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Abstract

A general game player is a system that can play previously unknown games given nothing but their rules.
Many of the existing successful approaches to general game playing require to generate some form of game-
specific knowledge, but when current systems establish knowledge they rely on the approximate method
of playing random sample matches rather than formally proving knowledge. In this paper, we present a
theoretically founded and practically viable method for automatically verifying properties of games whose
rules are given in the general Game Description Language (GDL). We introduce a simple formal language to
describe game-specific knowledge as state sequence invariants, and we provide a proof theory for verifying
these invariants with the help of Answer Set Programming. We prove the correctness of this method against
the formal semantics for GDL, and we report on extensive experiments with a practical implementation of
this proof system, which show that our method of formally proving knowledge is viable for the practice of
general game playing.
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1. Introduction

General Game Playing is concerned with the development of systems that understand the rules of
previously unknown games and learn to play these games well without human intervention. Today considered
to be a Grand Challenge for Artificial Intelligence [14], this endeavour requires the combination of methods
from a variety of sub-disciplines, including reasoning, search, game playing, and learning [29, 28]. Broad
interest in this research area was sparked by the inauguration of the annual AAAI General Game Playing
Competition, for which Michael Genesereth and his Stanford Logic Group developed the general Game
Description Language (GDL) [25]. With its recent extension to incomplete information games [37], the
description language allows to formalise and communicate the rules of arbitrary finite n-player games to a
general game-playing system. GDL rules are logical axioms, and a plain, Prolog-like inference mechanism
suffices for a basic player to be able to make legal moves [14].

1.1. The Value of Knowledge

A general game-playing system can solve simple games by brute-force search. Moreover, recent research
has shown that Monte Carlo-based methods provide a successful form of selective blind search to play
arbitrary unknown games without the need to learn an explicit game-specific strategy [4, 26, 19].

Moving from blind to informed search, however, is a great endeavour in general game playing as it
requires a player to automatically analyse the bare rules of previously unknown games with the goal to
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extract and exploit game-specific knowledge. The value of gaining knowledge is recognised across a variety
of approaches to general game playing, as the following examples demonstrate.

1. Kuhlmann et al. [22] show how search heuristics can be created on the basis of structural elements
such as boards, markers and pieces. These elements are identified by finding invariants. For example,
a ternary expression in the game description, say cell(X,Y,Piece), is considered to denote a two-
dimensional board provided it has one output argument, that is, which cannot have two different values
simultaneously.

2. Clune [6] shows how automatically generated evaluation functions are improved by determining the
stability of candidate features. An example of a stable property are corner stones in the game of
Othello, which will not change once they have been placed.

3. Further structural knowledge that proves useful for better game play is identified in [34, 35]. For
example, the second argument in an expression money(Player,Amount) is considered to denote a
quantity if this argument is unique and ordered by a transitive and antisymmetric relation. Knowledge
of this kind is used in [35] to create a goal distance measure based on Fuzzy Logic.

4. Even approaches that originate in pure blind Monte Carlo search have been shown to profit from the
use of knowledge: Finnsson and Björnsson [9] demonstrate how the identification of different piece
types in chess-like games allows to determine the relative importance of state features, which can then
be used to bias move selection during random search.

While successful general game-playing systems like the aforementioned rely on the ability to acquire game-
specific knowledge, none of them actually attempt to prove it. Rather they generate random sample matches
to test whether a property is violated at some point, and then rely on the correctness of this informed guess,
as frankly admitted by Kuhlmann et al. [22]:

We have mentioned several situations in which we needed to prove an invariant about states of
the game. . . . Rather than proving these invariants formally, which would be time-consuming, our
agent uses an approximate method to become reasonably certain that they hold. ([22], p. 1460)

Of course this runs the risk of basing one’s strategy on erroneous beliefs about a game, which may lead to
serious blunders when a player cuts off an easy win or a straightforward loss from its search space, or when
a player employs an inappropriate evaluation function. The purpose of this paper is to demonstrate that,
contrary to widespread belief, it is viable for a general game-playing system to prove knowledge formally.

Moreover, assisting general game-playing systems with the acquisition of knowledge about a new game
would not be the only benefit of having an automatic verification method in general game playing. Such
a tool can also support game design. In practice it frequently happens that a new game is specified by
a set of rules that are syntactically valid but erroneous in that they do not describe the exact intended
game. Later (in Section 3.1) we will give an illustrative example of a defective game description whose
problems were not detected until the game was actually used at the 2006 AAAI Competition, which caused
quite some disturbance among the participants and the organisers alike. The availability of an automated
proof method would enable game designers to ensure that their game specifications satisfy basic desired
properties, such as that two pieces can never occupy the same square, that players are never left without a
legal move in nonterminal states, or that a game designed to be turn-taking and zero-sum does indeed have
these properties.

The first method of automatically proving properties for general games has been given in [32]. Yet their
approach requires to search the entire set of reachable positions in a game. This renders the method unsuited
for both practical play and game design, because in either case the interest lies in games that are far too
complex to be searched completely in reasonable time.

1.2. Overview of Results

In this paper, we present the first practical method of rigorously proving game-specific knowledge given
nothing but the formal rules of a game. Our approach allows systems to automatically verify state sequence
invariants. These are temporally extended yet local properties of games that can be proved by induction
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rather than by complete search.1 An example of a simple state sequence invariant is, “for all X, Y there is
a unique Piece such that cell(X,Y,Piece) is true.” An example of a state sequence invariant that
refers to two consecutive states is, “a corner of an Othello board that is occupied by a light (dark) piece will
be occupied by a light (dark) piece in the next state.” All examples of game-specific knowledge mentioned
above in Section 1.1 can be expressed as state sequence invariants.

Our specific contributions can be summarised as follows.

1. We define syntax and semantics of a simple formal language for game-specific knowledge, for which
we combine elements from the Game Description Language and Temporal Logic.

2. We define a new, formal semantics for GDL by which game descriptions are interpreted as labelled
state transition systems.

3. Using the paradigm Answer Set Programming [13, 12], we develop a proof theory for verifying game-
specific knowledge against a given GDL specification, and we formally prove this method to be correct.

4. Because the practice of general game playing typically requires a player to search through large sets
of potentially valid and useful properties, we extend our basic proof method so as to allow a general
game player to systematically search and verify (or reject) multiple properties at once.

5. We report on systematic experiments with an implementation of our method, for which we have
integrated a state-of-the-art Answer Set Solver [10] with the successful knowledge-based general game
player described in [35].

Before we proceed we stress that in this paper we are only concerned with automatically proving properties.
Learning what type of properties may actually be worth proving is beyond the scope of this paper, and we
refer to the literature mentioned in Section 1.1 [6, 9, 22, 35] and other publications [7, 17], which comprise
an extensive body of work on various types of game-specific knowledge that helps a general game player find
good heuristics.

The paper proceeds as follows. In the next section, we recapitulate the basic syntax of GDL. Thereafter,
in Section 3, we introduce a formal language for state sequence invariants, and we define a new, state
transition-based semantics for GDL. In Section 4, we develop a proof theory for automatically verifying
potential invariants against GDL game descriptions. In Section 5, we present the aforementioned extensions
to the method. In Section 6, we discuss our implementation in detail and report on systematic experiments
that demonstrate the practical viability of our approach. We conclude in Section 7.

2. Formalisation of Games: the Game Description Language

While finite state machines are the natural model for finite multiplayer games, most games have huge
state spaces and therefore cannot be directly specified as a finite state machine in practice. This motivated
the development of the general Game Description Language (GDL) [14], which can be used to provide a
fully axiomatic, compact description of any finite and deterministic n-player game (n ≥ 1) with perfect
information. On the one hand, the language is declarative and easy to understand and use by humans;
on the other hand, it can be processed fully automatically by a general game-playing system. The syntax
follows that of normal logic programs (see e.g., [23]):

Definition 1. A term is either a variable, or a function symbol applied to terms as arguments (functions
with no arguments are called constants).

An atom is a predicate symbol with terms as arguments.
A literal is an atom or its negation.
A clause is of the form h :- b1, . . . , bn., where h (the head) is an atom and b1, . . . , bn (the body) are

literals (n ≥ 0), with the meaning that b1, . . . , bn together imply h.
A logic program is a finite set of clauses.

1Local means properties that can be established without searching through a large part of the entire game tree, and
temporally extended means properties that concern one or more successive game states. An example of a global property would
be the existence of a winning strategy for a player, which in general requires to search much—if not all—of the game tree.

3



role(R) R is a player
init(F) F holds in the initial position
true(F) F holds in the current position

legal(R,M) player R has legal move M
does(R,M) player R does move M
next(F) F holds in the next position
terminal the current position is terminal

goal(R,N) player R gets goal value N

Table 1: The keywords of GDL.

A word on the notation: In this paper we will be largely concerned with embedding GDL game descriptions
into answer set programs. For this reason we will use the standard Prolog syntax for GDL, where variables
are indicated by uppercase letters (see Figure 1 for an example). This is in contrast to the more customary
KIF-notation of GDL introduced in [14]. The KIF-syntax also allows disjunctions in clause bodies, but
these can be easily transformed into normal logic program clauses [23]. Throughout the paper, we will use
“clause” and “(game) rule” interchangeably.

As a language especially designed for game descriptions, GDL uses a few pre-defined predicate symbols
shown in Table 1. A further standard predicate is distinct(X,Y), which means syntactic inequality of the
two arguments and which can only appear in the body of a clause.2

GDL-II. GDL has recently been extended to games with randomness and imperfect information [37, 38]
using these two additional keywords:

• Constant random is a pre-defined role that models Nature and plays randomly;

• Predicate sees(R,P)—to be read as: role R perceives P—is used to control the information that
players have about the game state.

Perfect-information games can be expressed in GDL-II by the general rule

sees(R,move(R2,M)) :- role(R), does(R2,M).

According to this clause, each player R always “sees” any move M by any player R2 and, hence, has complete
state knowledge throughout a game given that each game description provides a complete description of the
initial position.

Example: The Board Game Quarto. The two-player turn-taking game of “Quarto” [20] is played on a 4×4
game board. It uses 16 different pieces, one for each combination of four characterising binary attributes
(e.g. short/tall, red/blue, etc.). Initially, the board is empty and one player starts by selecting one of the
pieces for placement by the other player. The players take turns repeating this procedure with yet unplaced
pieces until either no more pieces are available (in which case the game ends in a draw) or one player wins
by having completed a horizontal, vertical or diagonal line of four pieces with at least one shared attribute
(e.g., they are all red). A complete GDL specification for Quarto is shown in Figure 1. The two players are
called r1 , r2 , and the 16 pieces are represented by constants p0000 , p0001 , p0010 , . . ., p1111 , where
each bit position stands for one of the attributes. The actions are

• select(P ): piece P gets selected for placement,

• place(P,X, Y ): piece P is placed on free board cell (X,Y ), and

2The semantics of this predicate is given by tacitly assuming the unary clause distinct(s, t)., for every pair s, t of
syntactically different ground terms.
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1 role(r1). role(r2). in it(cell(1,1,b)). ... in it(cell(4,4,b)).
2 in it(sctrl(r1)). in it(pool(p0000)). ... in it(pool(p1111)).
3

4 legal(R,select(P)) :- true(sctrl(R)), true(pool(P)).
5 legal(R,place(P,X,Y)) :- true(pctrl(R)), true(selected(P)), true(cell(X,Y,b)).
6 legal(R,noop) :- role(R), not true(sctrl(R)), not true(pctrl(R)).
7

8 next(pool(P)) :- true(pool(P)), not does(r1,select(P)),
9 not does(r2,select(P)).

10 next(selected(P)) :- does(R,select(P)).
11 next(cell(X,Y,P)) :- does(R,place(P,X,Y)).
12 next(cell(X,Y,P)) :- true(cell(X,Y,P)), does(R,place(Q,X1,Y1)), !=(X,Y,X1,Y1).
13 next(cell(X,Y,P)) :- true(cell(X,Y,P)), does(R,select(Q)).
14 next(sctrl(R)) :- true(pctrl(R)).
15 next(pctrl(R1)) :- true(sctrl(R2)), otherrole(R1,R2).
16

17 sees(R,move(R2,M)) :- role(R), does(R2,M).
18

19 terminal :- line.
20 terminal :- not boardopen.
21

22 goal(R,100) :- line, placedlast(R).
23 goal(R, 50) :- not line, not boardopen, role(R).
24 goal(R, 0) :- line, otherrole(R,R1), placedlast(R1).
25

26 placedlast(R) :- true(sctrl(R)).
27

28 boardopen :- true(cell(X,Y,b)).
29

30 line :- row.
31 line :- column.
32 line :- diagonal.
33

34 row :- true(cell(1,Y,P1)), true(cell(2,Y,P2)),
35 true(cell(3,Y,P3)), true(cell(4,Y,P4)), sameattr(P1,P2,P3,P4).
36 column :- true(cell(X,1,P1)), true(cell(X,2,P2)),
37 true(cell(X,3,P3)), true(cell(X,4,P4)), sameattr(P1,P2,P3,P4).
38 diagonal :- true(cell(1,1,P1)), true(cell(2,2,P2)),
39 true(cell(3,3,P3)), true(cell(4,4,P4)), sameattr(P1,P2,P3,P4).
40 diagonal :- true(cell(1,4,P1)), true(cell(2,3,P2)),
41 true(cell(3,2,P3)), true(cell(4,1,P4)), sameattr(P1,P2,P3,P4).
42

43 sameattr(P1,P2,P3,P4) :- nthbit(N,P1,Bit), nthbit(N,P2,Bit),
44 nthbit(N,P3,Bit), nthbit(N,P4,Bit).
45

46 !=(X1,Y1,X2,Y2) :- index(X1), index(Y1), index(X2), index(Y2), distinct(X1,X2).
47 !=(X1,Y1,X2,Y2) :- index(X1), index(Y1), index(X2), index(Y2), distinct(Y1,Y2).
48

49 nthbit(1,p0000,0). index(1). otherrole(r1,r2).
50 nthbit(2,p0000,0). index(2). otherrole(r2,r1).
51 ... index(3).
52 nthbit(4,p1111,1). index(4).

Figure 1: A GDL specification of the game Quarto.
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• noop : an action without effect, performed by the player who currently has no control.

The game positions are represented using these state components, henceforth called fluents:

• cell(X,Y, P ): board cell (X,Y ) contains piece P (where P = b for blank cells),

• pool(P ): piece P is available for selection,

• sctrl(R): role R currently has control to select a piece,

• pctrl(R): role R currently has control to place a piece, and

• selected(P ): the last action has been to select piece P .

