking, results directly in a state that satisfies the domain constraint
walking ⊃ alive . In case the action law is applied to the initial state depicted in (b), an
additional ramification step based on (11) has to be computed in order to ensure the turkey
stops walking when shot dead.

Its first component violates the underlying domain constraint. The only applicable causal rela-
tionships in (10) are the ones in the third row. The resulting state-effect pairs are

( {sw 1, sw 2, light} , {light , sw 1} ) and ( {sw 1, sw 2, light} , {light , sw 2} )

In both cases, the first component satisfies the domain constraint, hence constitutes a successor
state. Notice that no further causal relationships in (10) are applicable to either of these state-
effect pairs. Hence, the resulting states are the only successor states. This illustrates that having
cyclic influence information does not necessarily imply that there are cyclic, hence infinite, chains
of applications of causal relationship. The reader is invited to verify that also if toggle1 or toggle2

(c.f. (1)) are applied to any possible state with fluent names {sw 1, sw 2, light} , then the causal
rules in (10) never support infinite application sequences.

3.3 Indirect Effects vs. Implicit Qualification

Thus far we have seen how domain constraints give rise to additional, indirect effects of actions.
However, it has been observed e.g. in [15, 26] that domain constraints might instead give rise
to additional, implicit qualifications of actions. In the following, we illustrate that the concept
of causal relationships along with the notion of potential influence perfectly accounts for this
distinction.

Example 2 Consider the following adaption [1] of the Yale Shooting scenario [18]. We intend
to hunt a turkey which is either alive or not (described via the fluent name alive ) and which is
walking around or not (fluent name walking ). The domain constraint walking ⊃ alive restricts
walking turkeys to vivid ones. Let I = {(alive ,walking)} , that is, a change of alive might
affect the truth-value of walking but not vice versa. According to Definition 8, this determines
a single causal relationship, viz.

alive causes walking if ⊤ (11)
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{alive ,walking} {alive,walking}entice

(a)

(b)

{alive ,walking} {alive,walking}entice

6 {(11)}
?

?

Figure 3: The application of 〈{walking}, entice, {walking}〉 to the initial state depicted in (a),
where the turkey is alive, results directly in a state that satisfies the domain constraint walking ⊃
alive . In case the action law is applied to the initial state depicted in (b), the intermediate state
violates the domain constraint. This cannot be ‘corrected’ on the basis of the given causal
relationships, (11). Hence, the action entice cannot be successfully executed in a state where
the turkey is not alive.

Consider, now, the action law 〈{alive}, shoot , {alive}〉 . Figure 2 illustrates the respective
results of executing shoot in the two states which satisfy alive . In case the initial state
is {alive ,walking} , it is sufficient to compute the direct effect, alive . If the initial state is
{alive,walking} , then the underlying domain constraint gives rise to an additional, indirect
effect via (11)—not only does the turkey drop dead, it also stops walking.

In contrast, suppose we want to entice the turkey if it idles [29]. The corresponding action law
is 〈{walking}, entice , {walking}〉 . Figure 3 shows the respective results when entice is applied
to the two states which satisfy walking . Again, if the initial state is {alive ,walking} , then
the direct effect suffices to obtain a state satisfying the domain constraint. The initial state
{alive,walking} is different: Applying the aforementioned action law yields {alive,walking} ,
which violates the domain constraint. Moreover, (11) is not applicable to the corresponding
state-effect pair ({alive ,walking}, {walking}) since alive does not occur as effect. Hence, no
successor state exists according to Definition 5. In other words, our domain constraint gives rise
to the additional, implicit qualification that a turkey must be alive if we want to successfully
entice it—which is exactly the desired conclusion.

In general, whenever no successor state exists according to Definition 5, then this hints at
implicit qualifications of the action under consideration (c.f. the remark at the end of Section 3.1).
This shows that providing adequate influence information gives for free, by means of causal
relationships, the distinction between ramification and qualification.

4 A Fixpoint Characterization of Ramifications

The successive application of causal relationships can be regarded as a somewhat operational
solution to the ramification problem. In this section, we relate our approach to the more static,
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fixpoint oriented characterization of indirect effects introduced in [29]. This method is based
on the idea of minimizing change while respecting causal information. The objective of our
comparison is to prove that all successor states satisfying the definition of [29] are also obtained
by the application of causal relationships.

As we have argued, an adequate solution to the ramification problem requires more sophisti-
cated information of causal dependencies than provided by the mere domain constraints. This is
why it is insufficient to simply minimize change, i.e., to take as possible successor state any state
which has minimal distance from the initial state and which satisfies both the direct effect and
the underlying domain constraints. Neither does this allow for preventing unintended changes
nor does it enable us to distinguish between ramifications and qualifications (c.f. Section 3.3).
As a consequence, in [29] it is suggested to replace domain constraints by a suitable set of di-
rected rules, called causal rules, which serve as deduction rules and are therefore weaker than
the corresponding implications.

Definition 9 [29] Let F be a set of fluent names. A causal rule is an expression Φ⇒Ψ
where Φ and Ψ are fluent formulas.

Let C be a set of causal rules. If Θ is a set of fluent formulas, then by TC(Θ) we denote the
smallest set of fluent formulas which contains Θ and is deductively closed under C —that is,

1. Θ ⊆ TC(Θ) ;

2. for any formula θ such that TC(Θ) |= θ we have θ ∈ TC(Θ) ; and

3. if Φ⇒Ψ ∈ C and Φ ∈ TC(Θ) then Ψ ∈ TC(Θ) .

If θ ∈ TC(Θ) then this denoted by Θ ⊢C θ .

Example 1 (continued) Consider the singleton set of causal rules C = {sw 1 ∧ sw2 ⇒ light} .
Let Θ = {sw 1, sw 2} , then TC(Θ) includes light since the given causal rule is applicable. In
contrast, let Θ′ = {sw 1, light} , then sw 2 6∈ TC(Θ′) despite sw 2 follow from sw1 , light , and
sw1 ∧ sw2 ⊃ light .

Causal rules serve as the basis for a fixpoint characterization of successor states which accounts
for indirect effects. Informally speaking, after having executed, in a state S , an action with
direct effect E , then a state T is successor iff the following holds: T satisfies E , T is consistent
with the set of causal rules, and each change of a truth-value from S to T is grounded on some
causal rule. This last condition reflects the idea of minimal change.

Definition 10 [29] Let F be a set of fluent names, A a set of action names, L a set of
action laws, and C a set of causal rules. Furthermore, let S be a state and a ∈ A be an action
name. A state T is a minimal change successor of S and a iff there exists an applicable
(wrt. S ) action law 〈C, a,E〉 ∈ L such that

T = { ℓ : (S ∩ T ) ∪ E ⊢C ℓ } (12)

i.e., T is fixpoint of the function λT. {ℓ : (S ∩ T ) ∪ E ⊢C ℓ} given S and E .

Example 1 (continued) An adequate set of causal rules for the Electric Circuit domain
consists of the following three elements:

sw 1 ∧ sw 2 ⇒ light

sw 1 ⇒ light

sw 2 ⇒ light

(13)
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Let S = {sw 1, sw 2, light} as depicted in Figure 1, and suppose we apply the action law
〈{sw 1}, toggle1, {sw 1}〉 . The only minimal change successor is T = {sw 1, sw 2, light} : We
have (S ∩ T ) ∪ E = {sw 2} ∪ {sw 1} , and the causal rules in (13) allow to additionally de-
rive light . In contrast, the unintended state T ′ = {sw 1, sw 2, light} does not satisfy equa-
tion (12): (S ∩ T ′)∪E = {light} ∪ {sw 1} , which does not allow for deriving the missing literal,
sw2 .15

The following observation justifies the naming “minimal change successor”: Each state T

satisfying (12) has minimal distance from S , that is, there is no state T ′ with less (wrt. set
inclusion) changes while also satisfying E and the rules in C :16

Observation 11 Let F be a set of fluent names, C a set of causal rules, S a state, and E a
consistent set of fluent literals. Then for any two states T, T ′ satisfying (12), if S ∩T ⊇ S ∩T ′

then T = T ′ .

Proof: Since each of S, T, T ′ is a state, S ∩ T = S ∩ T ′ implies T = T ′ .
Moreover, assuming S ∩ T % S ∩ T ′ leads to a contradiction: Let ℓ ∈ S ∩ T such
that ℓ 6∈ S ∩ T ′ , i.e., ℓ ∈ T ′ . Since T is consistent and satisfies (12), we have
(S ∩ T ) ∪ E 6⊢C ℓ . On the other hand, we know (S ∩ T ′) ∪ E ⊢C ℓ due to ℓ ∈ T ′ .
Together, (S∩T )∪E 6⊢C ℓ and (S∩T ′)∪E ⊢C ℓ show that TC(S∩T ′) 6⊆ TC(S∩T ) .
This contradicts S ∩ T ⊇ S ∩ T ′ .17

In what follows, we restrict attention to non-disjunctive causal rules Φ⇒Ψ , where Ψ is
a conjunction of literals.18 Since Φ⇒ ℓ1 ∧ . . . ∧ ℓn ( n ≥ 0 ) is equivalent to the n rules
Φ⇒ ℓ1, . . . , Φ⇒ ℓn , we assume, without loss of generality, that the consequent of a rule is a
single fluent literal. Moreover, computing some TC(Θ) is only needed in equation (12), where
Θ is guaranteed to be a set of literals. Thus, each causal rule of the form Φ1 ∨ Φ2 ⇒ ℓ can
equivalently be replaced by Φ1 ⇒ ℓ plus Φ2 ⇒ ℓ . This allows us to assume each causal rule be
of the form ℓ1 ∧ . . . ∧ ℓm ⇒ ℓ where ℓ, ℓ1, . . . , ℓm ( m ≥ 0 ) are fluent literals. In what follows,
for notational convenience we will formally treat the antecedent of a causal rule, Φ , as a set of
literals. The conjunction of these literals will be denoted by

∧
Φ .

The main result of this section will be a proof that each minimal change successor can be
obtained by applying our approach developed in Section 3. Not only does this verify that our
method covers all intuitively expected successor states with minimal distance from the original
state, it also provides a means to actually compute minimal change successors. Notice that,
following equation (12), these states have to be guessed prior to testing whether they satisfy the
condition of Definition 10.

In view of the intended result, we first present a pseudo-iterative characterization of minimal
change successors and prove its adequacy:

15 It is also interesting to see why T ′′ = {sw1, sw2, light} , where only the direct effect is computed, does not
satisfy equation (12): (S ∩ T ′′) ∪ E = {sw2, light} ∪ {sw1} allows to additionally derive light given (13);
thus, T ′′ is not a fixpoint. This illustrates that all formulas Φ ⊃ Ψ induced by causal relationships Φ⇒Ψ
hold in minimal change successors.

16 Observation 11 is a consequence of a theorem stated and proved in [29], which essentially relates Definition 10
to the basic definition of the possible models approach [48]. Below, we provide a direct proof.

17 Notice that TC is obviously monotone, that is, Θ ⊆ Θ′ always implies TC(Θ) ⊆ TC(Θ′) (c.f. Definition 9).
18 A brief discussion on the nature of disjunctive causal rules can be found at the end of this section.
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Proposition 12 Let F be a set of fluent names, C a set of causal rules, S a state, and E

a set of literals. For each state T we define

1. Γ0(T ) := (S ∩ T ) ∪ E

2. Γi(T ) := Γi−1(T ) ∪ {ℓ : Φ⇒ ℓ ∈ C and Φ ⊆ Γi−1(T )} , for i = 1, 2, . . . 19

Then T satisfies (12) iff T =
⋃∞

i=0 Γi(T ) .

Proof: We have to prove {ℓ : (S ∩ T ) ∪ E ⊢C ℓ} =
⋃∞

i=0 Γi(T ) .

“LHS⊆RHS”:

Let ℓ ∈ LHS . In case ℓ ∈ (S∩T )∪E , we find that ℓ ∈ Γ0(T ) ⊆
⋃∞

i=0 Γi(T ) . Other-
wise, (S∩T )∪E ⊢C ℓ implies the existence of a finite sequence Φ1 ⇒ ℓ1, . . . , Φn ⇒ ℓn

of inference rules in C ( n ≥ 1 ) such that ℓ = ℓn and, for each 1 ≤ i ≤ n ,
Φi ⊆ (S ∩ T ) ∪ E ∪ {ℓ1, . . . , ℓi−1} . Consequently, ℓ ∈ Γn(T ) ⊆

⋃∞
i=0 Γi(T ) .

“LHS⊇RHS”:

By induction on i , we prove Γi(T ) ⊆ {ℓ : (S ∩T )∪E ⊢C ℓ} . The base case, i = 0 ,
holds by definition since Γ0(T ) = (S ∩ T ) ∪ E . For i > 0 let ℓ ∈ Γi(T ) such
that there exists some Φ⇒ ℓ ∈ C where Φ ⊆ Γi−1(S, T ) . The induction hypothesis
for Γi−1(T ) implies (S ∩ T ) ∪ E ⊢C

∧
Φ , hence (S ∩ T ) ∪ E ⊢C ℓ .

This alternative characterization of minimal change successors forms the basis for proving the
formal relation between this concept and the application of causal relationships. To this end,
each causal rule Φ⇒ ℓ determines a corresponding set of causal relationships. It also induces
the domain constraint

∧
Φ ⊃ ℓ , which has to be satisfied by a state resulting from the successful

application of a series of causal relationships. Besides exploiting Proposition 12, the crucial point
in the following proof is to ensure that whenever a causal rule is actually applied to justify an
indirect effect, then a corresponding causal relationship ε causes ̺ if Φ is also applicable. The
latter particularly requires ε occur in the current set of previously obtained (direct or indirect)
effects E , i.e., the second component of the current sate-effect pair (S,E) .

Theorem 13 Let F be a set of fluent names, A a set of action names, L a set of action laws,
and C a set of causal rules. Furthermore, let D = {

∧
Φ ⊃ ℓ : Φ⇒ ℓ ∈ C} be a set of domain

constraints, and let R be a set of causal relationships containing for each {ϕ1, . . . , ϕn}⇒ ℓ ∈ C
and each 1 ≤ i ≤ n the element

ϕi causes ℓ if ϕ1 ∧ . . . ∧ ϕi−1 ∧ ϕi+1 ∧ . . . ∧ ϕn (14)

Let S be a state which satisfies D , and let a ∈ A be an action name, then each minimal
change successor T (wrt. C ) of S and a is successor state (wrt. R and D ) of S and a .

Proof: Let 〈C, a,E〉 ∈ L be any action law such that C ⊆ S . We prove by
induction that for each i ∈ IN0 there exists a pair (Si, Ei) such that ((S \ C) ∪
E,E)

∗
 R (Si, Ei) and Γi(T ) ⊆ Si and Γi(T ) \ S ⊆ Ei (c.f. Proposition 12).20 In

what follows, for the sake of readability we abbreviate Γ(T ) by Γ .

19 Recall that Φ is considered a set of literals.
20 The very last condition ensures the aforementioned applicability of all relevant causal relationships as regards

the set Ei of previously obtained (direct or indirect) effects.
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In case i = 0 , S0 := (S \ C) ∪ E and E0 := E satisfy the conditions: We have
Γ0 = (S ∩T )∪E ⊆ (S \C)∪E since |C| = |E| and Γ0 is consistent. Furthermore,
Γ0 \ S = ((S ∩ T ) ∪ E) \ S ⊆ E .

For the induction step, let i > 0 and (Si−1, Ei−1) satisfy the claim. Then, let

{ℓ1, . . . , ℓm} := {ℓ : ℓ ∈ Γi and ℓ 6∈ Γi−1} (15)

be the set of all literals that are added to Γi−1 to obtain Γi . Hence, there exist m

causal rules Φ1 ⇒ ℓ1, . . . , Φm ⇒ ℓm ∈ C such that Φj ⊆ Γi−1 for each 1 ≤ j ≤ m .
Let us consider the first rule, Φ1 ⇒ ℓ1 . From the induction hypothesis we conclude
Γi−1 ⊆ Si−1 and, consequently, Φ1 ⊆ Si−1 . Moreover, we can find some ϕ ∈ Φ1

such that ϕ ∈ Ei−1 : Assuming the contrary, i.e., Ei−1 ∩ Φ1 = {} , the induction
hypothesis Γi−1 \S ⊆ Ei−1 implies (Γi−1 \S)∩Φ1 = {} . This implies Φ1 ⊆ S since
Φ1 ⊆ Γi−1 , hence ℓ1 ∈ S (since S satisfies D , hence Φ1 ⊃ ℓ1 ). From ℓ1 ∈ Γi ⊆ T

we also know ℓ1 ∈ S ∩ T ⊆ Γ0 . This contradicts ℓ1 6∈ Γi−1 (c.f. (15)).

Thus, the causal relationship ϕ causes ℓ1 if
∧

(Φ1 \ {ϕ}) in R is applicable to
(Si−1, Ei−1) provided ℓ1 ∈ Si−1 . But Si−1 is a state, that is, if it does not contain ℓ1

it already contains ℓ1 , and the causal relationship need not be applied. Hence, either
we can obtain ((Si−1 \{ℓ1})∪{ℓ1}, (Ei−1 \{ℓ1})∪{ℓ1}) , or else we keep (Si−1, Ei−1)
and know ℓ1 ∈ Si−1 . Likewise we can successively proceed with all other literals,
ℓ2, . . . , ℓm , provided there is no k ∈ {2, . . . ,m} and ϕ ∈ Φk such that ϕ ∈ Ei−1

but ϕ 6∈ (Ei−1 \ {ℓ1, . . . , ℓk−1}) ∪ {ℓ1, . . . , ℓk−1} . In other words, we have to prove
there is no causal relationship ϕ causes ℓk if

∧
(Φk \ {ϕ}) ( 2 ≤ k ≤ m ) which

was applicable to (Si−1, Ei−1) but is not after first having computed ℓ1, . . . , ℓk−1 .
To see why this is guaranteed, let us assume the contrary. Then ϕ ∈ Ei−1 and
ϕ 6∈ (Ei−1 \ {ℓ1, . . . , ℓk−1}) ∪ {ℓ1, . . . , ℓk−1} imply ϕ ∈ {ℓ1, . . . , ℓk−1} . This and ϕ ∈
Φk ⊆ Γi−1 assert the existence of some ℓj ∈ {ℓ1, . . . , ℓm−1} such that ℓj ∈ Γi−1 . In
conjunction with ℓj ∈ Γi (c.f. (15)), this contradicts T ⊇ Γi−1∪Γi being consistent.

To summarize, having successfully applied all m causal relationships (whenever
necessary), we obtain the two sets Si := (Si−1 \ {ℓ1, . . . , ℓm}) ∪ {ℓ1, . . . , ℓm} and
Ei = (Ei−1\L)∪L where L = {ℓ1, . . . , ℓm}\S . The pair (Si, Ei) satisfies the claim:
Γi ⊆ Si (due to Γi−1 ⊆ Si−1 and (15)) and Γi \ S ⊆ Ei (due to Γi−1 \ S ⊆ Ei−1

and (15)).

Since there exists only a finite number of changes from S to T , we have
⋃∞

i=0 Γi =
Γn for some n ∈ IN0 . Because Γn = T is a state, T ⊆ Sn implies T = Sn .
Consequently, ((S \ C) ∪ E,E)

∗
 R (T,En) , that is, T is successor state.

Interestingly, the converse of this theorem does not hold, that is, there might exist successor
states (in the sense of Definition 5) that cannot be obtained using the fixpoint-based approach.
In Section 5.3, we argue that these states are intuitive, and failing to detect them with the
approach discussed in this section is due to the policy of minimizing change, which thus might
be too restrictive.

Finally, recall that our result is restricted to non-disjunctive causal rules. In the remainder of
this section, we briefly discuss the nature of rules involving disjunctions in their consequent, as
in

⊤ ⇒ a ∨ c (16)
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Typically, disjunctive rules are used to express non-deterministic behavior. For instance, given
S = {a, c} , there exist two different minimal change successors wrt. (16) (suppose E = {} ),
viz. T1 = {a, c} and T2 = {a, c} , respectively.21 Notice that T3 = {a, c} is not a minimal
change successor since merely having a ∨ c does not allow for concluding a nor c . The latter
observation suggests that (16) could equivalently be replaced by these two non-disjunctive rules:

a ⇒ c

c ⇒ a
(17)

Indeed, these rules yield the same result as above when applied to the state S = {a, c} . This
indicates that a disjunctive rule Φ⇒Ψ1∨ . . .∨Ψn can often be adequately represented by the n

rules
Φ ∧ Ψ1 ∧ . . . ∧ Ψi−1 ∧ Ψi+1 ∧ . . . ∧ Ψn ⇒ Ψi

where i = 1, . . . , n . However, (16) and (17) are not generally equivalent if additional causal
rules are considered. For example, if we add these two rules to (16):

a ∨ c ⇒ a

a ∨ c ⇒ c
(18)

then T = {a, c} is minimal change successor of S = {a, c} since S ∩ T = {} and {} ⊢{(16),(18)}

a∧ c . In contrast, no minimal change successor of S wrt. {(17), (18)} exists. Yet this example
lacks significance: Notice that antecedent and consequent of the causal rules in (18) share fluent
names, which is why it is hard to imagine a meaningful causal relation expressed by these rules.
But it is also hard to imagine a more convincing example since adding, say, a ∨ c⇒ d instead
of (18) does not make (16) and (17) behave differently. This strongly suggests that requiring
non-disjunctive causal rules means no severe restriction when formalizing causal information.

5 The Necessity of Causal Relationships . . .

In this section, we contrast the proposal to employ causal relationships with other abstract
concepts that are most widely used (often in slightly different variants) to tackle the problem
of undesired indirect effects in the context of the ramification problem. Our aim is to illustrate
the restrictive expressiveness of these concepts compared to our method. We accomplish this by
discussing some prototypical example scenarios, which every reasonable formalism for reasoning
about actions must at least be able to treat correctly.