Lines 1 and 2 in Figure 1 define the names of the two players and fluents that compose the initial state.
Clauses 4–6 for predicate legal(R,M) define the preconditions for player R to take move M relative to
what is true in the current position: A player can select a piece from the pool (line 4) and place a selected
piece on a blank cell (line 5) when he has control to do so; otherwise the player can only do noop , a move
without effect3 (line 6).

Clauses 8–15 for predicate next(F) provide a complete axiomatisation of all fluents F that compose
a successor state relative to what is true in the current position and what each player does. Specifically,
two frame axioms say respectively that any piece P remains in the pool if it is not being selected (lines 8–9)
and that all cells X,Y keep their mark P unless a player decides to place a piece on that very cell (lines 12
and 13). As for the actual effects of the moves, line 10 says selecting a piece P causes selected(P) to
become true in the next state; line 11 says that when placing a piece on a cell, then the contents of this cell
changes accordingly; and lines 14 and 15 define the progression of the two control fluents.

According to line 17, the two players see each other’s moves, which induces perfect information. A state
is terminal if either there is a line of pieces with a common attribute (line 19, where the winning criterion is
encoded by the auxiliary predicate line) or the board has no empty position (line 20, in conjunction with
clause 28). The player who completes a line wins the game with maximal payoff 100 (line 22) and leaves
his opponent with minimal payoff 0 (line 24). A draw is indicated by both players obtaining payoff 50 in
case of a completely filled board where the winning criterion is not satisfied (line 23).

According to the informal semantics given in [14, 25], a GDL specification G is to be understood as
follows.

1. The derivable instances of role(R) define the players.
2. The initial state is composed of the derivable instances of init(F).
3. In order to determine the legal moves of a player in any given state, this state has to be encoded first,

using the keyword true. More precisely, let S = {f1, . . . , fn} be a finite state (e.g., the derivable
instances of init(F) at the beginning), then G is extended by the unary clauses

true (f1).
. . .
true (fn).

Those instances of legal(R,A) which are derivable from this extended program define all legal ac-
tions A for player R in state S .

4. In the same way, the clauses for terminal and goal(R,N) define termination and outcome (i.e., a
goal value N for player R) relative to the encoding of a given state.

5. Determining a position update requires the encoding of the current position along with clauses repre-
senting a joint move. Specifically, if players r1, . . . , rk make moves a1, . . . , ak , then

does (r1, a1).
. . .
does (rk, ak).

must be added to G, and then the derivable instances of next(F) compose the updated state.

3This is the usual way of modelling turn-taking games in GDL, which assumes all players to move simultaneously.
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6. In the same way, the derivable instances of sees(R,P) describe all players’ percepts.

This informal description will be made precise in Section 3.2. We complete this introduction by recalling
the restrictions that have been imposed on GDL in [25] in order to ensure that any valid rule description
can be unambiguously interpreted as a game.

Definition 2. The dependency graph for a logic program G is a directed, labelled graph whose nodes
are the predicate symbols that occur in G and where there is a positive edge p +→ q if G contains a clause
p(~s) :- . . . , q(~t ), . . . ., and a negative edge p −→ q if G contains a clause p(~s) :- . . . , not q(~t ), . . . . We
say p depends on q in G if there is a path from p to q in the dependency graph of G.

A valid GDL specification is a finite set of clauses G where

• role only appears in facts (i.e., clauses with empty body) or in the body of clauses;

• init only appears as head of clauses and does not depend on any of true, legal, does, next, sees,
terminal, or goal;

• true only appears in the body of clauses;

• does only appears in the body of clauses, and none of legal, terminal, or goal depends on does;

• next and sees only appear as head of clauses.

Moreover, the description G and its dependency graph Γ must satisfy the following.

1. There are no cycles involving a negative edge in Γ, that is, G must be stratified [1, 11];

2. Each variable in a clause occurs in at least one positive atom in the body, that is, G must be al-
lowed [24];

3. If p and q occur in a cycle in Γ and G contains a clause

p(s1, . . . , sm) :- b1(~t1), . . . , q(v1, . . . , vk), . . . , bn(~tn)

then for every i ∈ {1, . . . , k},
• vi is variable-free, or

• vi is one of s1, . . . , sm, or

• vi occurs in some ~tj (1 ≤ j ≤ n) such that bj does not occur in a cycle with p in Γ.

The last condition imposes a restriction on the combination of function symbols and recursion to ensure
finiteness and decidability in all cases.

It is straightforward to verify that the rules in Figure 1 satisfy all requirements of a valid GDL description.
The imposed restrictions on the keywords are a consequence of their use to define the semantics of a GDL
game. If, for example, legal were allowed to depend on does, as in

legal(R1,select(P)) :- otherrole(R1,R2), not does(R2,select(P)).

then a player would not be able to decide whether a move is legal based on his knowledge of the current
position alone. To convey an intuitive understanding of the necessity of the further restrictions, some
examples of invalid GDL specifications follow.

Stratification. Non-stratified rules, as in

boardopen :- not boardclosed.
boardclosed :- not boardopen.

may not admit a unique (i.e., unambiguous) model.
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Allowedness. Clauses that are not allowed, as in

next(selected(P)) :- does(R,select(Q)).

may induce positions that are composed of an unbounded number of fluents.

Recursion restriction. Clauses that do not obey the recursion restriction, as in

placedlast(selected(X)) :- placedlast(X).

may allow terms to grow to unbounded size by recursion.

3. Sequence Invariants over Game Descriptions

3.1. The Importance of Sequence Invariants in GDL

Recall the Quarto rules in lines 20 and 28, respectively, from the game description in Figure 1 (page 5):

terminal :- not boardopen.
boardopen :- true(cell(X,Y,b)).

Suppose these two clauses were replaced by

terminal :- not true(cell(X,Y,b)), index(X), index(Y).

At first glance, this seems not to alter the meaning, namely, that the game terminates if there is no blank
cell. In fact, however, there is a crucial difference regarding the implicit quantification of the variables
X and Y. While the original two clauses imply terminal if there do not exist X and Y such that
true(cell(X,Y,b)), the alternative rule implies terminal if there do exist X and Y such that not
true(cell(X,Y,b)). The first placement of a piece at any cell yields a state which satisfies the body of
one ground instance of the alternative clause (as the marked cell is not blank anymore) and hence untruly
renders this state terminal, whereas the original clauses imply termination only when all cells are marked.
The organisers of the General Game Playing Competition in 2006 used a GDL specification for the game of
Othello [16] with a similar defect, which caused quite some disturbance, first among the participants and
then among the organisers themselves. A proof system that allows to formally verify game descriptions
would have been of invaluable assistance to the game designers in order to prevent such mishaps. The
bug that we just introduced in the Quarto game description, say, would be immediately detected when
attempting to prove the following intended property:

If there is a blank cell and no completed line, then Quarto is not terminated. (1)

In addition to assisting the game design, a proof system can also help a general game-playing system to
discover valuable information about a previously unknown game. This information can then be used, for
example, to choose an appropriate search algorithm or to construct a suitable, game-dependent heuristic.
In the following we will motivate a class of game properties which allows an efficient verification and is
expressive enough to comprise many interesting properties of a game description, including the previously
mentioned one.

To begin with, we consider the class of properties which make statements about single states of a game,
which we will call state invariants. They are “local”, which means that they can be verified for all reachable
states by an analysis of the GDL rules rather than by a complete search through the whole game tree. This
covers many interesting properties, including (1). As another example, the Quarto property

Each cell contains at most one piece. (2)

allows a general game player to infer the existence of a board structure, which is valuable knowledge to
construct a good heuristics for playing the game [22, 6, 35]. However, many interesting properties cannot
be expressed by referring to a single state. Consider, for example,

If no player can place a piece now, then in the next state one player can do so. (3)
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This property is not a state invariant due to the inherent reference to subsequent game states. However, it
can be seen as a state sequence invariant with degree 1, meaning that its formulation requires a “lookahead”
of exactly one joint move.

In the following we will define a formal language over the syntax of GDL that allows the formulation
of state sequence invariants. The language is restricted in that no infinite sequences and no quantification
over sequences is allowed, which turns out to be a beneficial tradeoff between expressibility and efficient
verifiability. A simple and elegant way to obtain such a language is by extending GDL with the unary
operator “©” borrowed from Temporal Logic (see, for example, [21]) to refer to successor game states.

Definition 3. We define P to be the set of all ground atoms p(~t ) using the predicate and function
symbols of a valid GDL specification G such that p /∈ {init, next} and p does not depend on does in G.
Then the set VG of (state) sequence invariants over G is the smallest set with

• P ⊆ VG;

• Let ϕ[ ~X] denote a formula obtained from ϕ by replacing arbitrary ground terms with variables from
~X = (X1, . . . , Xk). Furthermore, let D ~X = DX1

× . . . × DXk
for finite sets (of domain elements)

DX1
, . . . , DXk

.

If ϕ,ϕ1, ϕ2 ∈ VG, then also the following are in VG:

– ¬ϕ, ϕ1 ∧ ϕ2, and ϕ1 ∨ ϕ2;

– (∃ ~X :D ~X)ϕ[ ~X];

– (∃l..u ~X :D ~X) ϕ[ ~X], for each l ∈ N and u ∈ N ∪ {∞} s.t. l ≤ u;

– ©ϕ.

We also define, over the syntax tree tϕ of ϕ ∈ VG, the degree of ϕ, denoted deg(ϕ), to be the maximal
number of ©-occurrences on paths from the root of tϕ to its leaves.

Since predicates over init and next are excluded, the unary predicate true provides the only means
for referring to fluents and thus to states, which keeps the language clear and simple. Predicates that depend
on does are excluded for technical reasons which will be pointed out at the end of Section 4.1. We allow
restricted quantification, by explicit specification of a finite domain for each variable; and we use counting
quantifiers of the form (∃l..u ~X :D ~X) ϕ to give a lower (l) and upper (u) bound for the number of ground

instances ~t for a vector of variables ~X such that ϕ[ ~X/~t ] is true. Here, ϕ[ ~X/~t ] denotes the formula

which is obtained from ϕ by replacing all variables in ~X with the respective instances in ~t. If u =∞ then
there is no upper bound. Modality ©ϕ means “ϕ holds next,” and the degree of a formula is the maximal
“nesting” of this modal operator. The binary connective ⊃ as well as quantifier (∀ ~X :D ~X) are defined via
the usual macros, and the terms “state sequence invariant” and “formula” will be used interchangeably. In
the remainder, ϕ, ψ, and ρ (possibly with subscripts) are always used to refer to state sequence invariants.

As an example, consider the previously mentioned property (1) (page 8). Denoting the set of board
indices by I = {1, 2, 3, 4}, it can be formulated via the following formula of degree 0:4

((∃X,Y :I) true(cell(X,Y, b)) ∧ ¬line) ⊃ ¬terminal .

Property (2) can be formulated via a formula of degree 0, too, if we denote the set of pieces by DP =
{p0000 , p0001 , . . . , p1111}:

(∀X,Y :I)(∃0..1P : DP) true(cell(X,Y, P )). (4)

Property (3), however, refers to two consecutive states and hence requires a formula of degree 1:

¬(∃R :{r1 , r2}) true(pctrl(R)) ⊃ ©(∃R :{r1 , r2}) true(pctrl(R)). (5)

4In quantifiers, when two variables X and Y have the same domain D , we abbreviate (X,Y ) :D ×D by X,Y :D .
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3.2. A Formal Semantics for the Game Description Language

The formal treatment of state sequence invariants requires a formal semantics for GDL, which we define
next, making precise what is only informally described in [25]. Our semantics is based on viewing a GDL
game description as an answer set program (ASP), for which we can use the notion of an answer set , which
provides a modern way of characterising the models of logic programs with negation [5, 2, 13] (see, e.g., [12]
for a general introduction to ASPs and answer sets).

Definition 4. [13] Given a set of clauses G and a set of ground atoms A, let GA be the set of negation-
free implications, h :- b1, . . . , bk., obtained by taking all ground instances of clauses in G and

• deleting all clauses with a negative body literal not bi such that bi ∈ A,

• deleting all negative body literals from the remaining clauses.

Then A is an answer set for G if and only if A is the least model for GA.

A useful property of answer sets is to provide a unique model whenever the underlying program is strat-
ified [13], as is always the case with valid GDL game descriptions (cf. Definition 2). In the following, by
G ` p we denote that ground atom p is contained in this unique answer set for a stratified set of clauses G.

Any game description in GDL contains a finite set of function symbols, including constants, which
implicitly determines a (usually infinite) set of ground terms Σ. As indicated in Section 2, interpreting
a GDL specification requires to encode positions and joint moves as logic program facts. To this end, we
introduce two abbreviations: Strue, where S = {f1, . . . , fn} ⊆ Σ is a finite set of ground terms; and Adoes,
where A : {r1, . . . , rk} 7→ Σ is an assignment of moves to players:

Strue
def
= { true (f1). , . . . , true (fn). }

Adoes def
= {does (r1, A(r1)). , . . . , does (rk, A(rk)). }

(6)

We are now prepared to formally define how each valid GDL specification determines a unique state transition
system as the underlying game model.

Definition 5. The semantics of a valid GDL specification G is given by this state transition system
(R,Sinit, T, l, u, g) :

• R = {r : G ` role(r)}—the roles;

• Sinit = {f : G ` init(f)}—the initial position;

• T = {S : G ∪ Strue ` terminal}—the terminal positions;

• l = {(r, a, S) : G ∪ Strue ` legal(r, a)}—the legality relation;

• u(A,S) = {f : G ∪Adoes ∪ Strue ` next(f)}—the update function;

• I(A,S) = {(r, p) : G ∪Adoes ∪ Strue ` sees(r, p)}—the information relation;

• g = {(r, v, S) : G ∪ Strue ` goal(r, v)}—the goal relation;

for all finite subsets S ⊆ Σ and assignments A : R 7→ Σ where Σ is the set of all ground terms that can
be built with the function symbols (including the constants) that occur in G.
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Example. The Quarto rules in Figure 1 (page 5) entail the initial state

Sinit = {sctrl(r1 ), pool(p0000 ), pool(p0001 ), . . . , pool(p1111 ), cell(1, 1, b), . . . , cell(4, 4, b)}

Adding Strueinit to the set of clauses allows to derive the legal moves of both players in Sinit :

{(r1 , select(p0000 ), Sinit), . . . , (r1 , select(p1111 ), Sinit), (r2 ,noop, Sinit)} ⊆ l

Consider, say, A = {r1 7→ select(p0000 ), r2 7→ noop}, then further adding Adoes to the logic program in
Figure 1 allows to infer the updated state, u(A,Sinit):

{pctrl(r2 ), selected(p0000 ), pool(p0001 ), . . . , pool(p1111 ), cell(1, 1, b), . . . , cell(4, 4, b)}

The syntactic restrictions imposed on valid GDL specifications justify the restriction to finite sets Strue

and Adoes , as the following proposition shows.