5.1 . . . Compared to Categorization-Based Approaches

The standard approach to avoid intuitively unexpected indirect effects is to introduce some sort
of categorization among the underlying set of fluent names. This distinction between different,
typically two or three, kinds of fluents comes along with a specific notion of preference as regards
changes in one category compared to changes in other ones when computing ramifications—or,
less sophisticated, only a particular category is subject to the law of persistence etc. While
a variety of names for such fluent classes circulate in literature,22 the common fundamental

21 To see why, take S ∩ T1 = {c} , say, which entails the missing literal, a , given a ∨ c via (16).
22 E.g., frame vs. non-frame fluents [24]; relevant vs. dependent [4]; persistent vs. non-persistent [7]; or persistent ,

remanent and contingent fluents [6].
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assumption of categorization-based approaches is that an appropriate categorization always
exists. With a simple extension of our Electric Circuit domain, we will illustrate that the
role of a fluent might be less obvious in this respect, which causes difficulties in finding a
single appropriate category it belongs to. To this end, we employ the following, prototypical
categorization-based definition:

Definition 14 Let F be a set of fluent names. Furthermore, let, for each state S , Fp(S)
(primary fluents) and Fs(S) (secondary fluents)23 be two disjoint subsets such that Fp(S) ∪
Fs(S) = F . Let S, T, T ′ be states, then T is closer to S than T ′ , written T ≺S T ′ , iff

1. either |T \ S| ∩ Fp(S) $ |T ′ \ S| ∩ Fp(S)

2. or |T \ S| ∩ Fp(S) = |T ′ \ S| ∩ Fp(S) and |T \ S| ∩ Fs(S) $ |T ′ \ S| ∩ Fs(S) .

Let D be a set of domain constraints, A a set of action names, and L a set of action laws.
If S is a state and a ∈ A an action name, then a state T is a categorization-based successor
of S and a iff there exists an applicable (wrt. S ) action law 〈C, a,E〉 ∈ L such that

1. E ⊆ T ;

2. T satisfies D ; and

3. there is no T ′ ≺S T such that E ⊆ T ′ and T ′ satisfies D .

In words, a state T is closer to some state S than a state T ′ iff S and T differ in less
(wrt. set inclusion) primary fluents than S and T ′ do, or else S, T and S, T ′ differ in the
same primary fluents but S and T differ in less secondary fluents than S and T ′ do. For
instance, to prefer a change of the light bulb’s state compared to a switch magically jumping
its position in Example 1, we consider sw1, sw2 primary and light secondary in any state.
Then the application of 〈{sw 1}, toggle1, {sw 1}〉 to the state S = {sw 1, sw 2, light} admits, as
intended, T = {sw 1, sw 2, light} as the unique categorization-based successor since T ≺S T ′ for
the counter-intuitive state T ′ = {sw 1, sw 2, light} .

Consider, now, the following extension of our electric circuit (see also Figure 4):

Example 3 We augment Example 1 by introducing a third switch, represented by the fluent
name sw3 , plus a relay, represented by relay . If activated, the relay is intended to force
the second switch ( sw2 ) to jump open. The relay is controlled by the first and third switch.
Formally, the dependencies among all these components are described by the following domain
constraints:

sw1 ∧ sw2 ≡ light

sw1 ∧ sw3 ≡ relay

relay ⊃ sw2

(19)

Let S denote the state of the circuit depicted in Figure 4. In order to find an adequate partition
of the involved fluent names into primary and secondary fluents, respectively, observe first that
we should have sw 1, sw 2 ∈ Fp(S) and light ∈ Fs(S) as above. For if we toggle either of sw1

or sw2 , then we prefer a change of light instead of a change of the other switch (as regards

23 The terms “primary” and “secondary,” respectively, were inspired by [40].
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light

sw1 sw2

relay

sw3

Figure 4: An extended electric circuit described by five fluents. The two possible states of the
first switch are up ( sw 1 is true) and down ( sw1 is false). The current state is described by sw1

(the first switch is down), sw2 (the second switch is closed), sw3 (the third switch is open),
relay (the relay is deactivated) and light (the light bulb is off).

the first domain constraint). Analogously, we should have sw 1 ∈ Fp(S) and relay ∈ Fs(S) .
For if we close the third switch, then we prefer a change of relay instead of a change of the
first switch (as regards the second domain constraint). Hence, we obtain sw1, sw2 ∈ Fp(S) and
light , relay ∈ Fs .24

Suppose, now, we close the third switch, sw3 . Obviously, the expected result is that the relay
becomes activated, which in turn causes the second switch, sw2 , jumping its position. Indeed,
the corresponding state {sw 1, sw 2, sw 3, relay , light} is a categorization-based successor of S =
{sw 1, sw 2, sw 3, relay , light} and a = toggle3 (given the action law 〈{sw 3}, toggle3, {sw 3}〉 ):
Besides the direct effect {sw 3} , the above domain constraints suggest that a second primary
fluent, sw1 or sw2 , must change its truth value since any state with sw 1, sw 2, sw 3 being true
violates (19). However, the observation that a second primary fluent has to be changed suggests
another categorization-based successor, namely, where sw1 changes its truth-value instead of
sw2 : The reader is invited to verify that the state {sw 1, sw 2, sw 3, relay , light} , too, satisfies
the conditions of Definition 14 as it does not violate the domain constraints and has minimal
distance to S . Hence, we obtain a second successor state where the first switch magically opens,
the relay remains deactivated and the light bulb turns on.

The reason for the unexpected second state to occur in this example is that we necessarily fail to
assign a unique, appropriate category to fluent sw2 , whose role is twofold: On the one hand, it
should be considered primary (regarding the sub-circuit involving sw1 and light ), and on the
other hand, it behaves like a secondary fluent (as regards the relay). One might suggest that this
particular example could be modeled by just introducing an additional category of, say, tertiary
fluents, Ft(S) , which have even lower priority than secondary fluents. Then, taking sw1 ∈
Fp(S) , sw 2, relay ∈ Fs(S) , and light ∈ Ft(S) and extending Definition 14 appropriately yields
the expected unique resulting state. However, besides the somehow strange categorization, where
similar entities, namely switches, belong to different categories, this particular classification
requires a deeper analysis of possible direct and indirect effects in the electric circuit and is far
from being intuitively plausible. Moreover, it is not hard to imagine more complex domains
requiring more and more categories, which heavily increases the difficulty of deciding to which
class a particular fluent name should belong.

24 Whether sw3 is considered primary or secondary is irrelevant for our argument.
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In contrast, since causal relationships in conjunction with influence information only describe
local dependencies, they can easily deal with fluents which behave differently regarding different
domain constraints:

Example 3 (continued) The possible influences in the electric circuit depicted in Figure 4
are represented by this relation:

I = {(sw 1, light), (sw 2, light), (sw 1, relay), (sw 3, relay), (relay , sw 2)}

Notably, this information concentrates on direct influences only, which, as we shall see, is suf-
ficient; nothing has to be stated about the possibility that sw3 might indirectly influence sw2

(through the relay). Notice also that sw2 occurs both as first and as second argument in I ,
which encodes its twofold nature in this example. Applying Definition 8 to the domain con-
straints (19) in conjunction with I yields the following nine causal relationships:

sw 1 causes light if sw2 sw2 causes light if sw 1

sw 1 causes light if ⊤ sw2 causes light if ⊤

sw 1 causes relay if sw3 sw3 causes relay if sw 1

sw 1 causes relay if ⊤ sw3 causes relay if ⊤

relay causes sw 2 if ⊤

(20)

The topmost four relationships are obtained from the domain constraint sw 1 ∧ sw2 ≡ light as
described in detail in Section 3.2; the domain constraint sw1 ∧ sw 3 ≡ relay yields, in a similar
way, the next four relationships; and, finally, from relay ⊃ sw2 we obtain the last relationship
due to (relay , sw 2) ∈ I .

Suppose given the state depicted in Figure 4, i.e., S = {sw 1, sw 2, sw 3, relay , light} , plus
the action law 〈{sw 3, toggle3, {sw 3}〉 . Then the starting point for the application of causal
relationships is the state-effect pair

( {sw 1, sw 2, sw 3, relay , light} , {sw 3} ) (21)

The state violates the second domain constraint in (19). The only applicable causal relationship
in (20) is sw3 causes relay if sw1 . Its application yields

( {sw 1, sw 2, sw 3, relay , light} , {sw 3, relay} )

Now the state violates the third domain constraint in (19). The corresponding causal relationship
in (20), namely, relay causes sw2 if ⊤ , is the only applicable one. Its application yields

( {sw 1, sw 2, sw 3, relay , light} , {sw 3, relay , sw 2} )

The first argument satisfies the underlying domain constraints and, consequently, denotes a
successor state. Since there is no alternative way of applying causal relationships to (21), there
are no other successor states. This is exactly the desired conclusion in this example.
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R

R

light

sw1 sw2

relay

sw3

detect

Figure 5: A modified electric circuit (c.f. Figure 4) augmented by a device, represented by
detect , which registers an activation of the light bulb (this device combines a phototransistor
and flipflop). The current state is described as in Figure 4 except that now sw 3 holds (the third
switch is closed) and the state of the additional device is assumed to be detect (no action of
light has occurred).

5.2 . . . Compared to the Policy of Minimal Change

A widely accepted assumption concerning the ramification problem says that generating indirect
effects ought to satisfy the property of minimal change. Regardless of possible categorizations as
discussed above, whenever a ‘proper’ successor state is strictly closer to the original state than
another ‘proper’ successor state, then the latter should be rejected. Yet while the result proved
in Section 4 shows that our method covers all states that confess to the minimal change policy,
it is not restricted in this respect. The following example shows the importance of this insofar as
requiring minimal change might fail to obtain all intuitively expected possible successor states,
hence might lead to unintended conclusions.

Example 4 The extended electric circuit from Example 3 is slightly modified and further
augmented by a light detecting device (fluent name detect ) that becomes (and stays) activated
as soon as the light bulb turns on (see Figure 5). The new arrangement is encoded by the
following domain constraints:

sw1 ∧ sw2 ≡ light

sw1 ∧ sw3 ≡ relay

relay ⊃ sw2

light ⊃ detect

(22)
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After enhancing the influence information I used in Example 3 by (light , detect) , these domain
constraints give rise to the following causal relationships:

sw 1 causes light if sw2 sw 2 causes light if sw 1

sw 1 causes light if ⊤ sw 2 causes light if ⊤

sw 1 causes relay if sw3 sw 3 causes relay if sw 1

sw 1 causes relay if ⊤ sw 3 causes relay if ⊤

relay causes sw2 if ⊤ light causes detect if ⊤

(23)

Suppose we toggle the first switch, sw1 , in the state depicted in Figure 5. What is the expected
outcome? Obviously, the relay gets activated and, then, attracts the second switch, sw 2 .
Hence, the latter is open in the finally resulting state. Notice, however, that as soon as the
first switch is closed, the sub-circuit involving the light bulb gets closed, too. This may activate
the light bulb for an instant, that is, before the second switch jumps its position as a result
of activating the relay. If this is indeed the case, then this short-time activation might be
registered by the photo device, detect . Hence, while it is clear that the light bulb is off in
the resulting state, it may or may not be the case that detect becomes true. We therefore
should expect two different successor states, viz. T1 = {sw 1, sw 2, sw 3, relay , light , detect} and
T2 = {sw1, sw2, sw3, relay , light , detect} . Notice that these states differ only in the value of the
fluent detect . Notice also that T1 and the initial state, S = {sw 1, sw2, sw3, relay , light , detect} ,
differ in strictly less fluents than T2 and S do.

Our set of causal relationships (23) supports this conclusion. The application of 〈{sw 1}, toggle1, {sw 1}〉
to S yields the state-effect pair

( {sw 1, sw 2, sw 3, relay , light , detect} , {sw1} ) (24)

The first component violates both the first and the second domain constraint in (22). There
are several possibilities to proceed. First, we can apply sw1 causes relay if sw3 followed by
relay causes sw 2 if ⊤ , which results in

( {sw 1, sw 2, sw 3, relay , light , detect} , {sw 1, relay , sw 2} )

The first argument satisfies the underlying domain constraints and, consequently, denotes a
successor state (as expected, c.f. T1 above).

Another possibility to proceed with the state-effect pair (24) is to apply the following chain
of causal relationships:

sw 1 causes light if sw 2

sw 1 causes relay if sw 3

relay causes sw2 if ⊤

sw 2 causes light if ⊤

(25)

In words, we first conclude the light bulb turns on due to the second switch being on. However,
since the activation of the relay causes sw2 to become false, we have to ‘turn off’ the light bulb
again via the finally applied causal relationship. Thus, we obtain the pair

( {sw 1, sw2, sw3, relay , light , detect} , {sw 1, relay , sw 2, light} )
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Again, we obtain the successor state T1 . But we have not considered all possibilities yet. Recall
the chain of causal relationships in (25). Since light is true and among the current effects after
having applied the first of these relationships and remains true until the last one is applied,
we can insert the causal relationship light causes detect if ⊤ somewhere in between. This
additionally causes detect become true, that is, the finally obtained state-effect pair is

( {sw 1, sw 2, sw 3, relay , light , detect} , {sw1, detect , relay , sw 2, light} )

Its first component is identical to the second expected successor state, T2 . No further successor
states can be obtained, which is exactly the desired conclusion.

To see why no minimal change-based formalism can possibly obtain this, consider these causal
rules C :

sw1 ∧ sw 2 ⇒ light sw1 ⇒ light sw2 ⇒ light

sw1 ∧ sw 3 ⇒ relay sw1 ⇒ relay sw3 ⇒ relay

relay ⇒ sw2 light ⇒ detect

in conjunction with S as above and E = {sw 1} . While T1 = {sw 1, sw 2, sw 3, relay , light , detect}
satisfies equation (12), T2 = {sw 1, sw 2, sw 3, relay , light , detect} does not since

( S ∩ T2 ) ∪ E = {sw3, light} ∪ {sw 1} 6⊢C detect

State T1 being the only minimal change successor suggests that detect necessarily remains
false, which is obviously too optimistic a conclusion.

This last observation suggests that minimization is not always an adequate concept for distin-
guishing between possible indirect effects on the one hand, and unfounded changes on the other
hand. In fact, the aim of generating ramifications is not to minimize change but to avoid changes
that are not caused, which, as we have seen, need not be identical.

5.3 . . . Compared to Causal Rules

We have seen in Section 3.3 that domain constraints may give rise to implicit qualifications
instead of indirect effects. By Example 2 we have illustrated that sometimes even a single
constraint acts in both fashions, depending on which effect actually occurs. Both causal rela-
tionships and causal rules allow for modeling this distinction.25 However, the expressiveness of
causal rules with this respect is limited compared to the concept of causal relationships. The
reason is that the applicability of a causal rule like ℓ1∧ℓ2 ⇒ ℓ , say, is not restricted to situations
where ℓ1 occurs as effect (causing ℓ as ramification in case ℓ2 being true), while ℓ2 occurring
as effect (with ℓ1 being true and ℓ being false) shall indicate an implicit qualification. In
contrast, causal relationships support this sophistication,26 which is required in the following
scenario:

Example 5 Let us consider a more subtle, ancient method to hunt turkeys, namely, by using
a (manually activated) trapdoor. The state of this trapdoor is described using the fluent name

25 Regarding Example 2 with domain constraint walking ⊃ alive , this is achieved by taking the causal relation-
ship alive causes walking if ⊤ but not walking causes alive if ⊤ ; similarly, one would employ the causal
rule alive ⇒ walking but not walking ⇒ alive [29].

26 This is why n different relationships are needed to represent a rule with n literals in its antecedent (c.f. (14)
in Theorem 13).
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trap-open . The fluent name at-trap describes whether the turkey is in the dangerous zone
or not, and the fluent name alive is used as before. The ground underneath the trapdoor is
designed such that if the turkey finds itself being at-trap and the trapdoor is open, then it
cannot be alive. This is represented by the following domain constraint:

at-trap ∧ trap-open ⊃ alive (26)

We can open the trapdoor via the action law 〈{trap-open}, open , {trap-open}〉 and entice the
turkey via 〈{at-trap, alive}, entice , {at-trap, alive}〉 . While the state of the trapdoor can possi-
bly influence the victim’s state of being alive or not, the turkey is alert to the extent that it would
never kill itself by moving towards the open trapdoor; thus, at-trap can never influence alive .
The latter is intended to give rise to the implicit qualification trap-open for entice . Hence,
the adequate influence information is I = {(trap-open , alive)} . In conjunction with (26), this
determines a single causal relationship according to Definition 8, namely,

trap-open causes alive if at-trap (27)

Given the state S = {alive , at-trap, trap-open} (say, after having enticed the turkey), executing
open yields {alive , at-trap, trap-open} as intermediate state, which violates our domain con-
straint. Since trap-open occurred as effect, the causal relationship (27) is applicable, which
results in the expected successor state {alive , at-trap, trap-open} .

In contrast, consider the state S = {alive , at-trap, trap-open} and the action entice , whose
execution yields the intermediate state {alive, at-trap, trap-open} , too. But now (27) is not
applicable since trap-open did not occur as effect, that is, no successor state exists. In other
words, trap-open is an additional, implicit qualification for entice , which is exactly the intended
result. Notice that we are only able to distinguish between these two cases by employing (27) but
not the analogous causal relationship at-trap causes alive if trap-open . For both correspond
to identical causal rules, namely, at-trap ∧ trap-open ⇒ alive , this distinction goes beyond the
expressiveness of causal rules.

6 A Fluent Calculus Realization

Having presented, thoroughly discussed, and demonstrated the benefits and expressiveness of our
approach to the ramification problem, the second part of the paper is devoted to the development
of a suitable, concrete calculus. Our encoding employs the representation technique underlying
the fluent calculus [19, 20]. Unlike previous fluent calculus-based approaches, however, we do
not develop a logic program but exploit the full expressiveness of first-order logic. We begin
by defining an appropriate term representation of states in Section 6.1. In Section 6.2, we then
model causal relationships and their execution. The resulting encoding is proved adequate wrt.
the high-level action semantics proposed in the first part of the paper.

6.1 Reified States

The atomic elements of state descriptions have been restricted to propositional constants through-
out the first part of the paper, for the sake of simplicity. For our calculus, we introduce a richer
notion of fluents. A fluent is now an n-place predicate with arguments chosen from a given set of
objects (or entities) [38, 22]. This involves both a generalized concept of action laws and fluent
formulas including quantifications. Yet by requiring finiteness of any underlying set of entities,
we still guarantee decidability in any respect. The following definition extends Definition 1:
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Definition 15 Let O be a finite set of symbols called entities. Let F denote a finite set
of fluent names, each of which is associated with a natural number called arity . A fluent is an
expression f(o1, . . . , on) where f ∈ F is of arity n and o1, . . . , on ∈ O . A fluent literal is a
fluent or its negation, denoted by f(o1, . . . , on) .

Let V be a denumerable set of variables. An expression f(t1, . . . , tn) and its negation
f(t1, . . . , tn) are called fluent expressions iff f ∈ F is of arity n and ti ∈ O ∪ V ( 1 ≤ i ≤ n ).

As before, a state is a maximal consistent set of fluent literals. For the sake of readability, from
now on we implicitly assume an arbitrary but fixed set O of entities, a set F of fluent names,
and a set V of variables, respectively.

Example 1 (continued) The extended expressiveness is exploited to model the Electric
Circuit domain as follows. Consider the two entities O = {s1, s2} representing the two switches,
along with the unary fluent on describing the state of its argument. In addition, the nullary
fluent light denotes the state of the light bulb as before. The state displayed in Figure 1 is then
formalized as S = {on (s1), on (s2), light} .

As opposed to the situation calculus [32, 37], the fluent calculus employs structured state
terms, each of which consists in a collection of all fluent literals that are true in the state being
represented. To this end, fluent literals are reified, i.e., formally represented as terms. These
terms are connected via a special binary function, which is illustratively denoted by ◦ and writ-
ten in infix notation. For instance, a term representation of the state S = {on (s1), on (s2), light}
is

( on (s1) ◦ on (s2) ) ◦ light (28)

where the bar denoting negative fluent expressions is formally a unary function. It has first been
argued in [19] that this representation technique avoids extra axioms (e.g., frame axioms [32, 17])
to encode the general law of persistence: The effects of actions can be modeled by manipulating
terms like (28) through removal and addition of sub-terms. Then all sub-terms which are not
affected by these operations remain in the state term, hence continue to be true.

Intuitively, the position at which a fluent literal occurs in a state term should be irrelevant.
That is, (28) and the term on (s1)◦(light ◦on (s1)) , say, represent identical states. This intuition
is modeled by requiring the following formal properties for the connection function ◦ :

∀x, y, z. (x ◦ y) ◦ z = x ◦ (y ◦ z) (associativity)
∀x, y. x ◦ y = y ◦ x (commutativity)
∀x. x ◦ ∅ = x (unit element)

where the special constant ∅ denotes a unit element for ◦ . This constant represents the
empty collection of fluent literals. The above axioms constitute an equational theory , which
we abbreviate by AC1. Given the law of associativity, from now on we omit parentheses on
the level of ◦ . Notice that the axioms AC1 formalize essential properties of the datastructure
“set.”27 For formal reasons, we introduce a function τ which maps sets of fluent expressions
A = {ℓ1, . . . , ℓn} to their term representation τA = ℓ1 ◦ · · · ◦ ℓn (including τ{} = ∅ ).

In conjunction with the standard axioms of equality (see (29), below), our equational theory
entails the equivalence of two state terms whenever they are built up from an identical collection

27 The reader may wonder why we do not additionally require the function ◦ be idempotent. The (subtle)
reason for this is given below, right after Proposition 17.
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of fluent literals. These axioms alone, however, do not suffice for our encoding. For it will also be
necessary to prove the inequality of two state terms whenever they do not contain the same fluent
literals. This requires an extended notion of the standard so-called unique name assumption.
More precisely, we adopt the concept of unification completeness known from logic programming
(see, e.g., [21, 42, 47]). Let E be an equational theory, that is, a set of universally quantified
equations. Two terms s and t are said to be E-equal , written s =E t , iff s = t is entailed
by E plus the standard axioms of equality. A substitution σ is called an E-unifier of s and t

iff sσ =E tσ . A set cUE(s, t) of E-unifiers of s and t is called complete if it contains, for
each E-unifier of s and t , a more or equally general substitution.28 Unification completeness
is then defined as follows:

Definition 16 Let E be an equational theory. A consistent set of formulas E∗ is called
unification complete wrt. E iff E∗ contains the following:

1. The axioms in E .

2. The standard equality axioms, viz.

x = x (reflexivity)
x = y ⊃ y = x (symmetry)
x = y ∧ y = z ⊃ x = z (transitivity)
xi = y ⊃ f(x1, . . . , xi, . . . , xn) = f(x1, . . . , y, . . . , xn) (substitutivity I)
xi = y ⊃ [P (x1, . . . , xi, . . . , xn) ≡ P (x1, . . . , y, . . . , xn) (substitutivity II)

(29)

for each n-place function symbol f and predicate P , and for each 1 ≤ i ≤ n . All
variables are universally quantified.