Proposition 6. Suppose G is a valid GDL specification, then

1. {r : G ` role(r)} is finite.

2. {f : G ` init(f)} is finite.

3. {f : G ∪Adoes ∪ Strue ` next(f)} is finite.

Proof:

1. By Definition 2, all clauses in G with keyword role in their head are facts. These facts must be
variable-free since G is allowed according to Definition 2, and hence the unique answer set for G
includes just these finitely many ground instances of role.

2. According to Definition 2, keyword init only appears as head of clauses in G. The recursion restriction
in Definition 2 ensures that if init depends on other predicates then no clause for these predicates
can introduce new function symbols through recursion. Hence, the arguments in derivable instances
for init have bounded size. Moreover, these terms must be grounded in a finite set of ground facts
since G is allowed. This implies that the unique answer set for G contains only finitely many ground
instances of init.

3. According to Definition 2, keyword next only appears as head of clauses in G. The recursion
restriction in Definition 2 ensures that no clause for predicates on which next depends can introduce
new function symbols through recursion. Hence, the arguments in derivable instances for next have
bounded size. Moreover, these terms must be grounded in a finite set of ground facts since G∪Adoes∪
Strue is finite and allowed, given that Adoes and Strue are finite sets of ground facts. This implies
that the answer set for any G∪ Strue ∪Adoes contains only finitely many ground instances of next.

�
According to this proposition, only states that are finite can be reached from the initial state in a game
described by a valid GDL specification. It is worth noting, however, that this does not imply that the set
of reachable states itself is finite. As a matter of fact, GDL is expressive enough to describe any Turing
machine as a “game” using clauses like

in i t(head_position(0)).
next(head_position(succ(X))) :- true(head_position(X)),

does(tm,move_forward).

This clause for next describes an unbounded growth of head_position(succn(0)) through state tran-
sitions, which corresponds to a one-way infinite tape. Hence, reachability of states is generally undecidable
in GDL.
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3.3. A Formal Semantics for Sequence Invariants

In order to define the formal meaning of sequence invariants that have degree n > 0, we first need to
introduce successive state transitions of length n. Single state transitions are based on the formal semantics
of the GDL given in Definition 5 on page 10. There is a transition from state S to state S′ if S is not
terminal and can be updated to S′ with respect to a move assignment A which comprises a legal move for
each of the players. Successive state transitions are then composed of multiple single state transitions. This
is formally stated as follows.

Definition 7. For the semantics (R,Sinit, T, l, u, g) of a valid GDL specification and arbitrary finite
S, S′ ⊆ Σ, we write S A−→ S′ if the following holds:

• A : R 7→ Σ is such that (r,A(r), S) ∈ l for each r ∈ R,

• S′ = u(A,S), and

• S /∈ T

We call S0
A0−→ S1

A1−→ . . . Am−1−→ Sm (where m ∈ N) a (state) sequence, sometimes abbreviated as
(S0, S1, . . . , Sm) when reference to A0, A1, . . . , Am−1 is not needed. The length of a sequence (S0, . . . , Sm)
is m. Moreover, a state Sm is called reachable if there is a sequence (Sinit, . . . , Sm).

Intuitively, a sequence invariant ϕ with degree n is true in a state S0 if and only if all “relevant”
sequences (S0, . . . , Sm) satisfy ϕ. Clearly, all sequences with m = n are relevant, and sequences where
m > n are irrelevant since they provide no more information (regarding ϕ) than their respective initial
subsequences of length n. Also irrelevant are sequences with m < n that can be extended by a legal
transition, as they are contained in sequences with greater length. However, two types of sequences with
m < n cannot be extended and thus need to be considered:

• Terminated Sequences (i.e. that end in a terminal state). These are relevant for entailment, lest
arbitrary formulas of the form ψ ∧©ρ be considered true in any terminal state St regardless of the
truth of ψ (since no sequence of length ≥ 1 exists in St).

• Nonplayable Sequences (i.e. that end in a nonterminal state with no legal move for at least one player).
Although they influence entailment, we neglect nonplayable sequences for the moment and defer the
discussion on this issue to Section 5.2.

Terminated sequences could in principle be extended by a pseudo joint move ε that defines a transition
from each terminal state St into St itself, that is, St ε−→ St. Every terminated sequence could thus be
extended to length n, which would allow to give a semantics for invariants over sequences of length n only.
However, this has unintended side effects. For example, implications of the shape ¬ϕ ⊃ ©ϕ (like, e.g.,
formula (5) (page 9) for Quarto would always be false because they are never true in a terminal state St
that satisfies ¬ϕ. Similar considerations with other pseudo continuations of terminal states lead to equally
non-verifiable albeit possibly valid sequence invariants. The following definition of entailment takes into
account all of our foregoing considerations.

Definition 8. Let G be a valid GDL specification. A sequence (S0, . . . , Sm) is called n-max if it is of
length n, or if it is shorter and ends in a terminal state. Let S0 be a state and ϕ be a formula such that

deg(ϕ) = n. We say that S0 satisfies ϕ (written S0 � ϕ) if for all n-max sequences S0
A0−→ . . . Am−1−→ Sm

(m ≤ n) we have that (S0, . . . , Sm) � ϕ as follows (where 0 ≤ i ≤ m):

(Si, . . . , Sm) � p iff G ∪ Struei ` p (p ∈ P)
(Si, . . . , Sm) � ¬ϕ iff (Si, . . . , Sm) 2 ϕ
(Si, . . . , Sm) � ϕ1 ∧ ϕ2 iff (Si, . . . , Sm) � ϕ1 and (Si, . . . , Sm) � ϕ2

(Si, . . . , Sm) � ϕ1 ∨ ϕ2 iff (Si, . . . , Sm) � ϕ1 or (Si, . . . , Sm) � ϕ2

(Si, . . . , Sm) � (∃ ~X :D ~X)ϕ[ ~X] iff there is an ~a ∈ D ~X s.t. (Si, . . . , Sm) � ϕ[ ~X/~a]

(Si, . . . , Sm) � (∃l..u ~X :D ~X) ϕ[ ~X] iff there are ≥ l and ≤ u different ~a ∈ D ~X s.t. (Si, . . . , Sm) � ϕ[ ~X/~a]
(Si, . . . , Sm) � ©ϕ iff i = m or (Si+1, . . . , Sm) � ϕ
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A crucial part here is (Si, . . . , Sm) � ©ϕ for i = m: in case we reach the end of a state sequence, every
formula of the form ©ϕ must be true. Together with the definition of an n-max sequence, this correctly
grasps the intuition for terminated sequences of length smaller than n, so that, for example, formula (5) on
page 9 is clearly entailed in each terminal state. In general, ©ϕ is considered true in every terminal state
even if ϕ is inconsistent. In our setting this is perfectly acceptable as we are just interested in the truth of a
formula in reachable states—all states beyond are irrelevant. It is worth mentioning that ©¬ϕ and ¬©ϕ
are only equivalent for nonterminal states, whereas for every terminal state St we have that (St) � ©¬ϕ
but (St) 2 ¬©ϕ.

The following proposition relates sequences that are longer than the degree n of the formula to be proved
to n-max sequences. This generalises formula entailment to a context with additional formulas that can
have a higher degree. It is conditioned on the standard restriction to playable GDL games, meaning that
every role has at least one legal move in every nonterminal reachable state [25].

Proposition 9. Let G be a GDL specification, ϕ be a sequence invariant of degree n, (S0, . . . , Sm) be
an n-max sequence, and n̂ ≥ n arbitrary.

1. Let G be playable and state S0 reachable. Then (S0, . . . , Sm) can be extended to an n̂-max sequence
(S0, . . . , Sm, . . . , Sm̂).

2. For all n̂-max sequences (S0, . . . , Sm, . . . , Sm̂) extended from (S0, . . . , Sm):

(S0, . . . , Sm) � ϕ iff (S0, . . . , Sm, . . . , Sm̂) � ϕ.

Proof:

1. By induction on n̂. The base case n = n̂ is immediate. For the induction step, assume that
(S0, . . . , Sm) can be extended to an n̂-max sequence (S0, . . . , Sm, . . . , Sm̂). If Sm̂ is terminal, then
(S0, . . . , Sm̂) is also n̂ + 1-max. Otherwise, since Sm̂ is reachable and G playable, there are Am̂
and Sm̂+1 such that Sm̂

Am̂−→ Sm̂+1 . Then (S0, . . . , Sm, . . . , Sm̂, Sm̂+1) is n̂+ 1-max.

2. By induction on the structure of ϕ. For the base case, consider ϕ = p for some ground atom p ∈ P .
Entailment for a ground atom only involves the first state of a sequence, which implies the claim. For
the induction step, consider ϕ = ©ψ and let (S0, . . . , Sm, . . . , Sm̂) be an arbitrary n̂-max sequence
extended from (S0, . . . , Sm). If S0 is terminal, then m = m̂ = 0, hence the two sequences are identic.
Otherwise, S1 exists and we have (S0, . . . , Sm) � ©ψ iff (S1, . . . , Sm) � ψ iff (by the induction
hypothesis) (S1, . . . , Sm, . . . , Sm̂) � ψ iff (S0, . . . , Sm, . . . , Sm̂) � ©ψ. The remaining cases can be
argued similarly.

�
Since a playable GDL specification provides legal moves for every role only in states that are both

nonterminal and reachable, the first item of Proposition 9 requires the assumption of S0 being reachable.
As an example, reconsider the GDL specification of Quarto depicted in Figure 1 (page 5). Although this game
is playable, there are (unreachable) states S which are nonterminal and nonplayable, e.g. if pctrl(r1 ) ∈ S
and selected(p) /∈ S for all pieces p. Then player r1 has no legal move in S , and the 0-max sequence (S)
cannot be extended to a 1-max sequence. This has the following consequence: even if an n-max formula ϕ
is known to be true with respect to all n̂-max sequences starting at S for some n̂ ≥ n, ϕ is not necessarily
true with respect to all n-max sequences starting at S , unless S is a reachable state. This explains the
restriction to identical initial subsequences in the equivalence result in the second item of Proposition 9.

4. Verification of Sequence Invariants

While in theory state sequence invariants can be verified by a complete search through the set of reachable
states (provided the game is finite, of course), as investigated in [32], our interest lies in finding a practical
proof method that can be applied to games with far too large a state space to permit complete search. In the
following, we will present such a method in three steps. First, we define the so-called temporal extension of
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a set of GDL clauses that allows us to compute a fixed number of state transitions within a single program
(Section 4.1). Thereafter we show how this program can be extended by clauses that encode a given state
sequence invariant (Section 4.2). Finally, we demonstrate how the combined program can be used to verify
the encoded invariant against the game description (Section 4.3).

4.1. Temporal GDL Extension

The game description language GDL is based on an elementary time structure that consists of only two
time points, “before” (encoded by true) and “after” (encoded by next). Without further additions, a
game description can thus be used only for reasoning about a single state transition: given a complete, finite
state and a joint move, standard entailment allows to determine a successor state according to Definition 5
(page 10). This suffices to verify sequence invariants with degree 0, but invariants of higher degree require
multiple successive state transitions and hence necessitate the introduction of additional time points in the
rules.

Definition 10. For a valid GDL specification G, we call G≤n
def
=

⋃
0≤i≤nGi the temporal extension of

G of degree n, where each Gi is constructed by

• omitting all clauses from G with head init;

• replacing each occurrence of

– next(f) by true(f, i+ 1), and

– p(t1, . . . , tn) by p(t1, . . . , tn, i), for each predicate p 6= next.

Furthermore, the timed variants of the sets of unit clauses Strue and Adoes, defined as (6) on page 10, are

Strue(i)
def
= { true (f1, i). , . . . , true (fn, i). }

Adoes(i)
def
= {does (r1, A(r1), i). , . . . , does (rk, A(rk), i). }

for any S = {f1, . . . , fn} ⊆ Σ; A : {r1, . . . , rk} 7→ Σ; and i ≥ 0.

As an example, let G be the game depicted in Figure 1 (page 5) and consider the clause in lines 8–9.
The temporal extension G≤n contains the following clause for each 0 ≤ i ≤ n:

true(pool(P), i+ 1) :- true(pool(P), i),
not does(r1,select(P), i),
not does(r2,select(P), i).

It is easy to see that the resulting program can be made more efficient by omitting the time argu-
ment in any predicate that is neither a GDL keyword nor depends on true or does in the original
game description. Note also that, strictly speaking, G≤n may not be stratified even if G is so; as a
simple example consider the stratified clause next(f) :- not true(g)., whose temporal extension is
true(f,i+1 ) :- not true(g,i ). However, the temporally extended program could be easily rewritten
into an equivalent but stratified program: instead of simply adding a time argument to predicates p, time
could be encoded into their names, obtaining different predicate names pi for each time step. Definition 10
is more readable, and we will nonetheless tacitly assume that G≤n is always stratified.

Before we proceed, we recall a Splitting Theorem for answer sets, which can be found, e.g., in [8] and
will be applied repeatedly in the remainder of the paper.

Theorem 11. Let P and Q be two programs such that atoms in P are not unifiable with heads from
clauses in Q. Then AP∪Q is an answer set for P ∪Q iff the set AP , obtained from AP∪Q by restricting
to atoms from P , is an answer set for P and AP∪Q is an answer set for (

⋃
p∈AP

{p.}) ∪Q.

The following result shows that a temporally extended GDL specification can now be used to reason
about sequences of state transitions with a fixed horizon. The proof as well as the proofs for subsequent
results can be found in Appendix A.
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Theorem 12. Let G be a valid GDL specification and S0
A0−→ S1 . . .

Am−1−→ Sm a sequence. Consider
the program P = Strue0 (0) ∪ G≤m ∪

⋃m−1
i=0 Adoes

i (i), then for all 0 ≤ i ≤ m and predicate symbols p /∈
{init, next} that do not depend on does, we have

G ∪ Struei ` p(~t ) iff P ` p(~t, i)

The temporal GDL extension of degree m− 1 already incorporates clauses with head true(f,m) and
is hence sufficient for reasoning about atoms p(~t ) of the form true(f) up to depth m. However, different
atoms p(~t ) require an extension up to degree m to include all relevant temporalised GDL rules with head
p(~t,m), which motivates the occurrence of both m and m − 1 in program P of the theorem. Since
predicate legal never depends on does in a valid GDL specification and all moves in a sequence are legal,
our theorem implies P ` legal(r,Ai(r), i) for all r ∈ R and 0 ≤ i ≤ m − 1, for any given sequence

S0
A0−→ S1 . . .