3. Equational formulas, i.e., formulas with “ = ” as the only predicate, such that for any two
terms s and t with variables x̃ the following holds:

(a) If s and t are not E-unifiable, then E∗ |= ¬∃x̃. s =̇ t .

(b) If s and t are E-unifiable, then for each complete set of unifiers cUE(s, t) we have

E∗ |= ∀x̃


 s = t ⊃

∨

σ∈cUE(s,t)

∃ỹ. σ=


 (30)

where ỹ denotes the variables which occur in σ= but not in x̃ .29

As shown in [20], a unification complete theory for our axioms AC1 can be obtained by com-
puting, for any two terms s, t , some complete set cUAC1(s, t) of AC1-unifiers (see, e.g., [43, 5])
and adding the corresponding equational formula which is to the right of the entailment sym-
bol in (30). In what follows, this unification complete theory will be called extended unique

28 That is, whenever sσ =E tσ then there exists some σ′ ∈ cUE(s, t) such that (σ′ ≤E σ) |Var (s)∪Var (t) .
Here, Var (t) denotes the set of variables occurring in term t , and (σ′ ≤E σ) |V means the existence of a
substitution θ such that (σ′θ =E σ) |V . The latter holds iff for each variable x ∈ V , the two terms (xσ′)θ
and xσ are E -equal.

29 By σ= we denote the equational formula x1 = t1 ∧ . . . ∧ xn = tn constructed from the substitution σ =
{x1 7→ t1, . . . , xn 7→ tn} .
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name assumption, abbreviated by EUNA. As an example, consider the terms on (x) ◦ z and
on (s1) ◦ on (s2) ◦ light . The singleton set {{x 7→ s2, z 7→ on (s1) ◦ light}} is a complete set of
AC1-unifiers of these terms. Hence,

EUNA |= ∀x, z [ on (x) ◦ z = on (s1) ◦ on (s2) ◦ light ⊃ x = s2 ∧ z = on (s1) ◦ light ]

according to (30).
Before we proceed with the fluent calculus encoding, we prove some crucial properties of

EUNA. These properties show how the subset relation and the set difference and union opera-
tions can be modeled on the term level.

Proposition 17 Let A,B be two sets of fluent literals.

1. IF A ⊆ B then EUNA |= ∃z. τA ◦ z = τB , else EUNA |= ∀z. τA ◦ z 6= τB .

2. If A ⊆ B then EUNA |= ∀z [ τA ◦ z = τB ≡ z = τB\A ] .

3. If A ∩ B = {} then EUNA |= ∀z [ z = τA ◦ τB ≡ z = τA∪B ] .

Proof:

1. In case A ⊆ B , let Z = B \A , then τA◦τZ and τB are AC1-equal. According
to Definition 16, this implies EUNA |= τA◦τZ = τB , hence EUNA |= ∃z. τA◦z =
τB . In case A 6⊆ B , τA ◦ z and τB are not AC1-unifiable. According to
Definition 16, this implies EUNA |= ∀z. τA ◦ z 6= τB .

2. Let z be a term then τA ◦ z and τB are AC1-equal iff each fluent literal
occurring in τA ◦z also occurs in τB and vice versa and no fluent literal occurs
twice or more in τA ◦ z . This in turn is equivalent to z and τB\A being
AC1-equal (given A ⊆ B ), hence EUNA |= z = τB\A .

3. A term z and the term τA ◦ τB are AC1-equal iff each fluent literal occurring
in z also occurs in τA ◦ τB and vice versa and no fluent literal occurs twice
or more in z (given A ∩ B = {} ). This in turn is equivalent to z and τA∪B

being AC1-equal, hence EUNA |= z = τA∪B .

For illustration, let A = {on (s2)} , B = {on (s1), on (s2), light} , and C = {on (s1), light} , then
A ⊆ B and A ∩ C = {} . Accordingly,

1. EUNA |= ∃z. on (s2) ◦ z = on (s1) ◦ on (s2) ◦ light

2. EUNA |= ∀z [ on (s2) ◦ z = on (s1) ◦ on (s2) ◦ light ≡ z = on (s1) ◦ light ]

3. EUNA |= ∀z [ z = on (s2) ◦ on (s1) ◦ light ≡ z = on (s1) ◦ light ◦ on (s2) ]

In particular, the equivalence expressed in clause 2 of the above proposition will be used below
to model the removal of an action’s condition from a state. That is, if C is the condition of
some action, S is some state, and z is a term such that EUNA |= τC ◦ z = τS , then we know
that z represents the set S \C . Precisely this is the reason why the function ◦ is not required
to be idempotent. For if it would be, then τC ◦ z = τS would not imply z = τS\C . E.g., if
◦ were idempotent, then for any set A we would have τA ◦ τA = τA . But clearly τA 6= τA\A
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unless A = {} . In contrast, without ◦ being idempotent, EUNA entails τA ◦τA 6= τA whenever
τA 6= ∅ , i.e., A 6= {} .

We are now prepared for defining the circumstances under which a term represents a state.
We use a many-sorted logic language with four sorts, namely, fluent literals, collections (of fluent
literals), action names, and entities. Collections are composed of fluent literals, the constant ∅ ,
and our connection function ◦ . Below, variables of the sort “fluent literal” are indicated by ℓ ,
variables of the sort “action name” by a , and variables of the sort “entity” by x , sometimes
with sub- or superscripts. All other variables are of the sort “collection.” Free variables are
implicitly assumed to be universally quantified.

To begin, the following formula defines a predicate Holds(ℓ, s) with the intended meaning
that ℓ is contained in s :

Holds(ℓ, s) ≡ ∃z. ℓ ◦ z = s (31)

Then the following formula determines the constitutional properties of state terms:

State(s) ≡ ∀ℓ [ Holds(ℓ, s) ≡ ¬Holds(ℓ, s) ] ∧ ∀ℓ, z. s 6= ℓ ◦ ℓ ◦ z (32)

In words, s represents a state if it contains each fluent literal or its negation but not both.
Furthermore, no fluent literal may occur twice (or more) in s . The following proposition states
the adequacy of this formalization:

Proposition 18 Let s be a collection of fluent literals, then EUNA, (31), (32) |= State(s) iff
there exists some state S such that EUNA |= s = τS , else EUNA, (31), (32) |= ¬State(s) .

Proof: We have EUNA, (31), (32) |= State(s) iff

EUNA, (31), (32) |= (∃z. ℓ ◦ z = s ≡ ∀z′. ℓ ◦ z′ 6= s ) ∧ ∀z. s 6= ℓ ◦ ℓ ◦ z (33)

for each fluent literal ℓ .

“ ⇒ ”:

Suppose (33) holds for each fluent literal ℓ . Let S = {ℓ : EUNA |= ∃z. ℓ ◦ z = s} ,
then the entailment of the first conjunct in (33) ensures that S is a state. It also
ensures that S consists in the fluent literals which occur in s . Moreover, the
entailment of the second disjunct in (33) ensures that no fluent literal occurs twice
or more in s . Altogether this implies EUNA |= s = τS .

“ ⇐ ”:

Suppose EUNA |= s = τS for some state S . Then all fluent literals in τS occur
exactly once in s . Let ℓ be a fluent literal. S being a state implies that ℓ ∈ S

iff ℓ 6∈ S . Thus, clause 1 of Proposition 17 ensures that the first conjunct in (33)
is entailed. Moreover, since s does not contain a literal twice or more, s and
ℓ ◦ ℓ ◦ z are not AC1-unifiable. This implies EUNA |= ∀z. s 6= ℓ ◦ ℓ ◦ z according to
clause 3(a) of Definition 16.

Next, we show how to encode domain constraints in the fluent calculus. In order to exploit
the extended notion of a fluent, we allow fluent formulas to quantify over entities.
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Definition 19 The set of fluent formulas is inductively defined as follows: Each fluent ex-
pression and ⊤ and ⊥ are fluent formulas, and if F and G are fluent formulas then so are
F ∧ G , F ∨ G , F ⊃ G , F ≡ G , ∃x. F , and ∀x. F (where x ∈ V ).

A closed formula is a fluent formula without free variables, that is, where each occurring
variable is bound by some quantifier. Let S be a state and F a closed fluent formula, then the
notion of F being true (resp. false) in S is inductively defined as follows:

1. ⊤ is true and ⊥ is false in S ;

2. a fluent literal ℓ is true in S iff ℓ ∈ S ;

3. F ∧ G is true in S iff F and G are true in S ;

4. F ∨ G is true in S iff F or G is true in S (or both);

5. F ⊃ G is true in S iff F is false in S or G is true in S (or both);

6. F ≡ G is true in S iff F and G are true in S , or else F and G are false in S ;

7. ∃x. F is true in S iff there exists some o ∈ O such that F{x 7→ o} is true in S ;

8. ∀x. F is true in S iff for each o ∈ O , F{x 7→ o} is true in S .

Here, F{x 7→ o} denotes the fluent formula resulting from replacing in F all free occurrences
of x by o .

In our Electric Circuit example, we will use the fluent formula ∀x. on (x) ≡ light as the un-
derlying domain constraint to express the intended relation between the switches and the light
bulb. This formula is true, for instance, in the state S = {on (s1), on (s2), light} .

Based on the definition of the Holds predicate (c.f. (31)), the encoding of fluent formulas in
the fluent calculus is straightforward. In order to state that a fluent formula is true in a state
represented by some term s , each fluent literal ℓ occurring in this formula is replaced by the
expression Holds(ℓ, s) . E.g., our domain constraint above becomes

∀x. Holds(on (x), s) ≡ Holds(light , s) (34)

For formal reasons, we introduce a function π mapping a fluent formula F and some term s

to a formula like (34). This transformation is inductively defined as follows:

π(⊤, s) = ⊤
π(⊥, s) = ⊥
π(ℓ, s) = Holds(ℓ, s)

π(F ∧ G, s) = π(F, s) ∧ π(G, s)
π(F ∨ G, s) = π(F, s) ∨ π(G, s)
π(F ⊃ G, s) = π(F, s) ⊃ π(G, s)
π(F ≡ G, s) = π(F, s) ≡ π(G, s)
π(∀x. F, s) = ∀x. π(F, s)
π(∃x. F, s) = ∃x. π(F, s)

(35)

For notational convenience, we will usually write Holds(F, s) instead of π(F, s) . Given the
definition of Holds , (31), and the extended unique name assumption, our encoding of fluent
formulas is correct:
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Proposition 20 Let F be a fluent formula and S a state, then EUNA, (31) |= Holds(F, τS)
iff F is true in S , else EUNA, (31) |= ¬Holds(F, τS) .