Am−1−→ Sm . Similarly, P ` terminal(m) holds if and only if Sm is a terminal state. The last
step in the proof for this theorem (cf. Appendix A) requires does-independent predicates p, which was
the rationale behind the corresponding restriction to sequence invariants made in Definition 3 (page 9).

4.2. Encoding Sequence Invariants

Next we show how game-specific knowledge in form of sequence invariants can be encoded as logic
program clauses which, together with the temporal extension G≤n of a valid GDL specification G, allows
their formal verification against arbitrary n-max sequences. We first define the requirements for a suitable
encoding and then provide an instance which satisfies these requirements.

To encode a formula to an answer set program, we need a previously unused atom with arity 0. Since
encodings for several formulas will occur in the same answer set program at a later point, these atoms are
required to be unequal for syntactically different formulas. To express this, we assume a unary injective
function η. For example, syntactically different formulas ϕ and ψ can be encoded such that η(ϕ) = phi
and η(ψ) = psi (assuming that phi and psi do not occur elsewhere). However, in our example
encoding, even syntactically identical formulas at different time levels will require different names, e.g. the
two occurrences of subformula ϕ in formula ϕ ⊃ ©ϕ. Hence, with slight abuse of notation, we also use
η to denote a binary injective function with an additional time level argument5. For example, subformulas
ϕ at different time levels can be encoded using atoms η(ϕ, 0) = phi0 and η(ϕ, 1) = phi1. Similarly to
η, we use two versions of an injective function Enc to denote the encoding of a formula ϕ (by Enc(ϕ)),
possibly with respect to a time level i (by Enc(ϕ, i)).

The following definition gives a formal classification of a formula encoding. It is based on single sequences,
and requires that a formula ϕ is true with respect to a sequence if and only if the temporal GDL extension,
together with an encoding of that sequence and an encoding of ϕ, yields a unique answer set which entails
the unique atom η(ϕ) corresponding to ϕ. Since additional encodings of formulas with possibly higher
degree may occur in the same answer set program, the correspondence needs to respect a possibly higher
degree of the temporalised GDL clauses and sequences.

Definition 13. Let η(ϕ) be a 0-ary atom which represents a unique name for sequence invariant ϕ
with degree n. An encoding of ϕ, denoted Enc(ϕ), is a set of clauses whose heads do not occur elsewhere

and such that, for each n̂ ≥ n and n̂-max sequence S0
A0−→ S1 . . .

Am̂−1−→ Sm̂ (m̂ ≤ n̂) of a valid GDL

specification G, the program P = Strue0 (0) ∪G≤n̂ ∪
⋃m̂−1
i=0 Adoes

i (i) ∪ Enc(ϕ) fulfils the following:

• P has exactly one answer set;

• (S0, . . . , Sm̂) � ϕ iff P ` η(ϕ).

5With the same intent of denoting unique names, we will further use η with different arguments at a later point.
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Note that Theorem 12 is also applicable to program P from Definition 13, as P only adds the clauses⋃
m<i≤n̂Gi ∪

⋃m̂−1
i=m Adoes

i (i) ∪ Enc(ϕ), the heads of which do not occur in the logic program used in the
theorem.

The encoding we are about to present makes use of a common addition to answer set programs known
as weight atoms [27] of the form

l{p1, . . . , pk}u
for k, l, u ∈ N and 0 ≤ l ≤ u. A set A satisfies a weight atom iff at least l and at most u different members
of {p1, . . . , pk} are in A. Both l and u can be omitted, in which case there is no lower (respective, upper)
bound.6 We furthermore introduce constraints

:- b1, . . . , bn.

as abbreviation for 1{} :- b1, . . . , bn. Note that the answer sets of G ∪ { :- b1, . . . , bn.} are exactly the
answer sets of G except for those that do satisfy all of b1, . . . , bn. If weight atom l{p1, . . . , pk}u occurs in
the head of a clause, each pi ∈ {p1, . . . , pk} is considered a clause head. Theorem 11 is known to also hold
in this extended setting [8].

4.2.1. A Sample Encoding

Table 2 provides a recursive definition of how a sequence invariant can be encoded as a logic program:
First, every predicate p(~t ) at level i in the invariant is translated to a clause which entails η(p(~t ), i)
(a unique, 0-ary naming atom for p(~t ) at time point i) in case p(~t, i) holds (case 1). Formulas with
connectives different from “©” recursively resolve to their correspondent subformulas (cases 2–6). Finally,
Enc(©ψ, i) is constructed so as to entail η(©ψ, i) in case level i is terminal or subformula ψ is true at
level i+ 1 (case 7).

As an example, recall from page 9 the sequence invariant (5) for Quarto. Rewriting “⊃ ” as a disjunction
and applying standard transformations, we obtain the following equivalent formula:

(∃R :{r1 , r2}) true(pctrl(R)) ∨©(∃R :{r1 , r2}) true(pctrl(R)).

Applying the recursive definition in Table 2 yields the following encoding, where atom phi0 is the unique
name η(ϕ, 0) for the overall formula.

phi0 :- ex0. ex0 :- a0. a0 :- true(pctrl(r1),0).
phi0 :- nxt_ex1. ex0 :- b0. b0 :- true(pctrl(r2),0).

nxt_ex1 :- terminal(0). ex1 :- a1. a1 :- true(pctrl(r1),1).
nxt_ex1 :- ex1. ex1 :- b1. b1 :- true(pctrl(r2),1).

(7)

It is easy to verify that the size of the encoding of a given formula is always linear in the size of the original
formula. Together with the underlying temporally extended GDL specification the given encoding is correct
wrt. the definition of formula entailment, as the following result shows.

Theorem 14. Let G be a valid GDL specification and ϕ be a sequence invariant. Then Enc(ϕ) :=
Enc(ϕ, 0) with the unique name atom η(ϕ) := η(ϕ, 0) for ϕ (cf. Table 2) is an encoding of ϕ.

In order to keep our framework general, in the following we abstract from our specific encoding and
consider any Enc(ϕ) that satisfies the requirements of Definition 13.

6The semantics of this addition can be given by extending Definition 4 on page 10 with these subsequent reductions:

• Delete all clauses with a weight atom in the body such that answer set candidate A does not satisfy its upper bound.

• Delete all upper bounds from body weight atoms in the remaining clauses.

• Replace each remaining clause of the form l{p1, . . . , pk}u :- b1, . . . , bn., by a set of clauses p :- b1, . . . , bn., for
each p ∈ {p1, . . . , pk} ∩ A.

The reduced set of clauses GA admits a unique minimal model, and A is an answer set for G if and only if it coincides with
this unique minimal model and, additionally, satisfies G.
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1. Enc(p(~t ), i) = {η(p(~t ), i):- p(~t, i).}

2. Enc(¬ψ, i) = {η(¬ψ, i):- not η(ψ, i).}
∪ Enc(ψ, i)

3. Enc(ψ1 ∧ ψ2, i) = {η(ψ1 ∧ ψ2, i):- η(ψ1, i), η(ψ2, i).}
∪ Enc(ψ1, i) ∪ Enc(ψ2, i)

4. Enc(ψ1 ∨ ψ2, i) = {η(ψ1 ∨ ψ2, i):- η(ψ1, i)., η(ψ1 ∨ ψ2, i):- η(ψ2, i).}
∪ Enc(ψ1, i) ∪ Enc(ψ2, i)

5. Enc((∃ ~X :D ~X)ψ[ ~X], i) =
⋃
~a∈D ~X

{η((∃ ~X :D ~X)ψ[ ~X], i):- η(ψ[ ~X/~a], i).}
∪
⋃
~a∈D ~X

Enc(ψ[ ~X/~a], i)

6. Enc((∃l..u ~X :D ~X) ψ[ ~X], i) = {η((∃l..u ~X :D ~X) ψ[ ~X], i):- l{η(ψ[ ~X/~a], i) : ~a ∈ D ~X}u.}
∪
⋃
~a∈D ~X

Enc(ψ[ ~X/~a], i)

7. Enc(©ψ, i) = {η(©ψ, i):- terminal (i)., η(©ψ, i):- η(ψ, i+ 1).}
∪ Enc(ψ, i+ 1)

Table 2: Encoding an arbitrary sequence invariant as a logic program.

4.3. Proving Sequence Invariants

We proceed by showing how a temporally extended GDL description along with an encoding of a formula
can be used to automate an induction proof for the validity of the formula. To prove that a state sequence
invariant ϕ holds in each reachable state S (i.e., S � ϕ), we will construct two answer set programs
dependent on ϕ: a base case to show that ϕ is entailed in the initial state, and an induction step to show
that, provided a state entails ϕ, each legal successor state will also entail ϕ. Together this implies that ϕ
holds in all reachable states.

As we have seen in Section 3.2, fluents (i.e., state features) can grow indefinitely, hence the set which
contains all ground fluents that occur in a reachable state (henceforth denoted by FDom) may be infinite.
Consequently, also the set of all actions of a player r (henceforth denoted by ADom(r)) is potentially
infinite, e.g. due to a clause like

legal(r,a(X)) :- true(X).

which defines a legal action for every fluent. In order to develop a decidable proof method for sequence
invariants, we have to restrict our attention to GDL specifications that are finite in the sense that the
associated set FDom is finite. By the recursion restriction in Definition 2 (page 7) this suffices to guarantee
that ADom(r) is finite as well.7

4.3.1. Base Case

Action Generator. Based on the sets ADom(r) of possible actions for player r we can define a logic program
to encode the fundamental requirement that each player has to perform a legal move in each nonterminal

7A detailed discussion on how to reliably compute both FDom and ADom will follow in Section 6.1.
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state up to time step n. Let P legal
≤n consist of the following clauses P legal

i for each 0 ≤ i ≤ n and r ∈ R:8

(c1) terminated (i):- terminal (i).
(c2) terminated (i):- terminated (i− 1). (for i > 0 only)
(c3) 1{does (r, a, i) : a ∈ ADom(r)}1:- not terminated (i).
(c4) :- does (r,A , i), not legal (r,A , i).

(8)

Subsequently, P legal
≤n will also be called an action generator.

Base Case Program. For a game description G and a formula ϕ over G with degree n, the answer set
program for the base case is defined as follows:

P bcϕ (G) = Strueinit (0) ∪G≤n ∪ P legal
≤n−1 ∪ Enc(ϕ) ∪ { :- η(ϕ).}

Put in words, P bcϕ (G) consists of an encoding for the initial state, Strueinit (0); a temporal GDL specification

up to time step n, G≤n; the necessary requirements concerning legal moves, P legal
≤n−1; an encoding for the

formula ϕ, Enc(ϕ); and the statement that ϕ should not be entailed in any model of P bcϕ (G), { :- η(ϕ).}.
In case P bcϕ (G) has no answer set, the last clause implies that there is no state sequence starting at Sinit

that makes ϕ false—which means that ϕ is entailed by Sinit .

4.3.2. Induction Step

State Generator. For the induction step answer set program, the state encoding Strueinit (0) needs to be
substituted by a general “state generator” program, whose answer sets produce the reachable states of a
GDL game. In general, the computation of the reachable states requires a full game tree traversal which is
not feasible in interesting games (e.g., the game tree of chess is estimated with about 1045 states). This
motivates the use of an easy approximation that may comprise unreachable states as well. The simplest
such approximation is the program

0 {true(f, 0) : f ∈ FDom}.

which generates all combinations of fluents, whether reachable or not. In general, a state generator is defined
as follows.

Definition 15. A state generator for a valid GDL specification G is an answer set program P gen such
that

• The only atoms in P gen are of the form true(f, 0), where f ∈ Σ, or auxiliary atoms that do not
occur elsewhere; and

• for every reachable state S of G, P gen has an answer set A such that for all f ∈ Σ: true(f, 0) ∈ A
iff f ∈ S.

The practical necessity for using a superset of the reachable states in the induction step has interesting
consequences, which are best seen with an example. Suppose we want to prove the Quarto sequence invariant
(4) from page 9, that is, ϕ = (∀X,Y :I)(∃0..1P :DP) true(cell(X,Y, P )). The (unreachable!) state

S = {cell(1 , 1 , b), selected(p0000 ), selected(p0001 ), pctrl(r1 ), pctrl(r2 )}

satisfies ϕ. In S , players r1 and r2 both have the legal move of placing a selected piece at cell (1 , 1 ).
Consider, then, the case where they choose to place different pieces. This results in the successor state

{cell(1 , 1 , p0000 ), cell(1 , 1 , p0001 ), sctrl(r1 ), sctrl(r2 )}

8We tacitly assume that predicate terminated does not occur elsewhere.
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which violates ϕ. Hence, there is an undesired counterexample for the induction step as long as S is
considered potentially reachable. However, knowing that sequence invariant

(∃1..1C :{sctrl(r1 ), sctrl(r2 ), pctrl(r1 ), pctrl(r2 )}) true(C)

holds in all reachable states of Quarto allows to reject S and all similar states that contain more than one
“control” fluent. As a consequence, none of the direct successors of the remaining ϕ-satisfying states violates
ϕ—which establishes a successful proof of the induction step. This shows that the addition of all previously
proved sequence invariants to a state generator can positively influence the outcome of a subsequent proof
attempt. The following construction of the answer set program for the induction step of a proof accounts
for this issue by the inclusion of formulas which are already known to be valid.

Induction Step Program. For a game description G, an arbitrary state generator P gen over G, a set
Ψ of valid sequence invariants that have at most degree nΨ, a formula ϕ with degree nϕ , and n̂ =
max(nΨ, nϕ + 1), the induction step answer set program is

P isϕ,Ψ(G) = P gen ∪G≤n̂ ∪ P legal
≤n̂−1 ∪ Enc(ϕ ⊃©ϕ) ∪ {:- η(ϕ ⊃©ϕ). } ∪⋃

ψ∈Ψ(Enc(ψ) ∪ {:- not η(ψ). }).

Put in words, P isϕ,Ψ(G) differs from P bcϕ (G) in the following way. First, an arbitrary state generator
P gen is used instead of the initial-state encoding. Second, the time level has increased from n to n̂.
Third, formulas are now encoded thus:

⋃
ψ∈Ψ(Enc(ψ) ∪ { :- notη(ψ).}), which ensures that P isϕ,Ψ(G)

has only answer sets that, for all formulas ψ ∈ Ψ, contain η(ψ) and hence represent n̂-max sequences
which satisfy ψ. These sequences still include all reachable n̂-max sequences and are, by the clauses
Enc(ϕ ⊃ ©ϕ)∪{ :- η(ϕ ⊃ ©ϕ).}, further restricted to those which satisfy ¬(ϕ ⊃ ©ϕ). In case P isϕ,Ψ(G)
is inconsistent, there is no reachable n̂-max sequence which satisfies ¬(ϕ ⊃ ©ϕ)—which implies that ϕ is
satisfied in all direct successors of reachable states that themselves satisfy ϕ.

4.3.3. Example

Recall the example encoding (7) (page 16) for the Quarto state invariant

ϕ = ¬(∃R :{r1 , r2}) true(pctrl(R)) ⊃ ©(∃R :{r1 , r2}) true(pctrl(R)).

This formula can now be proved to hold in all reachable states:

Base Case. Let G be the clauses in Figure 1 (page 5). Since the initial state contains sctrl(r1 ), the
temporal extension of clause 15 in Figure 1 implies that the atom true( pctrl( r2), 1) is contained
in each answer set of P bcϕ (G). Consequently, the example encoding for ϕ implies that also η(ϕ, 0) =

phi0 is contained. This however contradicts the constraint :- phi0. in P bcϕ (G), so P bcϕ (G) has
no answer set and, thus, ϕ holds in the initial state of the game.

Induction Step. The induction step program P isϕ,Ψ(G) contains Enc(ϕ ⊃ ©ϕ, 0) ∪ { :- η(ϕ ⊃ ©ϕ).},
where Enc(ϕ ⊃ ©ϕ, 0) can be specified such as to contain

• the encoding Enc(ϕ, 0) for ϕ as given in (7), where η(ϕ, 0) = phi0;

• an additional set Enc(ϕ, 1) that differs from Enc(ϕ, 0) only in the used name atoms and time
points increased by 1, where we specify η(ϕ, 1) = phi1; and

• the following additional clauses, where η(ϕ ⊃ ©ϕ) = phi_imp_nxt_phi:

phi_imp_nxt_phi :- neg_phi. neg_phi :- not phi0.
phi_imp_nxt_phi :- nxt_phi.

nxt_phi :- terminal(0).
nxt_phi :- phi1.
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The specified encoding together with the constraint :- phi_imp_nxt_phi. implies that each of
the answer sets A of P isϕ,Ψ(G) satisfies the following three conditions:

1. phi0 ∈ A,

2. terminal(0) /∈ A, and

3. phi1 /∈ A.

Now let r range over {r1 , r2}. The body of one clause with head phi0 of Enc(ϕ, 0) ⊆ Enc(ϕ ⊃
©ϕ, 0) must be true in A due to the first condition and cannot be satisfied by terminal(0) due to the
second condition. Hence, for some r either true( pctrl(r), 0) ∈ A or true( pctrl(r), 1) ∈ A. Fur-
thermore, since Enc(ϕ, 1) ⊆ Enc(ϕ ⊃ ©ϕ, 0), the third condition implies that true( pctrl(r), 1) /∈ A
and true( pctrl(r), 2) /∈ A for each r (and that terminal(1) /∈ A).

Hence, there must be some r such that true( pctrl(r), 0) ∈ A. By the temporal extension of
clauses 14 and 15 in Figure 1, this results in existence of an r such that true( pctrl(r), 2) ∈ A, in
contradiction to the previously mentioned implications of the third condition. Thus, P isϕ,Ψ(G) has no
answer set, which implies that ϕ is satisfied in all direct successors of reachable states that themselves
satisfy ϕ.

4.4. Soundness of the Verification Method

The following result is a prerequisite for the soundness proof of the verification method introduced in
the previous section. It provides a one-to-one relation between answer set programs encoding a particular
state sequence and those including an action generator.

Theorem 16. Let G be a valid GDL specification and A be a subset of the ground atoms over G together
with {terminated(i) : i ∈ N}. The following two statements are equivalent:

(1) A is an answer set for

P = Strue0 (0) ∪G≤n ∪ P legal
≤n−1.

(2) There is an n-max sequence Seq = (S0
A0−→ S1 . . .

Am−1−→ Sm) such that A is the unique answer set
for

PSeq = Strue0 (0) ∪G≤n ∪ P c1,c2≤n−1 ∪
m−1⋃
i=0

Adoes
i (i),

where P c1,c2≤n−1 =
⋃n−1
i=0 P

c1,c2
i and P c1,c2i denotes all clauses of the shape (c1) and (c2) in the part

P legal
i of the action generator, defined as (8) on page 18.

The following theorem states our main result, the soundness of the verification method.

Theorem 17. Let G be a playable and valid GDL specification whose initial state is Sinit. Let Ψ be a set
of sequence invariants over G which are satisfied in all reachable states, and let ϕ be a sequence invariant.
If P bcϕ (G) and P isϕ,Ψ(G) are inconsistent, then for all finite sequences (Sinit, S1, . . . , Sk) we have Sk � ϕ.

Note that the playability assumption of the GDL specification in Theorem 17 can be omitted in case
nΨ ≤ deg(ϕ) + 1 for the maximal degree nΨ of formulas in Ψ, since then the induction step proof does
not require an extension of sequence Seqn+1 according to Proposition 9 (page 13).

20



5. Improvements

5.1. Proving Multiple Properties At Once

Requiring a general game player to evoke an ASP system individually for each formula in a large set of
candidate properties is not feasible for the practice of general game playing with a limited amount of time
to analyse the rules of a hitherto unknown game. In the following we therefore develop a crucial extension
of our method that enables a general game player to evoke the ASP system only once in order to determine
precisely which of a whole set Φ of formulas is valid wrt. a given game description. We will show that for
this purpose it suffices to construct only two answer set programs for Φ, one to establish all base case proofs
and one for all induction steps. For any ϕ ∈ Φ, then, if all answer sets for the base case program satisfy ϕ
we know that ϕ is entailed in the initial state. If additionally all answer sets of the induction step program
satisfy ϕ ⊃ ©ϕ, we can conclude that ϕ is entailed in all reachable states. In practice, this results in a
significantly more efficient proof method, especially when grouping structurally similar formulas which, for
example, have the same degree or incorporate different instances of the same atoms. In Section 6.3 we will
further motivate this intuition by an experiment setup that allows to prove various properties efficiently.

For a game description G and a finite set of state sequence invariants Φ with maximal degree n̂bc, the
generalised base case answer set program is defined as follows:

P bcΦ (G) = Strueinit (0) ∪Gn̂bc
∪ P legal

n̂bc−1 ∪
⋃
ϕ∈Φ

Enc(ϕ)

Compared to P bcϕ (G), the constraint { :- η(ϕ).} is no longer used, which results in a unique answer
set for each of the n̂bc-max sequences starting in Sinit (as opposed to distinct answer sets for sequences
that violate ϕ in P bcϕ (G) only). This is necessary to keep all relevant answer sets for formulas from Φ
different from ϕ which do not satisfy :- η(ϕ). Moreover, encodings are added for all the formulas in Φ,
consequently raising the overall degree of the generated answer set program to the maximal formula degree
n̂bc.

Now let n̂is be the maximal degree of formulas in Φ ∪ Ψ ∪ {ϕ ⊃ ©ϕ}. Applying similar changes to
P isϕ,Ψ(G), we define the generalised induction step answer set program as follows:

P isΦ,Ψ(G) = P gen ∪Gn̂is
∪ P legal

n̂is−1 ∪
⋃
ϕ∈Φ Enc(ϕ ⊃©ϕ) ∪⋃

ψ∈Ψ(Enc(ψ) ∪ {:- not η(ψ). }).

The generalised method can be proved sound, too.

Theorem 18. Let G be a playable and valid GDL specification whose initial state is Sinit. Moreover, let
Φ and Ψ be sets of sequence invariants over G such that each ψ ∈ Ψ is satisfied in all reachable states,
and let ϕ ∈ Φ. If every answer set for P bcΦ (G) contains η(ϕ) and every answer set for P isΦ,Ψ(G) contains
η(ϕ ⊃ ©ϕ), then for all finite sequences (Sinit, S1, . . . , Sk) we have Sk � ϕ.

The following theorem shows that the generalisation succeeds in proving at least all the state sequence
invariants that can be proved with the original method.

Theorem 19. Consider the same assumptions and naming conventions as in Theorem 18.

(1) If P bcϕ (G) is inconsistent then η(ϕ) is in all answer sets of P bcΦ (G).

(2) If P isϕ,Ψ(G) is inconsistent then η(ϕ ⊃ ©ϕ) is in all answer sets of P isΦ,Ψ(G).

It should be stressed, however, that the converse of (2) in Theorem 19 does not hold: An answer set for
P isϕ,Ψ(G) represents an established n̂-max sequence Seq (cf. Theorem 16, page 20) that violates ϕ ⊃ ©ϕ.
Seq however might not be extendable to an n̂is-max sequence (cf. the remark following Proposition 9 on
page 13) that could serve as counterexample for ϕ ⊃ ©ϕ in P isΦ,Ψ(G). Hence our efficiency improvement
even strengthens the result, depending on the maximal degree n̂ of the given formula set Φ. For the same
reason, adding proved formulas as evidence can strengthen the results of both the original method and its
generalisation.
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5.2. Nonplayable Sequences

Sequence invariant entailment � (cf. Definition 8, page 12), defined over n-max sequences for the degree
n of the formula to be verified, does not account for sequences that are of length smaller than n and end in
a nonterminal state that does not permit a move for one of the players (also called nonplayable sequences).
This has an interesting effect, as the following simple, nonplayable game shows:

role(r).
in i t(f).
legal(r,a) :- true(f).

Consider the sequence invariant that axiomatises playability, that is,

ϕ = ¬terminal ⊃ (∀R :DR)(∃M :DM) legal(R,M)

with the domains DR = {r} and DM = {a} for the example game. Additionally, consider an arbitrary
formula ψ with degree 1 that is known to be satisfied in the initial state, Sinit = {f }. Then ϕ ∧ ψ is

satisfied in Sinit since the only 1-max sequence {f } {(r , a)}−→ {} satisfies ϕ ∧ ψ. Formula ϕ ∧ ψ is also
satisfied in state {}, as no 1-max sequence emerges from that state. Since these are the only reachable states,
ϕ ∧ ψ is considered true in each reachable state, contradicting our intuition that the game is nonplayable
and hence that ϕ should be false. The only counterexample, however, would be the sequence ({}) of length
0, which is nonplayable with respect to length 1. But as nonplayable sequences are not among the 1-max
sequences, ({}) will never be considered in our setting.

On the one hand, playability is a standard requirement for General Game Playing Competitions and thus
can be presupposed by a general game-playing system. A GDL game designer, on the other hand, might be
particularly interested in proving whether a game she has designed is indeed playable, which motivates the
following considerations. To begin with, observe that playability of a game has no influence on the outcome
of a proof attempt for sequence invariant ϕ when tried together with a set Ψ of previously proved formulas
of degree less or equal to 1, since:

Base Case amounts to verifying ϕ with respect to the only 0-max sequence starting in Sinit , namely
(Sinit), which incorporates no state transition and hence is independent of the playability assumption;
and

Induction Step amounts to verifying ϕ with respect to every 1-max sequence which starts in a state
satisfying ϕ, which is again independent of the playability assumption since ϕ represents playability
itself.

Hence, the proof method can be used to reliably prove the playability formula ϕ, relying on previously
proved formulas of degree ≤ 1 only, in order to assume playability thereafter. If this proof attempt is not
successful, the (indirect) playability assumption can be dropped by incorporating nonplayable sequences
into the proof method as follows:

• Altering the definition of an n-max sequence (cf. Definition 8, page 12) such that in case of length
smaller than n the last state of the sequence might also be nonterminal and not permit a legal move
for one of the players.

• Adding the following clauses to the game description G (cf. Definition 2, page 7):

has_no_legal(R) :- not has_legal(R) , role(R).
has_legal(R) :- legal(R,A).

• Adding to Enc(©ψ, i) (cf. Section 4.2) for each r ∈ R:

η(©ψ, i):- has_no_legal (r, i).
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• Adding to P legal
n−1 (cf. Section 4.3) for all 0 ≤ i ≤ n− 1 and r ∈ R:

terminated (i):- has_no_legal (r, i).

Besides increasing the complexity of the constructed answer set programs P bcϕ (G) and P isϕ,Ψ(G), this mod-
ification weakens the proof method. As an example, suppose we extend the (nonplayable) game from the
beginning of this section by the following clauses:

next(f) :- true(f), not true(g).
next(g) :- true(g).

Note that the extended game is playable, as opposed to the original one. Now consider the formula true(f ),
which holds in each reachable state. A proof attempt, however, yields the (unreachable) 1-max sequence
Seq = ({f, g}, {g}) as a counterexample for the induction step, since Seq 2 true(f ) ⊃ ©true(f ). Assuming
playability and the original setting, Seq is rejected as soon as some formula ψ with degree 2 is known to
be satisfied in each reachable state and added to P isϕ,Ψ(G), because Seq cannot be extended to a 2-max
sequence. This indeed allows to prove the induction step for true(f ). This is in contrast to the modified
setting, where Seq is also considered 2-max and might satisfy ψ as well. In conclusion, the presented
modification reliably copes with games which are not known to be playable, but whenever this assumption
can be made, the more efficient and stronger original proof method should be used instead.

6. Implementation

We have implemented our proof method using Fluxplayer [35] to generate the answer set program
(ASP), in combination with the ASP solver Clingo (version 3.0.1) from the state-of-the-art answer set
solving collection Potassco [10]. When proving multiple properties at once (cf. Section 5.1) we use the
option “cautious reasoning” for Clingo to compute the intersection of all answer sets.

6.1. Domain Calculation

For formulating sequence invariants as well as for the encoding of the action and state generators that are
used in the proofs, we need information about the domains of predicates and functions in a game description.
Specifically, we need the set of potential actions ADom(r) for each role r of a game to encode the action
generator and the set of all ground fluents FDom to encode the state generator (cf. Section 4.3). These
sets are not directly given by the game description but have to be inferred from it. The minimal set of all
ground fluents is the union of all reachable states, while the minimal set of potential actions for a role r is
the union of the legal actions of r in all reachable states. In general, computing the minimal sets FDom
and ADom(r) requires to enumerate all reachable states. Since this is infeasible for any game of practical
interest, we compute supersets of the domains with an algorithm that only depends on the size of the game
description but not on the actual state space of the game.