Proof: If ℓ is a fluent literal then, according to Definition 19, ℓ is true in S iff
{ℓ} ⊆ S . Following Proposition 17, the latter is equivalent to EUNA |= ∃z. ℓ ◦ z =
τS , which in turn is equivalent to EUNA, (31) |= Holds(ℓ, τS) according to (31) and
the definition of π . The claim can then be proved by straightforward induction on
the structure of F .

In particular, we call possible a state term that satisfies a given set of domain constraints D :

Possible(s) ≡
∧

D∈D

Holds(D, s) (36)

In our example scenario, this would be (c.f. (34))

Possible(s) ≡ [∀x.Holds(on (x), s) ≡ Holds(light , s) ]

We conclude this section by introducing an extended notion of action laws. An action law
may now contain variables, in which case it is considered representative for all of its ground
instances. In what follows, the expression x̃ (resp. õ ) denotes a finite sequence of variables
chosen from the given set V (resp. entities chosen from O ) of arbitrary but fixed length. If x̃

is a sequence of the variables that occur free in some expression ξ , then this is written ξ[x̃] .
Let x̃ = x1, . . . , xn , then a ground instance of some expression ξ[x̃] is obtained by applying
a substitution θ = {x1 7→ o1, . . . , xn 7→ on} to ξ , where o1, . . . , on ∈ O . Let õ = o1, . . . , on ,
then ξ[x̃]θ is also denoted by ξ[õ] .

Definition 21 Let A be a finite set of action names, each of which is associated with a
natural number called arity . An action law is a triple 〈C[x̃], a(x̃), E[x̃]〉 where C[x̃] and E[x̃]
are sets of fluent expressions and a ∈ A is of arity equal to the length of x̃ . It is assumed that
|C[õ]| = |E[õ]| for any sequence õ of entities.

If S is a state, then a ground instance α[õ] of an action law α[x̃] = 〈C[x̃], a(x̃), E[x̃]〉 is
applicable in S iff C[õ] ⊆ S . The application of α[õ] to S yields (S \ C[õ]) ∪ E[õ] .

Example 1 (continued) For our Electric Circuit domain, we define an action called toggle(x)
by the following two laws:

〈 {on (x)} , toggle(x) , {on (x)} 〉 〈 {on (x)} , toggle(x) , {on (x)} 〉 (37)

When executing, say, toggle(s1) in S = {on (s1), on (s2), light} , then the instance θ = {x 7→ s1}
of the first action law in (37) is applicable due to {on (x)}θ ⊆ S . The application yields

(S \ {on (s1)}) ∪ {on (s1)} = {on (s1), on (s2), light}

By defining a ternary predicate called Action , we encode a given set of action laws L =
{〈C1[x̃1], a1(x̃1), E1[x̃1]〉, . . . , 〈Cn[x̃n], an(x̃n), En[x̃n]〉} ( n ≥ 0 ) as follows:

Action(c, a, e) ≡
n∨

i=1

∃x̃i

[
c = τ

Ci[x̃i]
∧ a = ai(x̃i) ∧ e = τ

Ei[x̃i]

]
(38)
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The application of action laws according to Definition 21 is modeled in our fluent calculus-
based encoding by defining a ternary predicate called Result . The intended meaning is that
Result(s, a, s′) is true iff s′ represents the result of applying some instance of some action law
for the action name a to the state represented by s :

Result(s, a, s′) ≡ ∃c, e, z [ Action(c, a, e) ∧ c ◦ z = s ∧ s′ = z ◦ e ] (39)

Notice that the first equation, c ◦ z = s , ensures that the condition of the action law at hand
is contained in the state represented by s (c.f. clause 1 of Proposition 17). This equation
also guarantees that z contains all fluent literals in s but not in c (according to clause 2
of Proposition 17). Finally, the second equation encodes the addition of the effect, e , to z

(according to clause 3 of Proposition 17). The following proposition states that this encoding is
correct:

Proposition 22 Let A be a set of action names, L = {〈Ci[x̃i], a(x̃i), E[x̃i]〉 : 1 ≤ i ≤ n} a
set of action laws, S a state, a ∈ A of arity m , and õ a sequence of entities of length m .
Furthermore, let s′ be a collection of fluent literals. Then

EUNA, (38), (39) |= Result(s, a(õ), s′) (40)

iff there exists an action law α[x̃] = 〈C[x̃], a(x̃), E[x̃]〉 ∈ L whose instance α[õ] is applicable
in S and whose application yields a state S′ such that EUNA |= s′ = τS′ , else

EUNA, (38), (39) |= ¬Result(s, a(õ), s′)

Proof: From (38) and (39) in conjunction with the standard equality axioms,
(29) ∈ EUNA , it follows that (40) is true iff there is an instance αi[õ] of an action
law αi[x̃i] = 〈Ci[x̃i], a(x̃i), E[x̃i]〉 in L such that

EUNA |= ∃z ( τCi[õ] ◦ z = s ∧ s′ = z ◦ Ei[õ] )

This in turn is true iff

1. Ci[õ] ⊆ S (according to clause 1 of Proposition 17), and

2. EUNA |= s′ = τ(S\Ci[õ])∪Ei[õ] (according to clauses 2 and 3 of Proposition 17
since (S \ Ci[õ]) ∩ Ei[õ] = {} ).

Following Definition 21, these conditions are equivalent to αi[õ] being applicable
in S and resulting in S′ = (S \ Ci[õ]) ∪ Ei[õ]) such that EUNA |= s′ = τS′ .

As before, however, the resulting state term s′ may violate the underlying domain constraints,
i.e., (36) |= ¬Possible(s′) . In this case, the corresponding state term requires further manipu-
lation by means of causal relationships. Their encoding within the fluent calculus is presented
in the following section.

6.2 Executing Causal Relationships

Similar to the case of action laws, we may exploit the extended notational expressiveness to
formulate causal relationships with variables in their components. These relationships are then
considered representatives for all of their ground instances.
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Definition 23 A causal relationship is an expression of the form ε causes ̺ if Φ where Φ
is a fluent formula and ε and ̺ are (possibly negated) fluent expressions.

Let (S,E) be a pair consisting of a state S and a set of fluent literals E . Furthermore, let
r = ε causes ̺ if Φ be a causal relationship, and let x̃ denote a sequence of all free variables
occurring in ε , ̺ , or Φ . Then an instance r[õ] is applicable to (S,E) iff S |= Φ[õ] ∧ ̺[õ]
and ε[õ] ∈ E . Its application yields the pair (S′, E′) where S′ = (S \ {̺[õ]}) ∪ {̺[õ]} and
E′ = (E \ {̺[õ]}) ∪ {̺[õ]} .

Let A be a set of action names, L a set of action laws, D a set of domain constraints, and
R a set of causal relationships. Furthermore, let S be a state satisfying D , a ∈ A of arity m ,
and õ a sequence of entities of length m . A state S′ is a successor state of S and a(õ) iff
there exists an applicable (wrt. S ) instance α[õ] of an action law α[x̃] = 〈C[x̃], a(x̃), E[x̃]〉 ∈ L
such that

1. ((S \ C[õ]) ∪ E[õ], E[õ])
∗
 R (S′, E′) for some E′ , and

2. S′ satisfies D .

Example 1 (continued) Based on the formalization of our Electric Circuit domain used
throughout this section, we define the following two causal relationships:

on (x) causes light if ∀y. on (y) on (x) causes light if ⊤ (41)

Then the instance {x 7→ s1} of the first one is applicable to ({on (s1), on (s2), light}, {on (s1)})
since ∀y. on (y)∧ light is true in the first component of this state-effect pair and since on (s1) oc-
curs in the second component. The application yields ({on (s1), on (s2), light}, {on (s1), light}) .
Now the first component satisfies the underlying domain constraint (c.f. (34)), thus constitutes
a successor state of {on (s1), on (s2), light} and toggle(s1) .

Having the extended concept of causal relationships immediately raises the question how
Definition 8 can be adapted—that is, how causal relationships with variables can be extracted
from domain constraints given an appropriate notion of influence information. Doing this for
arbitrary domain constraints, however, turns out to be a non-trivial problem. For instance,
suppose we have a domain constraint of the form ∀x∃y∀z. p(x, y, z) . Suppose also that some
action causes some instance, say p(o1, o2, o3) , to become false and that the domain constraint is
violated afterwards. Then we need to decide how this can be ‘corrected’ by making some other
instance p(o′

1, o
′
2, o

′
3) true. This obviously requires precise information on how the different

instances of p interact.
Since we assume finiteness of sets of entities, it is generally possible to rewrite any domain

constraint so that it becomes quantifier-free: Each ∀x. F is replaced by
∧

o∈O F{x 7→ o} , and
each ∃x. F is replaced by

∨
o∈O F{x 7→ o} . If the components of the influence information are

also restricted to pairs of (positive) ground fluent expressions, then Definition 8 can be directly
adopted.

Obviously, however, this method does not exploit the extended expressiveness of causal rela-
tionships with variables. As a consequence, the resulting set may contain large subsets, each of
which could be represented by a single causal relationship. We therefore develop a generaliza-
tion of Definition 8 at least for a certain class of domain constraints and influence information.
For these domain constraints, the automatic extraction of causal relationships with variables is
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intuitive and a straightforward extension of the ground case. To be precise, we consider domain
constraints in which each occurrence of a quantifier is of the form ∀x̃. ℓ[x̃] or of the form ∃x̃. ℓ[x̃] ,
where ℓ[x̃] is a fluent expression with free variables x̃ . Furthermore, the components of the
influence information I are interpreted as follows: If f1, f2 are fluent names, then (f1, f2) ∈ I
indicates that a change of any instance f1(õ1) may affect any instance f2(õ2) .

When computing the CNF of a set of domain constraints which is restricted in the above sense,
sub-formulas ∀x̃. ℓ[x̃] and ∃x̃. ℓ[x̃] are treated like ordinary literals. Then each conjunct in the
resulting CNF is a disjunction consisting of ground literals and expressions of the form ∀x̃. ℓ[x̃]
and ∃x̃. ℓ[x̃] . On this basis, an adequate set of causal relationships is obtained as follows:

Definition 24 Let D be a set of domain constraints. An influence information I determines
a set of causal relationships R following this procedure:

1. Let R := {} .

2. Let D1 ∧ . . . ∧ Dn be the CNF of
∧
D . For each Di = F1 ∨ . . . ∨ Fmi

( i = 1, . . . , n ) do
the following:

3. For each j = 1, . . . ,mi do the following:

4. For each k = 1, . . . ,mi , k 6= j , let

Φ :=
∧

l = 1, . . . , mi

l 6= j, l 6= k

Fl
30

and add the following causal relationships to R :

(a) If Fj = ℓj then

(a1) if Fk = ℓk then add ℓj causes ℓk if Φ

(a2) if Fk = ∀x̃k. ℓk[x̃k] then add ℓj causes ℓk[x̃k] if Φ

(a3) if Fk = ∃x̃k. ℓk[x̃k] then add ℓj causes ℓk[x̃k] if ∀x̃k. ℓk[x̃k] ∧ Φ

(b) If Fj = ∀x̃j. ℓj [x̃j] then

(b1) if Fk = ℓk then add ℓj[x̃j ] causes ℓk if Φ

(b2) if Fk = ∀x̃k. ℓk[x̃k] then add ℓj[x̃j ] causes ℓk[x̃k] if Φ

(b3) if Fk = ∃x̃k. ℓk[x̃k] then add ℓj[x̃j ] causes ℓk[x̃k] if ∀x̃k. ℓk[x̃k] ∧ Φ

(c) If Fj = ∃x̃j. ℓj [x̃j] then

(c1) if Fk = ℓk then add ℓj[x̃j ] causes ℓk if ∀x̃j. ℓj[x̃j] ∧ Φ

(c2) if Fk = ∀x̃k. ℓk[x̃k] then add ℓj[x̃j ] causes ℓk[x̃k] if ∀x̃j. ℓj [x̃j] ∧ Φ

(c3) if Fk = ∃x̃k. ℓk[x̃k] then add ℓj[x̃j] causes ℓk[x̃k] if ∀x̃j. ℓj[x̃j] ∧ ∀x̃k. ℓk[x̃k] ∧ Φ

In any of these cases, however, add the respective causal relationship only if (|ℓj |, |ℓk|) ∈ I .