Following the approach described in [35], we compute the supersets of the domains of all relations
and functions of the game description by generating a so-called domain graph from the rules of the game
description. Figure 2 shows the domain graph for the following subset of the Quarto rules in Figure 1:

in i t(sctrl(r1)).
next(sctrl(R)) :- true(pctrl(R)).
next(pctrl(R1)) :- true(sctrl(R2)), otherrole(R1,R2).

otherrole(r1,r2).
otherrole(r2,r1).

Formally, a domain graph is defined as follows.
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Figure 2: An example domain graph for calculating domains of functions and predicates. Ellipses denote individual arguments
of functions or predicates while squares denote constants or function symbols.

Definition 20. Let G be a GDL specification. Let G′ be G together with the following three rules:

true(F) :- init(F).
true(F) :- next(F).
does(R,M) :- legal(R,M).

A domain graph for a GDL specification G is the smallest directed graph D = (V,E) with vertices V and
edges E such that:

• For every n-ary predicate or function p in G′, p/n ∈ V and (p, i) ∈ V for all i ∈ {1, . . . , n}.9

• If a function f(x1, . . . , xn) occurs as i-th argument of a predicate or function p in the head of a rule
in G′, then f/n→ (p, i) ∈ E.

• If a variable occurs as i-th argument of a predicate or function p in the head of a rule r ∈ G′ and as
j-th argument of a predicate or function q in a positive literal in the body of r, then (q, j)→ (p, i) ∈ E.

Informally speaking, there is a node in the graph for every argument position of each function symbol and
predicate symbol in the game description. For example, Figure 2 contains the nodes (otherrole, 1 ) and
(otherrole, 2 ) referring to the arguments of the binary predicate otherrole . Furthermore, there is a node
for each constant and function symbol. For example, the nodes r1/0, r2/0 for the constants of the same
name and the nodes sctrl/1, pctrl/1 for the unary functions sctrl and pctrl . There is an edge between
an argument node and function symbol node if there is a head of a rule in the game description where the
function symbol appears in the respective argument of a function or predicate. For example, there is an edge
between the nodes sctrl/1 and (init , 1 ) because of the rule init(sctrl(r1)). Furthermore, there is an
edge between two argument position nodes if there is a rule in the game in which the same variable appears
in both arguments, once in the head and once in the body of the rule. For example, because of shared
variable R in the rule next(sctrl(R)) :- true(pctrl(R))., there is the edge (pctrl , 1 )→ (sctrl , 1 ).
The three additional rules capture the intuition that a fluent in the game is either true initially or in some
successor state and that any legal move may potentially be executed by some player.

After constructing the domain graph D = (V,E) from the game rules, we compute its transitive closure
D+ = (V,E+). The domains of all predicates and functions in the game description can now be defined as
follows.

Definition 21. Let D+ = (V,E+) be the transitive closure of the domain graph for a GDL specification
G. Let dom(p/n) denote the set of all ground instances of the n-ary predicate or function p and dom(p, i)
denote the domain of the i-th argument of predicate or function p:

9We treat constants as nullary functions.
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• dom(p, i) = {c : c/0→ (p, i) ∈ E+} ∪
⋃
q/n→(p,i)∈E+,n>0 dom(q/n)

• dom(p/n) = {p(x1, . . . , xn) : x1 ∈ dom(p, 1), . . . , xn ∈ dom(p, n)}

Note that the definition above yields finite sets for all domains if the extended GDL specification G′ from
Definition 20 obeys the recursion restriction (Definition 2, condition 3).10

With the definitions above we can compute the set of ground fluents FDom as the domain of the first
(and only) argument of the predicate true, that is, dom( true, 1). Instead of computing the domain and
enumerating all ground fluents in the state generator

0 {true(f, 0) : f ∈ FDom}.

we encode the domain as an answer set program as follows.

Definition 22. Let D+ = (V,E+) be the transitive closure of the domain graph for the GDL specification
G. Let η(dom(v)) be a predicate symbol which represents a unique name for the domain of v ∈ V . The
encoding Dom of the domains of all predicates and functions of G consists of the following ASP rules:

• η(dom(p/n))(p(X1, . . . , Xn)) :- η(dom(p, 1))(X1), . . . , η(dom(p, n))(Xn)., for each p/n ∈ V .

• η(dom(p, i))(c)., for each edge c/0→ (p, i) ∈ E+.

• η(dom(p, i))(X) :- η(dom(q/n))(X)., for each edge q/n→ (p, i) ∈ E+ with n > 0.

It is easy to see that the (unique) answer set of Dom contains η(dom(p, i))(t) for some ground term t if,
and only if, t ∈ dom(p, i).

Using the above definition, we encode the state generator as the answer set program consisting of Dom
and the following rule:

0 {true(F, 0) : η(dom( true, 1))(F )}.
This rule makes use of the condition feature of the Potassco system [10]: The term p(X) : q(X) is auto-
matically expanded to p(t1), . . . , p(tn) where t1, . . . , tn are all ground terms such that q(ti) holds.

In a similar fashion, we can obtain a straightforward encoding of an action generator:

1{does(r,A, i) : η(dom( does, 2))(A)}1 :- not terminated(i).

However, this definition ignores the fact that different roles might have different potential actions and thus
yields too many ground instances of actions for many games in practice. In other words, while usually all
fluents in dom(true, 1) may actually occur in a reachable state, many of the actions in dom(does, 2) are
never legal for any player. By Definition 21, domains of functions and predicates are essentially computed
as the cross product of the domains of their arguments. Consider, then, a game like Checkers and the action
move(Piece,X1,Y1,X2,Y2) of moving a piece from cell X1,Y1 to cell X2,Y2.11 In Checkers there are
4 different pieces (“men” and “kings” of either of two colours), and it is played on an 8 by 8 board. Thus,
dom(move/5) alone contains 4 ∗ 84 = 16, 384 ground instances. However, due to the restrictions of how
pieces move in Checkers, only a few hundred moves are actually possible. The problem becomes even more
apparent with more complicated actions, e.g., triplejump(Piece,X1,Y1,X2,Y2,X3,Y3,X4,Y4).

For these reasons, we encode ADom(r) differently. The idea is to compute a static version P legalstatic of
the rules that define the legal moves of the players. Here, static means a relaxation of the rules that is
independent of true, defined as follows.

10Otherwise, that is, if G but not G′ satisfies the recursion restriction, the set of reachable states of the game and thus the
set of ground fluents might be infinite (cf. Section 3.2).

11See the repository ggpserver.general-game-playing.de/public/show games.jsp for a complete encoding of
Checkers.
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Definition 23. Let G be a GDL specification and η(static(p)) be a predicate symbol which represents a

unique name for the static version of predicate p. For each rule p( ~X) :- B such that p = legal or legal

depends on p in the dependency graph of G with positive edges, P legalstatic contains the rule

η(static(p))( ~X) :- Bstatic.

where Bstatic comprises the following literals:

{η(dom(true , 1))(~Y ) : true(~Y ) ∈ B} ∪
{η(static(q))(~Y ) : q(~Y ) ∈ B ∧ q 6= true } ∪
{not q(~Y ) : not q(~Y ) ∈ B ∧ q 6= true ∧ q does not depend on true }

Based on this definition, the action generator P legal
≤n consists of the clauses Dom∪P legalstatic and the following

clauses for each 0 ≤ i ≤ n and r ∈ R; see also its original rules (8) in Section 4.3:

(c1) terminated (i):- terminal (i).
(c2) terminated (i):- terminated (i− 1). (for i > 0 only)
(c3) 1{does (r,A , i) : η(static(legal ))(r,A )}1:- not terminated (i).
(c4) :- does (r,A , i), not legal (r,A , i).

6.2. Optimising the Rules

Current answer set solvers, such as the Potassco system that we used in our experiments, ground the
input answer set program prior to computing solutions. Grounding an ASP increases its size exponentially,
in the worst case. The grounding step can easily dominate the step that actually solves the ASP both in
memory and run-time requirements. Thus, for an efficient implementation, it is essential to transform the
constructed ASPs into a form whose grounding is as small as possible before handing it to the answer set
solver.

Some of the following transformations change an answer set program in such a way that it has different
models. While we are only interested in the existence of a model in the proof method presented in Section 4,
the method for proving multiple properties at once (described in Section 5.1) only works if certain atoms in
the model stay unchanged. In particular, the atoms η(ϕ) and η(ϕ ⊃ ©ϕ) for all candidate properties ϕ
must be in all answer sets of the transformed ASP if, and only if, they are in all answer sets of the original
ASP. Otherwise, the proof method does not yield the same results with the transformed answer set program.
The atoms that need to be preserved in the answer sets are called used atoms.

Based on these observations, we impose the following restriction on all transformations of answer set
programs.

Definition 24. Let P be an answer set program, t(P ) be the transformed program according to transfor-
mation t, and U be the set of used atoms. We call t a valid transformation wrt. U iff for every answer
set A of P there is an answer set A′ of t(P ) such that A ∩ U = A′ ∩ U and vice versa.

Note that t(P ) does not necessarily have the same number of answer sets. Especially if U = ∅ (say, in case
we are only interested in the existence of an answer set), it suffices for t(P ) to admit one answer set if P
has at least one.

In the following, we will present several optimisations that reduce the size of answer set programs. All of
these optimisations are valid transformations according to the above definition wrt. the atoms used in the
proof methods presented in this paper.
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No Time Argument For Static Predicates. In Section 4.1, we introduced the temporal extension of a GDL
specification. Essentially, we added a time argument to every predicate of the specification. However, some
of the predicates of a game description are static, that is, do not depend on the state of the game or the
moves of the players. Thus, they are equivalent in every time step. For example, in Quarto (Figure 1) all of
the predicates role, distinct, sameattr, nthbit, !=, otherrole, and index are static.

Formally, predicate p is static, if there is no path from p to true or does in the dependency graph (cf.
Definition 2) for the GDL description. We reduce the size of the generated answer set program by omitting
the time argument that is added in Definition 10, if a predicate is static. Thus, rules for those predicates
are only added once to the answer set program independent of the number of time steps.

Cutting Indirections. The number of rules can be further reduced by removing unnecessary indirections, that
is, predicates that are defined by only one rule. For example, the encoding of temporal formulas presented
in Table 2 produces a predicate for every sub-formula of a formula. The predicates for atomic formulas (1),
negations (2), conjunctions (3), and counting quantifiers (6) occur as the head of one rule only. Unless the
encoded formula contains the same sub-formula several times, all of the generated predicates occur only
once in the body of some rule.

We reduce the number of rules and the number of predicates in an answer set program in the following
way. Let P be an answer set program with a rule r = p(~x) :- Body. such that

• r is the only rule with predicate p in the head,

• p(~x) is not used in the answer set(s) of P , and

• p does neither occur negated nor in a weight atom in P .

Then the transformed program t(P ) is obtained from P by removing rule r and replacing every atom
p(~y) in P with (Body σ), if p(~x) and p(~y) unify with most general unifier σ. Also removed are rules
containing atoms p(~y) that are not unifiable with p(~x).

Removing Existential Variables. The size of the grounding of an ASP is strongly influenced by the number
of variables in a rule. In the worst case the number of ground clauses is exponential in the number of
variables. This number can often be reduced by introducing new predicates and rules. Consider, e.g., the
rule p(X,Z) :- q(X,Y), r(Y), s(Z)., where Y in the body is existentially quantified. If we replace
this rule by

p(X,Z) :- qr(X), s(Z).
qr(X) :- q(X,Y), r(Y).

where qr is a new predicate symbol, we obtain two rules with two variables each instead of one rule
with three variables. This changes the number of ground clauses from |dom(X)| ∗ |dom(Y )| ∗ |dom(Z)| to
|dom(X)| ∗ |dom(Z)| + |dom(X)| ∗ |dom(Y )|, which amounts to a considerable reduction if the domains of
the variables are large enough (> 2).

We apply the following transformation to all rules in an answer set program P until a fixed point is
reached: Consider a rule (head :- body.) ∈ P containing a variable V which does not occur in head. We
split body into body+ and body− in such a way that body+ consists of all literals from body that contain
V , and body− are the remaining literals from body. Let {V1, . . . , Vn} be the set of variables in body+ that
also occur in body− or in the head of the rule. Furthermore, let {V −1 , . . . , V −m } be the variables in body+

that only occur in negative literals in body+ and let dom1, . . . , domm be predicate symbols from Dom
(cf. Definition 22) encoding their respective domains. If body− contains a variable that is not contained in
{V1, . . . , Vn}, then head :- body. is replaced by the rules

head :- p(V1, . . . , Vn), body−.

p(V1, . . . , Vn) :- body+, dom1(V −1 ), . . . , domm(V −m ).

where p is a predicate symbol that does not occur anywhere else in P . Note that the addition of the
domain restrictions dom1(V −1 ), . . . , domm(V −m ) to the second rule is necessary to ensure that the resulting
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rules are allowed, i.e., to ensure that each variable in a rule occurs in at least one positive literal in the
body. In principle, the domain of each variable can be inferred from its context by taking the intersection
of all argument domains from positive literals in body in which the variable occurs. However, for a correct
implementation, it is sufficient to take only one such argument domain. Thus, for each V −j ∈ {V

−
1 , . . . , V −m },

we use the domain predicate domj = η(dom(pj , aj)) for an arbitrary function or predicate pj in the positive
literals in body in which V −j occurs as the aj -th argument.

Removing Unnecessary Rules. Depending on the formula that is to be proved, some of the rules in the
generated ASP might not be necessary. For example, the temporal GDL extension contains rules with head
true(f, i+1) for all time steps i obtained from the next rules of the game. However, the remaining rules of
the ASP do not contain any instance of true(f, n+1) for the last time step n. Hence, removing those rules
does not change the number of answer sets of the program. The same applies to legal(r, a, n): Legality of
moves is irrelevant in the last time step (n), unless of course the formula to be proved depends on the atom
legal(r, a). Removing unnecessary rules from an ASP reduces the size of the grounded program and thus
the cost for both grounding and solving the answer set program.

To capture the notion of necessary vs. unnecessary rules, we first extend the definition of dependency
graphs (cf. Definition 2) to ground atoms. An extended dependency graph differs from the standard graph
in that it has ground atoms as nodes instead of predicate symbols, and there is an edge p(~tp) → q(~tq) in
the graph whenever there is a ground instance of a rule with head p(~tp) and q(~tq) in the body.

Based on this notion of an extended dependency graph, we compute the set of necessary atoms for an
answer set program P in the following way. Let U be the set of used atoms for the proof (cf. Definition 24);
say U = ∅, if we are only interested in the existence of an answer set. Furthermore, let Uc be the ground
instances of all atoms that occur in constraints or weight atoms in P . Then, the set of necessary atoms is

Û = U ∪ Uc ∪ {q : (∃p) p ∈ (U ∪ Uc) ∧ p→∗ q}

where p →∗ q denotes the existence of a path from p to q in the extended dependency graph of P . To
conclude, we remove all clauses from P whose head is an atom that does not unify with any atom in Û .