Example 1 (continued) Recall our domain constraint D = ∀x. on (x) ≡ light , and let
I = {(on , light)} . Applying Definition 24 yields the following causal relationships:

30 If Fl = ∀x̃. ℓ[x̃] then Fl denotes the formula ∃x̃. ℓ[x̃] , and if Fl = ∃x̃. ℓ[x̃] then Fl denotes ∀x̃. ℓ[x̃] .
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• The CNF of D is (∃x. on (x) ∨ light) ∧ (∀x. on (x) ∨ light) .

• As regards the first disjunct, D1 = ∃x. on (x) ∨ light , we obtain the following:

– In case j = 1, k = 2 we have (on , light) ∈ I , which yields

on (x) causes light if ∀x. on (x)

according to clause (c1).

– In case j = 2, k = 1 we have (light , on ) 6∈ I .

• As regards the second disjunct, D2 = ∀x. on (x) ∨ light , we obtain the following:

– In case j = 1, k = 2 we have (on , light) ∈ I , which yields

on (x) causes light if ⊤

according to clause (b1).

– In case j = 2, k = 1 we have (light , on ) 6∈ I .

Altogether, we obtain exactly the two causal relationships granted in (41).

The encoding of a given set of causal relationships R = {r1[x̃1] = ε1 causes ̺1 if Φ1, . . . , rn[x̃n] =
εn causes ̺n if Φn} ( n ≥ 0 ) in the fluent calculus follows Definition 23. We define a predicate
Causes(s, e, s′, e′) which is intended to be true iff there is an instance of a causal relationship
in R which is applicable to (S,E) and whose application yields (S′, E′) —where s, e, s′, e′ are
term representations of S,E, S′, E′ :

Causes(s, e, s′, e′) ≡
n∨

i=1

∃x̃i





Holds(Φi ∧ ̺i, s) ∧ ∃z ( ̺i ◦ z = s ∧ s′ = z ◦ ̺i )
∧

∃v. εi ◦ v = e

∧


∀w. ̺i ◦ w 6= e ∧ e′ = e ◦ ̺i

∨
∃w ( ̺i ◦ w = e ∧ e′ = w ◦ ̺i )








(42)

This definition needs explanation. The first row in the right hand side of the formula encodes
the two conditions Φi∧̺i be true in S and S′ = (S \{̺i})∪{̺i} . The second row encodes the
condition εi ∈ E . Finally, to encode the condition E′ = (E \ {̺i})∪{̺i} , two cases have to be
distinguished: If ̺i 6∈ E , then we just have to add ̺i to the corresponding term e (third row).
If, on the other hand, ̺i ∈ E , then we have to additionally remove the sub-term ̺i from e

(fourth row). The following proposition shows that this encoding is correct given the definition
of Holds , (31), in conjunction with our encoding of fluent formulas (c.f. (35)):

Proposition 25 Let R be a set of causal relationships. Furthermore, let S be a state, E a
set of fluent literals, and s′, e′ two collections of fluent literals. Then

EUNA, (31), (42) |= Causes(τS, τE, s′, e′) (43)

iff there exist two sets of fluent literals S′, E′ such that EUNA |= s′ = τS′ ∧ e′ = τE′ and
(S,E)  R (S′, E′) , else EUNA, (31), (42) |= ¬Causes(τS, τE , s′, e′) .
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Proof: From (42) it follows that (43) is true iff there is an instance ri[õ] of a
causal relationship ri[x̃i] = εi causes ̺i if Φi in R such that the conjunction in
the right hand side of (42) is entailed. This in turn holds iff

1. Φi[õ] ∧ ̺i[õ] is true in S (according to Proposition 20);

2. s′ = τ(S\{̺i[õ]})∪{̺i[õ]}
(according to clauses 2 and 3 of Proposition 17);

3. {ε[õ]} ⊆ E (according to clause 1 of Proposition 17); and

4. (a) either {̺i[õ]} 6⊆ E and e′ = τE∪{̺i[õ]} (according to clauses 1 and 3 of
Proposition 17),

(b) or else {̺i[õ]} ⊆ E and e′ = τ(E\{̺i[õ]})∪{̺i[õ]} (according to clauses 1, 2,
and 3 of Proposition 17).

Following Definition 23, these conditions are equivalent to (S,E)  {ri[õ]} (S′, E′)
for sets S′ and E′ such that EUNA |= s′ = τS′ and EUNA |= e′ = τE′ .

According to Definition 23, a successor state is obtained from an intermediate state by re-
peatedly applying causal relationships until a state results that does not violate the domain
constraints. In order to encode this by means of the fluent calculus, we define a predicate
Ramify(s, e, s′) . It is intended to be true iff the successive application of causal relationships to
(S,E) eventually results in a pair whose first component, S′ , satisfies the domain constraints—
where s, e, s′ are term representations of S,E, S′ . This essentially requires to construct the
transitive closure of the Causes relation defined in (42). As this cannot be expressed in first-
order logic, we use the standard way of encoding transitive closure using a second-order formula:

Ramify(s, e, s′) ≡ ∀Π






∀s1, e1. Π(s1, e1, s1, e1)
∧


∀s1, e1, s2, e2, s3, e3

( Π(s1, e1, s2, e2) ∧ Causes(s2, e2, s3, e3)
⊃ Π(s1, e1, s3, e3) )




⊃
∃e′. Π(s, e, s′, e′)






∧ Possible(s′)

(44)

That is, Ramify(s, e, s′) is true iff both there is some e′ such that (s, e, s′, e′) is in the transitive
closure of Causes , and s′ satisfies the domain constraints.

Finally, adding the ramification process to formula (39) completes our encoding. An instance
Successor (s, a, s′) shall be true iff s′ represents a successor state of a and the state represented
by s :

Successor (s, a, s′) ≡ ∃c, e, z [ Action(c, a, e) ∧ c ◦ z = s ∧ Ramify(z ◦ e, e, s′) ] (45)

To summarize, let FC denote the union of EUNA with the definitions of Holds (31), Possible
(36), Action (38), Causes (42), Ramify (44), and Successor (45), based on given sets of
domain constraints, action laws, and causal relationships. As the main result of the second part
of this paper we prove that FC provides a correct encoding of our solution to the ramification
problem.
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Theorem 26 Let FC be the encoding of a set of domain constraints, a set of action laws,
and a set of causal relationships. Furthermore, let A be a set of action names, S, S′ two states,
a ∈ A of arity m , and õ a sequence of entities of length m . Then

FC |= Successor (s, a(õ), s′)

iff there is a successor state S′ of S and a(õ) such that EUNA |= s′ = τS′ , else

FC |= ¬Successor (s, a(õ), s′)

Proof: The result follows from Definition 23, Propositions 22 and 25, and the fact
that (44) encodes the transitive closure of the Causes relation plus the requirement
to satisfy the domain constraints (c.f. (36) in conjunction with Proposition 20).

7 Discussion

We have presented a method to accommodate indirect effects of actions which involves the
notion of causality to distinguish intuitively conceivable from unmotivated changes. To this
end, we have developed the concept of causal relationships, each of which connects two effects
with the intended meaning that, under specific circumstances, the occurrence of the former
causes the occurrence of the latter as indirect effect. Causal relationships are serially applied to
the intermediate state resulting from computing the direct effects of an action in order to reach
a state that satisfies all underlying domain constraints. Moreover, we have argued that causal
relationships can be generated automatically given additional domain-specific knowledge—called
influence information—of how fluents may generally affect each other.

We have illustrated the expressiveness of our approach regarding the problem of implicit qual-
ifications vs. indirect effects (Section 3.3), fluents which resist any categorization (Section 5.1),
domains involving expected non-minimal change (Section 5.2), and regarding domain constraints
that require a sophisticated distinction between qualification and ramification (Section 5.3).
These results form the basis for comparing the method presented in this paper with existing
approaches to the ramification problem.

The necessity of additional information to prevent changes that are suggested syntactically by
the mere domain constraints but contradict the intuition, was first observed in [15] in the context
of the possible worlds approach [14]. There, indirect effects of actions are implicitly obtained by
searching for successor states staying as close as possible to the original state while satisfying
both the direct effects of the action under consideration and the domain constraints. Although
the authors argued that this might yield unintended changes (such as a switch magically jumping
its position in the circuit depicted in Figure 1), no solution was offered.

In [24], the first and most elementary categorization-based solution to this problem was for-
mally developed by distinguishing between so-called frame and non-frame fluents.31 Only the
former are subject to the persistence assumption, and their truth-values completely determine
the truth-values of the latter. Similar ideas have been used e.g. in [7], in (the second part of) [4],
and in [22]. More sophisticated categorization methods do not simply restrict persistence to one

31 Earlier, the author of [48] raised the idea of introducing some notion of preference as regards changes of
specific fluents to changes of other fluents. Yet her discussion was only informal and took place in the context
of an example.
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category by allowing arbitrary changes in the other. Instead they exploit different categories to
define a partial preference ordering among all possible changes (as in our Definition 14), e.g. [39].
In [40], a systematic framework based on this concept is introduced with the aim of assessing
the range of applicability of different approaches that follow the same principles. However, we
have already argued in Section 5.1 that even if it is possible to assign an appropriate category
to each fluent in a particular domain if only the categorization is suitably fine-grained, the more
complex a domain is the more difficult this task becomes as it requires a deep analysis of possible
interactions. Besides, despite being the only suitable one, a particular categorization may appear
very unnatural even in simple domains, as we have illustrated in the context of Example 3.

More recently, several approaches have been established that take into account specific notions
of causality, as does our method, to tackle the problem of unintended changes. The monotonic,
situation calculus-based formalism developed in [8] supports specifications of indirect effects by
means of complete descriptions of how the truth-value of a particular fluent might be caused to
change. As an example, recall the basic Electric Circuit domain, which [8] would encode as

∀a, s [ Causes(a, s, light) ≡ ( Causes(a, s, sw 1) ∧ Holds(sw 2, s) )
∨ ( Causes(a, s, sw 2) ∧ Holds(sw 1, s) ) ]

∀a, s [ Cancels(a, s, light) ≡ Cancels(a, s, sw 1) ∨ Cancels(a, s, sw 2) ]

(46)

where Causes(a, s, f) should be read as “executing action a in situation s causes fluent f

to become true,” Cancels(a, s, f) as “executing action a in situation s causes fluent f to
become false,” and Holds(f, s) as “fluent f is true in situation s .” Suppose we are given the
specification of how sw 1 may become true (resp. false), viz.

∀a, s [ Causes(a, s, sw 1) ≡ a = toggle1 ∧ ¬Holds(sw 1, s) ]

∀a, s [ Cancels(a, s, sw 1) ≡ a = toggle1 ∧ Holds(sw 1, s) ]

plus this general axiom of persistence:

∀a, s, f [ Holds(f, do(a, s)) ≡ Causes(a, s, f) ∨ ( Holds(f, s) ∧ ¬Cancels(a, s, f) ) ] (47)

where do(a, s) denotes the situation obtained by executing action a in situation s . One then
obtains, say, that ¬Holds(sw1, s0)∧Holds(sw 2, s0)∧¬Holds(light , s0) implies Causes(toggle1, s0, sw 1)
and, hence, Causes(toggle1, s0, light) . This in turn implies Holds(light , do(toggle1, s0)) , as in-
tended. No effort has to be made to suppress an unwanted change of sw 2 since no causal relation
similar to (46) exists that may support this. On the other hand, the use of if-and-only-if de-
scriptions of causal dependencies, as in (46), is restricted to domains where these dependencies
are acyclic, i.e., hierarchical. Otherwise, i.e., if fluents depend mutually, unmotivated changes
cannot be precluded. To see why, consider the simplest possible cyclic specification, namely,

∀a, s [ Causes(a, s, f1) ≡ Causes(a, s, f2) ] (48)

Suppose a is an action whose execution in s0 does not influence f1 nor f2 , then formula (48)
in conjunction with the persistence axiom (47) is too weak to conclude that both f1 and f2

keep their truth-values. For neither ¬Causes(a, s0, f1) nor ¬Causes(a, s0, f2) is entailed. The
two mechanically connected switches discussed in Section 3.1, for instance, constitute a simple
example which falls into the category of mutual dependencies. A second limitation of [8] com-
pared to our approach stems from the fact that the formula in the right hand side of a definition
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like (46) either refers to the original state (in case of Holds(f, s) ) or to the finally resulting
successor state (in case of Causes(a, s, f) or Cancels(a, s, f) , respectively, in conjunction with
the persistence axiom). Consequently, no intermediately occurring fact can possibly trigger an
indirect effect; hence, this formalization does not allow for deriving the successor state where a
flash of the light bulb is recorded by the light detector in our Example 4.

In [4] and [29], the notion of causality is introduced by defining so-called causal rules (c.f.
Definition 9). By virtue of being directed deduction rules, they cannot be applied in a non-
causal way (e.g., sw 1 ∧ sw2 ⇒ light has a different meaning than, say, sw 1 ∧ light ⇒ sw2 ).
Besides a far more simple formalization employed in [29] compared to [4], the latter does not
allow for deriving implicit qualifications rather than ramifications from domain constraints (c.f.
Section 3.3). The reason is that in the approach [4] one always strives for a successor state no
matter how many changes are necessary to this end, while [29] additionally requires all changes
be explicitly grounded on some causal rule. Apart from this, the two approaches appear closely
related. For instance, we strongly presume their equivalence in case of deterministic actions and
domain constraints which do not give rise to qualifications.32 In particular, both methods are
grounded on the policy of minimal change, which amounts to rejecting any potential successor
state whose distance to the original state is strictly larger than the distance of another proper
successor state. As argued in Section 5.2, however, this paradigm might not always capture
the intuition insofar as successor states may exist which have non-minimal distance but are
equally plausible. A second difference between these two approaches on the one hand and our
concept of causal relationships on the other hand, has been elaborated in Section 5.3. Recall
that there we have illustrated a lack of expressiveness of causal rules regarding sophisticated
distinctions between qualifications and ramifications triggered by one and the same domain
constraint. Finally, we want to stress that in the approaches of [4, 29] it is assumed that
causal rules be given as part of a domain specification. This requires more design effort than
necessary—as can be seen by our suggestion to generate causal relationships automatically by
employing more general information on potential influences.

Similar remarks apply to a recently developed integration of causality into the situation
calculus-based framework presented in [26], also with the aim of handling indirect effects [25].
There, first-order formulas resembling causal relationships are used to define dependencies be-
tween effects and their indirect consequences. These formulas are of the form

∀s [ Φ(s) ∧ Caused(f1, v1, s) ∧ . . . ∧ Caused(fn, vn, s) ⊃ Caused(f, v, s) ] (49)

where Caused(f, v, s) should be read as “fluent f is caused to take truth-value v in situa-
tion s ,” and where Φ(s) describes properties of situation s . As an example, recall the basic
Electric Circuit domain, whose encoding by means of the approach [25] would include

∀s [ Holds(sw 2, s) ∧ Caused(sw 1, true, s) ⊃ Caused(light , true, s) ]

along with the action definition33

∀s [ ¬Holds(sw 1, s) ⊃ Caused(sw1, true, do(toggle1, s)) ] (50)

The general axiom of persistence employed in this context is

∀a, s, f [ ¬∃v.Caused(f, v, do(a, s)) ⊃ ( Holds(f, do(a, s)) ≡ Holds(f, s) ) ]

32 Moreover, a third approach, [11, 12], which is based on a nonmonotonic theory of “conditional entailment,”
is similar to [4, 29] in using expressions which resemble causal rules. A thorough and formal comparison
between these three frameworks, however, has not yet been performed.

33 For the sake of simplicity we neglect the concept of action preconditions.
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Figure 6: Causal networks representing the structural dependencies between fluents regarding
(a) Example 4, (b) Example 5, and (c) the domain constraint sw1 ∨ sw 2 (inducing a cycle),
respectively.

This axiom is of course useless unless the extension of the predicate Caused is minimized given
the direct effects of actions (like in (50)) and the laws of causality (each of which is of the
form (49)). This is formally achieved by applying circumscription [31]. Hence, besides also leav-
ing the effort of constructing the various causal relations to the designer, this method is grounded
on the paradigm of minimal change as well. In fact, this work, too, appears closely related to [4,
29]. Notice, however, that the scheme (49) is expressive enough to allow for the sophisticated
distinction between ramification and qualification discussed in Section 5.3. The reason for this is
that the predicate Caused may occur in the left hand side of the implication (49). For instance,
our Example 5 can be solved by employing ∀s [ Holds(at-trap, s)∧Caused(trap-open , true, s) ⊃
Caused(alive, false , s) ] but not ∀s [ Holds(trap-open , s)∧Caused(at-trap, true, s) ⊃ Caused(alive , false , s) ] .

In order to account for expected non-minimal changes, more sophisticated means than min-
imization have to be developed for the approaches discussed above. This requires to carefully
distinguish between conceivable changes, triggered by actually occurred (direct or indirect) ef-
fects, and unfounded changes. The approach developed in [27], which uses Dijkstra’s semantics
of programming languages to reason about actions, fails to address this challenge appropriately.
In this approach, the ramification problem is tackled by allowing actions to (temporarily) release
fluents from being subject to the assumption of persistence. But in case the domain constraints
do not completely determine the new values of all in this way released fluents, unexpected ef-
fects may be produced (e.g., a turkey magically starts walking if being shot at with an unloaded
gun).34 Our causal relationships account for this problem since they are only applicable if the
respective triggering effect either is among the direct effects or has previously been generated
as indirect effect.

34 We thank Vladimir Lifschitz for this observation.
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An approach which is considerably different from all methods discussed so far yet still related,
is based on networks representing probabilistic causal theories [34]. These networks describe,
in the first place, static dependencies among their components. As argued in [35, 36], however,
the truth-values of one or more nodes may be re-set dynamically and, then, the values of all
depending nodes need to be adjusted according to standard (Bayesian) rules of probability.
This can be regarded as generating indirect effects. If probability values are restricted to the
binary 0/1-case, then a network whose nodes are fluent names resembles our concept of influence
information. For instance, Figure 6(a) depicts a network suitable for Example 4. Although the
relation between this approach and the other methods discussed in this section is far from being
formally established today, let us point out some restrictions of causal networks compared to the
concept of causal relationships. First, recall Figure 6(a). Since the resulting value of a node, after
having fixed the direct effects, must not be computed until all new values of its predecessors have
been determined, the proposition detect necessarily remains false regarding Example 4 since
light stays false; hence, the non-minimal successor state where a light flash has been detected
cannot be obtained. Second, recall Example 5. Since a change of trap-open might cause a
change of alive depending on at-trap , the adequate network is the one depicted in Figure 6(b).
This, however, does not allow to distinguish between the two situations where either trap-open
becomes true with at-trap being true, or it happens to be the other way round. Hence, the
sophisticated distinction whose necessity has been claimed in Section 5.3, is not supported by
causal networks—similar to causal rules. Finally, networks representing causal theories are based
on acyclic graphs, which means that simple examples like the mechanically connected switches
(c.f. Section 3.1; relationships (3) and (4)) cannot be represented (c.f. Figure 6(c)). Aside from
these rather specific observations, however, we would consider it most interesting to have a
formal result regarding the range of applicability of approaches based on probabilistic networks.
The calculus presented in [36], for instance, considers only actions without preconditions, and it
merely refers to the temporal projection problem, which denotes the task to predict the effects of
action sequences. This raises the question whether and how this approach can also be applied in
other modes of reasoning like planning or postdiction (also called chronicle completion in [38]);
the latter of which deals with finding explanations for observations made during the execution
of action sequences.

This discussion leads us to the question of how to exploit the insights gained in this article.
Our formalization in the first part of this paper has been embedded in a high-level, abstract
description language and semantics for action scenarios, where we have concentrated on aspects
of ramifications only and, to this end, employed a simple form of action specifications as re-
gards direct effects. Three recent, similarly high-level action semantics focus on sophisticated
ways to formalize this aspect, namely, the Action Description Language [13], the Ego-World-
Semantics [38], and the framework presented in [46]. These approaches are considered prime
candidates for being enhanced by the concept of causal relationships. In case of the Action
Description Language, this should be based on the dialect developed in [3], which includes the
notion of non-determinism, here needed if more than a single successor state exists. The result-
ing extension would constitute an alternate to the variant of the Action Description Language
presented in [22], which handles ramifications on the basis of categorization and minimization,
as does the extension of the Ego-World-Semantics presented in [40].

The main purpose of these three formal frameworks is to provide a uniform semantics for
calculi designed to reason about actions and change. Given our formal proposal to handle indirect
effects, existing calculi can be extended in such a way that their solution to the ramification
problem is provably correct wrt. our semantics. As an example formalism, in the second part
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of this paper we have adapted the fluent calculus [19, 20]. Our Theorem 26 demonstrates that
our extension of this approach is correct wrt. the formal semantics described in the first part.
While the work reported in this article has been concentrated solely on the ramification problem,
the fluent calculus—besides being closely related, in its basic form, to the Linear Connection
Method [2] and reasoning about actions based on Linear Logic [16, 28]—has shown a wide range
of applicability, e.g. regarding postdiction problems and non-deterministic actions [3], reasoning
about counterfactual action sequences [44], or concurrent actions in conjunction with (locally)
inconsistent specifications [3]. Thus, a main goal of future research consists in combining all
these results, each of which focuses on a single ontological aspect, into a uniform and expressive
calculus.
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