6.3. Experimental Results

We conducted experiments with our system using a wide range of games from the past AAAI General
Game Playing Competitions, all of which are available on the online game repositories at Dresden12 and
Stanford13. The results are summarised in Figure 3. For each game the following sets of formulas were
generated:

Functionals In Quarto, each cell contains at most one piece (cf. property (2), page 8). For example, fluent
cell(1 , 1 , p1111 ) means that cell (1 , 1 ) houses piece p1111 . More generally speaking, for every
pair of cell coordinates (x, y) there is always at most one p such that cell(x, y, p) is true. Similar
properties hold in many games, and in order to detect these, we generate all formulas of the form

(∀ ~X :D ~X)(∃l..1~Y :D~Y) true(f(~Z))

for each fluent symbol f , each l ∈ {0, 1}, and each nonempty subsequence ~Y of the variables in

f(~Z).14 In addition, we identify as control fluents those that have one argument that ranges over
the roles (e.g., sctrl and pctrl in Figure 1, page 5). If the set Fc of these fluents contains two or
more elements, we also attempt to prove that exactly one of them holds at any time via the formula
(∃1..1F :Fc) true(F ).

12ggpserver.general-game-playing.de/public/show games.jsp
13games.stanford.edu/resources/resources.html
14In the formula above, ~X is the (possibly empty) sequence of all variables in ~Z that are not in ~Y .
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Legals We include the state sequence invariant for Playability (cf. Section 5.2),

¬terminal ⊃ (∀R :DR)(∃M :DM) legal(R,M),

where DR is the set of roles and DM the (finite) domain of moves. In addition, we attempt to prove
the property Turn-Taking. In GDL, each turn-taking game has to be modelled by simultaneous moves,
which can be achieved with the help of a pseudo action like noop in Quarto that has no effects. We
consider a game to be turn-taking if at most one player has two or more legal moves in each reachable
game state. With DR and DM as above, this can be expressed via

(∃0..1R :DR) (∃2..∞M :DM) legal(R,M).

Note that this formula makes no reference to the actually used name of a noop action. The name is
hence completely independent from the proof result, and does not even have to be the same in each
game state.

Goal In all games at the AAAI Competition the goal values range from 0 to 100 [25]. Hence, a game is
to be considered zero-sum if the goal values of all players, in case they exist, add up to 100 in each
reachable terminal state. This we formulate via the state sequence invariant

terminal ⊃
∧

g1,...,gn∈GV
g1+...+gn 6=100

(¬goal(r1, g1) ∨ . . . ∨ ¬goal(rn, gn)),

where DR = {r1, . . . , rn} is the set of roles and GV is the (finite) set of goal values that occur in the
game description. Using the same identifiers, we furthermore include a formula which expresses that
the goal values of all players are unique in each terminal state,

(∀R :DR)(terminal ⊃ (∃1..1V :GV) goal(R, V )).

We call a game monotonic if, for each player r and each reachable state S , r has exactly one goal
value in S , and goal values never decrease in the course of the development of the game. To formulate
this property, we include a third formula

(∀R :DR)(ϕ1 ∧ ϕ2), where

• ϕ1 expresses that the goal value for r is unique in each reachable state:

ϕ1 = (∃1..1V :GV) goal(R, V ), and

• ϕ2 formulates that each goal value for r in a state is not higher than any goal value for r in
any of its direct successor states:

ϕ2 = ¬terminal ⊃
∧

v1,v2∈GV
v1>v2

¬(goal(R, v1) ∧©goal(R, v2)).

Persistence In Quarto, once a piece is placed on the board, it remains in this cell for the rest of the game.
Likewise, pieces are always permanently removed from the pool. Similar properties occur in a variety
of games, and in order to detect these, we generate the set of all formulas of the form

true(f(~t )) ⊃ ©true(f(~t )) and ¬true(f(~t )) ⊃ ©¬true(f(~t )),

where f(~t ) is any ground fluent instance in the game in question.
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game Functionals Legals (pl,tt) Goal (z,u,m) Persistence
3pttc 0.34 (4/10) 0.77 (y,y) 0.30 (?,y,y) 0.73 (77/354)
bidding-tictactoe 0.17 (1/10) 0.09 (?,n) 0.17 (?,?,?) 0.21 (9/89)
breakthrough 0.81 (3/3) 1.41 (y,y) 1.45 (y,y,y) 1.06 (32/242)
capture the king – (3/8) 3.26 (?,y) 3.37 (y,y,n) 65.81 (7/1710)
catcha mouse 0.27 (4/5) 0.15 (?,y) 0.36 (?,y,y) 1.19 (359/896)
CephalopodMicro 1.70 (5/17) 0.49 (y,y) 1.47 (y,y,y) 1.59 (18/209)
checkers – (3/8) – 9.90 (?,?,?) –
chinesecheckers6 – (4/6) 1.27 (y,y) 45.26 (?,?,y) 29.12 (80/634)
chomp 0.13 (3/4) 0.08 (?,y) 0.12 (y,y,y) 0.12 (58/61)
connect4 0.22 (2/3) 0.24 (?,y) 0.37 (y,y,?) 0.29 (294/492)
endgame – (4/6) 3.23 (?,y) 1.22 (y,y,?) 7.15 (2/511)
knightfight 0.81 (3/10) 2.25 (?,y) 0.83 (?,?,n) 1.59 (100/602)
kriegtictactoe 0.15 (4/11) 0.08 (?,y) 0.21 (y,y,?) 0.14 (27/74)
othello-comp2007 4.80 (3/5) 1.55 (y,y) – 3.62 (8/250)
pawn whopping 0.29 (3/5) 1.62 (y,y) 0.25 (y,y,n) 0.39 (32/234)
quarto 12.19 (6/7) 9.09 (?,y) – 28.44 (288/582)
smallest 1.01 (4/4) 0.15 (y,n) 15.84 (?,y,y) 0.53 (12/148)
tictactoe 0.13 (4/4) 0.19 (y,y) 0.14 (y,y,n) 0.10 (27/38)
tttcc4 10.47 (4/8) 18.04 (y,y) 1.72 (?,y,y) 14.97 (311/1228)

Figure 3: Property proof times in seconds for a variety of games from the past AAAI General Game Playing Competitions
(“–” means that the prover was aborted after 100 seconds). Information in parentheses: (m/n)—m formulas proved true out
of all n formulas from the respective set which are true in the initial state; (y)—formula proved true; (n)—formula invalid
in the initial state; (?)—formula invalid in some (not necessarily reachable) state; (pl, tt)—pl is the result for playability and
tt the result for turn-taking; (z , u, m)—z is the result for zero-sum, u the result for uniqueness of goal values, and m the
result for monotonically increasing goal values. Experiments were run on an Intel Core 2 Duo CPU with 3.16 GHz.

Proving a multitude of similar properties in one run spares the solver from repeating the same tasks
over and over again, such as grounding, indexing, and several clause optimisations. This significantly lowers
overall time consumption. However, proving all of the aforementioned formulas together does not yield
optimal results, because different kinds of formulas tend to require different rules from the game description
for verification and to allow fewer clause optimisations when attempted jointly. This motivated the following
setup for our experiments.

Functionals are simple-structured and provide valuable state space restrictions, hence they are the first
to be tested and then included in all subsequent proofs. We perform a second run, which is likely to produce
further successfully proved functionals since these are often interdependent—recall that in order to prove
that each cell contains at most one piece (property (2), page 8) in Quarto we first needed to discover that
always exactly one instance of a control fluent holds. Proof attempts for Legals were run separately since,
unlike in the case of Functionals, their induction step requires clauses with head legal for time step 1.
Due to their complex structure (their encoding refers to all legal moves of the game) their addition to
the established facts tends to slow down subsequent proof attempts, which is why they are not considered
in any further proofs. The property class Goal contains the only properties we considered that refer to
predicate goal and the defining clauses; hence they are attempted in a further distinct run and the results
are also not included subsequently. Persistence formulas have a higher degree and thus require a copy of the
GDL clauses with an additional time step, which is why they are proved together in yet another separate
run.

In Quarto, the prover successfully shows that in all reachable game states there is at most one selected
piece; that exactly one player has control over either selecting or placing a piece; and that each cell has
exactly one value (that is, a piece or empty ). Moreover, it proves that a piece which is placed in a cell
remains in this cell; that a piece which is removed from the pool stays removed; and that a nonempty cell
never becomes empty again. Results for the other formula sets are summarised in Figure 3, together with
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results for a variety of other games. Times in column “Functionals” indicate two proof attempts (each
attempt including one ASP proof for the base case and one ASP proof for the induction step), the other
times indicate one attempt. The times include both generation and grounding of the respective answer
set programs (the latter is done by Clingo). Additional time in the range of a few seconds is needed for
the initialisation of Fluxplayer (which includes the calculation of the domain graph) once for each newly
considered game. In general, many instances of the four property classes can be proved within at most a few
seconds, which demonstrates that our proof method is applicable even in the usual time setting of a General
Game Playing Competition. Proving multiple properties at once is especially effective with Persistence
properties, which usually requires to check several hundred instances per game. Also more complex games
like the chess variants “endgame” and “capture the king” yield practicable results. Checkers, on the other
hand, cannot be handled efficiently due to its inherent vast amount of legal moves comprising simple piece
moves, double jumps, and triple jumps.

The results in Figure 3 are almost exclusively for games with perfect information, owing to the fact that
imperfect information games are not yet included in the AAAI Competition. The only exception in Figure 3
is “kriegtictactoe,” which has been defined in [36] inspired by the game Kriegspiel (see, e.g., [30, 33]) and
which deviates from standard Tic-Tac-Toe in that the players cannot see each other’s moves. The results
indicate that imperfect information in Krieg-Tic-Tac-Toe has no influence on the properties which can be
proved except for Playability, which presupposes the earlier proof of an additional property that is not
considered here.

7. Conclusion

Automated theorem proving enables general game-playing systems to infer properties of new games that
follow from the rules without being explicitly given. It also enables game designers to automatically verify
desired properties of their formal game descriptions. In this paper, we have first defined syntax and semantics
of a formal language for describing game-specific properties as state sequence invariants in the context of
General Game Playing. We have then shown how these formulas can be encoded as a logic program, and
we have developed a proof theory with the help of Answer Set Programming. Finally, we have reported
on systematic experiments with a variety of games that have been used by the scientific community in the
past. While the main focus of this paper is theoretical, our experimental results show that both game
designers and general game-playing systems can make practical use of our method to automatically verify
game-specific knowledge against a previously unknown game description.

In terms of related work, the syntax and semantics of our language for state sequence invariants is inspired
by work on control knowledge in planning problems [3], which relates actions (with preconditions and effects)
to joint moves (with legality and update specifications). The construction of temporally extended rules (cf.
Section 4.1) is a well-known technique of enriching action laws in order to reason about sequences of actions
and to solve planning problems; see, e.g., [18, 15]. Our method of automatically proving temporally extended
properties for general games has been preceded by the approach presented in [32], but theirs requires to
systematically search the entire set of reachable positions in a game and is therefore limited to very simple
games in practice.

All of the methods presented in this paper have been developed to prove factual properties of games. In
this regard, our techniques apply equally to both games described in standard GDL as well as imperfect-
information games given in the recently extended description language [37]. The latter, however, opens the
road for additionally investigating properties about the knowledge of individual players [31]. A relevant and
significant aspect of future work is to investigate how our framework can be generalised in order to formalise,
encode, and automatically prove knowledge properties against formal descriptions of games with imperfect
and asymmetric information.
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Appendix A. Proofs of Theorems

Theorem 12. Let G be a valid GDL specification and S0
A0−→ S1 . . .

Am−1−→ Sm a sequence. Consider
the program P = Strue0 (0) ∪ G≤m ∪

⋃m−1
i=0 Adoes

i (i), then for all 0 ≤ i ≤ m and predicate symbols p /∈
{init, next} that do not depend on does, we have

G ∪ Struei ` p(~t ) iff P ` p(~t, i)

Proof: Let P0 = Strue0 (0) and Pm = Gm−1 ∪ Adoes
m−1(m − 1) ∪ Pm−1 for m > 0. We first prove the

intermediate result
Sm = {f : Pm ` true(f,m)} (A.1)

by induction on m. The base case m = 0 is immediate. Induction step: By Definition 5 we have

f ∈ Sm+1 iff f ∈ u(Am, Sm) iff G ∪Adoes
m ∪ Struem ` next(f).

Using the induction hypothesis, this is equivalent to

G ∪Adoes
m ∪ {true(f ′) : Pm ` true(f ′,m)} ` next(f).

The clauses from G which solely contribute to the initial state encoding do not influence entailment of
next(f), since their heads do not occur in the remaining clauses. Together with the construction of the
temporal GDL extension from Definition 10, this yields equivalence to

Gm ∪Adoes
m (m) ∪ {true(f ′,m) : Pm ` true(f ′,m)} ` true(f,m+ 1).

Similarly, atoms from Pm other than true(f,m) do not influence entailment of true(f,m+ 1), hence we
get equivalence to

Gm ∪Adoes
m (m) ∪ {p : Pm ` p} ` true(f,m+ 1).

Since Pm does not contain heads of Gm ∪ Adoes
m (m), we can apply Theorem 11 (page 14) to establish

equivalence to
Gm ∪Adoes

m (m) ∪ Pm ` true(f,m+ 1).

Since Pm+1 = Gm ∪ Adoes
m (m) ∪ Pm, this completes the induction step and hence proves the intermediate

result (A.1). For the remainder, it follows

G ∪ Struei ` p(~t ) iff G ∪ {true(f ′) : Pi ` true(f ′, i)} ` p(~t ),

which in turn, by arguments similar to those for the intermediate result, is equivalent to

Gi ∪ Pi ` p(~t, i).

Case i = m yields P = Gi ∪ Pi. Case i < m: the unique answer sets for Gi ∪ Pi and Gi ∪ Pi ∪ Adoes
i

agree on the true instances of p(~t, i), as p(~t, i) does not depend on does. Since Gi ∪ Pi ∪Adoes
i does not

contain clause heads from P \ (Gi ∪ Pi ∪ Adoes
i ), entailment of p(~t, i) is again not affected. Hence both

cases i = m and i < m yield equivalence to

P ` p(~t, i).

�

Theorem 14. Let G be a valid GDL specification and ϕ be a sequence invariant. Then Enc(ϕ) :=
Enc(ϕ, 0) with the unique name atom η(ϕ) := η(ϕ, 0) for ϕ (cf. Table 2) is an encoding of ϕ.
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Proof: Let n̂ ≥ deg(ϕ), S0
A0−→ S1 . . .

Am̂−1−→ Sm̂ an arbitrary n̂-max sequence and Pϕ = Strue0 (0) ∪
G≤n̂ ∪

⋃m̂−1
i=0 Adoes

i (i) ∪ Enc(ϕ, 0). Pϕ clearly admits a unique answer set. We prove (S0, . . . , Sm̂) � ϕ iff
Pϕ ` η(ϕ, 0) via structural induction on ϕ. First note that the uniqueness of η(ψ, i) for each formula ψ
and each time step i implies η(ψ, i) to be in the unique answer set A for Pϕ if and only if there is a
clause with head η(ψ, i) in Enc(ϕ, 0) such that its body is satisfied in A.

Base Case ϕ = p(~t ): (S0, . . . , Sm̂) � p(~t ) iff (by Definition 8) G ∪ Strue0 ` p(~t ) iff (by Theorem 12, cf.

the remark following Definition 13) Pϕ ` p(~t, 0) iff Pϕ ` η(p(~t ), 0).
Induction Step: The cases different from ϕ = ©ψ follow by an argumentation similar to the base case,

together with the induction hypothesis. Now consider formula ϕ = ©ψ with degree n+ 1.

• If S0 is terminal: (S0) � ©ψ follows by Definition 8, Pϕ ` terminal(0) follows by Theorem 12 and
yields Pϕ ` η(ϕ, 0).

• If S0 is nonterminal then (S1, . . . , Sm̂, Sm̂+1) exists and is n̂-max, hence

(S0, S1, . . . , Sm̂, Sm̂+1) � ©ψ iff (S1, . . . , Sm̂, Sm̂+1) � ψ.

Let ·i→i+1 be a renaming that replaces each time argument i by i + 1 in timed GDL atoms and
each occurrence of η(ρ, i) by η(ρ, i+ 1) for each formula ρ. Then, for program P i→i+1

ψ = Strue1 (1)∪
(G≤n̂+1 \G0) ∪

⋃m̂
i=1A

does
i (i) ∪ Enc(ψ, 1), the induction hypothesis implies

(S1, . . . , Sm̂, Sm̂+1) � ψ iff P i→i+1
ψ ` η(ψ, 1).

Since Strue1 (1) = {true(f, 1) : G0 ∪ Adoes
0 (0) ∪ Strue0 (0) ` true(f, 1)} (by Definitions 5 and 10)

and because clause heads in P i→i+1
ψ do not occur in G0 ∪ Adoes

0 (0) ∪ Strue0 (0) and clause heads in

G0 ∪Adoes
0 (0) ∪ Strue0 (0) different from atoms in Strue1 (1) do not occur in P i→i+1

ψ , we have that

P i→i+1
ψ ` η(ψ, 1) iff Strue0 (0) ∪G≤n̂+1 ∪

m̂⋃
i=0

Adoes
i (i) ∪ Enc(ψ, 1) ` η(ψ, 1)

This, in turn, is equivalent to Pϕ ` η(ϕ, 0) since Pϕ 0 terminal by Theorem 12.

�

Theorem 16. Let G be a valid GDL specification and A be a subset of the ground atoms over G together
with {terminated(i) : i ∈ N}. The following two statements are equivalent:

(1) A is an answer set for

P = Strue0 (0) ∪G≤n ∪ P legal
≤n−1.

(2) There is an n-max sequence Seq = (S0
A0−→ S1 . . .

Am−1−→ Sm) such that A is the unique answer set
for

PSeq = Strue0 (0) ∪G≤n ∪ P c1,c2≤n−1 ∪
m−1⋃
i=0

Adoes
i (i),

where P c1,c2≤n−1 =
⋃n−1
i=0 P

c1,c2
i and P c1,c2i denotes all clauses of the shape (c1) and (c2) in the part

P legal
i of the action generator, defined as (8) on page 18.

Proof:
(2) ⇒ (1): First we show that A satisfies P . Since P differs from PSeq only by containing clauses of

the shape (c3) and (c4) (defined as part of the action generator in (8) on page 18) instead of
⋃m−1
i=0 Adoes

i (i),
this follows if A satisfies all clauses (c3) and (c4) for 0 ≤ i ≤ n− 1.

33



• Time steps 0 ≤ i < m: for each player r there is exactly one action a such that does(r, a, i) ∈ A,
namely a = Ai(r); and legal(r, a, i) ∈ A follows by definition of Seq and Theorem 12. This satisfies
the clauses (c3) and (c4) for 0 ≤ i < m.

• Time steps m ≤ i ≤ n − 1: If one such i exists, then m < n and hence Sm is terminal, which
implies terminal ∈ A (again by Theorem 12) and thus { terminated(j) : m ≤ j ≤ n − 1} ⊆ A.
This satisfies the clauses (c3) and (c4) for m ≤ i ≤ n− 1.

Now A is also an answer set for the program constructed from P by omitting constraints (c4), since its
reduct coincides with the reduct of PSeq . By the previous argumentation A satisfies all constraints (c4)
and hence is also an answer set for P .

(1) ⇒ (2): Let Gdepn be the clauses from Gn whose heads depend on does, and let Gdepn be all others.
By induction on n, we prove that if

Pn = Strue0 (0) ∪G≤n−1 ∪Gdepn ∪ P legal
≤n−1

has answer set An, then there is an n-max sequence Seq = (S0
A0−→ S1 . . .

Am−1−→ Sm) such that An is the
unique answer set for

PSeq
n = Strue0 (0) ∪G≤n−1 ∪Gdepn ∪ P c1,c2≤n−1 ∪

m−1⋃
i=0

Adoes
i (i).

This implies the claim for P = Pn ∪Gdepn and PSeq = PSeq
n ∪Gdepn by Theorem 11, since Pn and PSeq

n do
not contain heads of Gdepn . For the Base Case n = 0 the two programs coincide. Induction Step: Assume

that Pn+1 has answer set An+1. Since Pn+1 = Pn ∪Gdepn ∪Gdepn+1 ∪ P legal
n , Pn does not contain heads of

Pn+1 \ Pn , hence (by Theorem 11) Pn has an answer set An such that An ⊆ An+1 . By the induction

hypothesis there is an n-max sequence Seq = (S0
A0−→ S1 . . .

Am−1−→ Sm) such that An is the unique answer
set for PSeq

n . We consider two cases:

• Sm terminal: Seq is also (n + 1)-max. We have terminal(m) ∈ An (by Theorem 12) and hence
{terminated(i) : m ≤ i ≤ n} ⊆ An+1 . This implies that An+1 does not contain any instance

does(r, a, n), hence An+1 is also an answer set for PSeq
n+1 .

• Sm nonterminal: Then m = n, hence terminal(i) /∈ An for all 0 ≤ i ≤ n (by Theorem 12) and
hence terminated(n) /∈ An+1. By (c3) and (c4) there is a mapping An such that for each r ∈ R
there is exactly one a such that {legal(r, a, n), does(r, a, n)} ⊆ An+1 . All legal(r, a, n) must also
be in An (as in Pn+1 \ Pn these heads do not exist) and hence (again by Theorem 12) we have

Sn
An−→ Sn+1 for some Sn+1. In this case Seq′ = (S0, . . . , Sn, Sn+1) is (n+ 1)-max. By construction,

An+1 is the unique answer set for PSeq′

n+1 .

�

Theorem 17. Let G be a playable and valid GDL specification whose initial state is Sinit. Let Ψ be a set
of sequence invariants over G which are satisfied in all reachable states, and let ϕ be a sequence invariant.
If P bcϕ (G) and P isϕ,Ψ(G) are inconsistent, then for all finite sequences (Sinit, S1, . . . , Sk) we have Sk � ϕ.

Proof: Let deg(ϕ) = n. The proof is via induction on k. For the base case, we prove that P bcϕ (G)
being inconsistent implies Sinit � ϕ. For the induction step, we prove that if there are Sk , Ak , and Sk+1

such that Sk � ϕ and Sk
Ak−→ Sk+1, then P isϕ,Ψ(G) being inconsistent implies Sk+1 � ϕ.

Base Case: We prove that if Sinit 2 ϕ, then P bcϕ (G) admits an answer set.

Sinit 2 ϕ implies that there is an n-max sequence Seq = Sinit
A0−→ S1 . . .

Am−1−→ Sm such that
(Sinit, S1, . . . , Sm) 2 ϕ. Now let PSeq and P be as in Theorem 16 (where Sinit = S0). PSeq ∪ Enc(ϕ)
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admits a unique answer set A. By Definition 13 we have η(ϕ) /∈ A, hence A is also the unique answer set
for PSeq ∪ Enc(ϕ) ∪ { :- η(ϕ).}. PSeq and P = P bcϕ (G) \ (Enc(ϕ) ∪ { :- η(ϕ).}) do not contain heads

of Enc(ϕ) ∪ { :- η(ϕ).}, hence by Theorem 11 and Theorem 16, A is also an answer set for P bcϕ (G).

Induction Step: Let n̂ = max(nΨ, n+ 1) for the maximal degree nΨ of formulas in Ψ. Assume Sk
Ak−→

Sk+1 for some Ak and Sk+1. We prove that if Sk+1 2 ϕ, then P isϕ,Ψ(G) admits an answer set.

Sk+1 2 ϕ implies that there is an n-max sequence Sk+1
Ak+1−→ Sk+2 . . .

Ak+m−→ Sk+m+1 (where 0 ≤ m ≤
n) such that (Sk+1, . . . , Sk+m+1) 2 ϕ. It follows that Seqn+1 = Sk

Ak−→ Sk+1
Ak+1−→ Sk+2 . . .

Ak+m−→ Sk+m+1

is (n + 1)-max and that Seqn+1 2 ©ϕ. Furthermore, by the induction hypothesis we have Sk � ϕ and
hence also Seqn+1 � ϕ by Proposition 9. These arguments imply that Seqn+1 2 ϕ ⊃ ©ϕ.

Since Sk is reachable and the GDL specification is playable, Seqn+1 can be extended to an n̂-max
sequence Seqn̂ by Proposition 9 such that Seqn̂ 2 ϕ ⊃ ©ϕ, and Sk satisfying each ψ ∈ Ψ also implies
Seqn̂ � ψ. An argumentation similar to the base case—considering ϕ ⊃ ©ϕ instead of ϕ, n̂ instead of n,
Seqn̂ instead of Seq, and the additional subprogram

⋃
ψ∈Ψ(Enc(ψ)∪ { :- notη(ψ).})—implies existence

of an answer set A for (P isϕ,Ψ(G) \ P gen) ∪ Struek (0). Now P isϕ,Ψ(G) is obtained by exchanging Struek (0)
with the state generator P gen , which (by reachability of Sk , Definition 15, and Theorem 11) in turn implies
existence of an answer set. �

Theorem 18. Let G be a playable and valid GDL specification whose initial state is Sinit. Moreover, let
Φ and Ψ be sets of sequence invariants over G such that each ψ ∈ Ψ is satisfied in all reachable states,
and let ϕ ∈ Φ. If every answer set for P bcΦ (G) contains η(ϕ) and every answer set for P isΦ,Ψ(G) contains
η(ϕ ⊃ ©ϕ), then for all finite sequences (Sinit, S1, . . . , Sk) we have Sk � ϕ.

Proof: The proof is similar to the proof for Theorem 17, with the following additional observations:

• Considering the base case, Sinit is reachable, hence by Proposition 9 the n-max sequence Seq that
violates ϕ can be extended to an n̂bc-max sequence that violates ϕ.

• Considering the induction step, Sk is reachable, hence by Proposition 9 the n̂-max sequence Seqn̂
that violates ϕ ⊃ ©ϕ can be extended to an n̂is-max sequence that violates ϕ ⊃ ©ϕ.

• The additional encodings
⋃
ρ∈Φ\{ϕ} Enc(ρ) in P bcΦ (G) (

⋃
ρ∈Φ\{ϕ} Enc(ρ ⊃ ©ρ) in P isΦ,Ψ(G), respec-

tively) only result in additional unique name atoms in an obtained answer set, without falsifying any
other atoms.

• The absence of constraints :- η(ϕ). in P bcΦ (G) (and of :- η(ϕ ⊃ ©ϕ). in P isΦ,Ψ(G), respectively)
does not influence the existence of an answer set A which is such that η(ϕ) /∈ A (η(ϕ ⊃ ©ϕ) /∈ A).

Now, Sinit 2 ϕ (Sk 2 ϕ ⊃ ©ϕ, respectively) results in an answer set for P bcΦ (G) (P isΦ,Ψ(G), respectively)
which does not contain η(ϕ) (η(ϕ ⊃ ©ϕ), respectively), which proves the claim. �

Theorem 19. Consider the same assumptions and naming conventions as in Theorem 18.

(1) If P bcϕ (G) is inconsistent then η(ϕ) is in all answer sets of P bcΦ (G).

(2) If P isϕ,Ψ(G) is inconsistent then η(ϕ ⊃ ©ϕ) is in all answer sets of P isΦ,Ψ(G).

Proof:

(1) Let Pn̂bc
be as P in Theorem 16, replacing S0 by Sinit and n by n̂bc . Assume that P bcΦ (G) =

Pn̂bc
∪
⋃
ρ∈Φ Enc(ρ) admits an answer set A such that η(ϕ) /∈ A. Then there is an n̂bc-max sequence

Seqn̂bc
starting at Sinit such that Seqn̂bc

2 ϕ by Theorem 16 and Definition 13. Then for the initial
n-max fragment Seqn of Seqn̂bc

we have Seqn 2 ϕ by Proposition 9. Thus, again by Theorem 16 and
Definition 13, Pn ∪Enc(ϕ) (with Pn as P in Theorem 16, replacing S0 by Sinit) admits an answer
set A′ such that η(ϕ) /∈ A′, which is also an answer set for P bcϕ (G) = Pn ∪ Enc(ϕ) ∪ { :- η(ϕ).}.
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(2) Assume that P isΦ,Ψ(G) admits an answer set A such that η(ϕ ⊃ ©ϕ) /∈ A and let Strue0 (0) ⊆ A
be the set of all atoms of the shape true(f, 0) in A. Then (P isΦ,Ψ(G) \ P gen) ∪ Strue0 (0) admits an
answer set A′ such that η(ϕ ⊃ ©ϕ) /∈ A′. The claim now follows by an argumentation similar to
(1), where we use S0 instead of Sinit , n̂is instead of n̂bc, and ϕ ⊃ ©ϕ instead of ϕ.

�
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