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Abstract

McCarthy’s Situation Calculus is arguably the oldest special-purpose knowledge representation formalism,
designed to axiomatize knowledge of actions and their effects. Four decades of research in this area have
led to a variety of alternative formalisms: While some approaches can be considered instances or extensions
of the classical Situation Calculus, like Reiter’s successor state axioms or the Fluent Calculus, there are
also special planning languages like ADL and approaches based on a linear (rather than branching) time
structure like the Event Calculus. The co-existence of many different calculi has two main disadvantages:
The formal relations among them is a largely open issue, and a lot of today’s research concerns the transfer
of specific results from one approach to another. In this paper, we present a unifying action calculus, which
encompasses (well-defined classes of) all of the aforementioned formalisms. Our calculus not only facilitates
comparisons and translations between specific approaches, it also allows to solve interesting problems for
various calculi at once. We exemplify this by providing a general, calculus-independent solution to a problem
of practical relevance, which is intimately related to McCarthy’s quest for elaboration tolerant formalisms:
the modularity of domain axiomatizations.
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1. Introduction

John McCarthy’s Situation Calculus [22] is arguably the oldest special-purpose knowledge representation
formalism. The aim is to use classical logic to axiomatize knowledge of actions and their effects. This is
relevant for a variety of areas in AI, including planning, intelligent agents, high-level cognitive robotics,
natural language understanding, and general game playing. While the Situation Calculus is the classical
approach for this purpose, a variety of different logic-based formalisms have emerged in the course of the
past decades, motivated mainly by the fundamental Frame Problem [25]. Besides prominent variants of the
Situation Calculus like Reiter’s successor state axioms [31] or the Fluent Calculus [41], planning languages
like STRIPS, ADL, and PDDL [5, 29, 26] have been developed, which allow for simple operational solutions
to the Frame Problem at the expense of a significantly limited expressiveness. Furthermore, the underlying
branching time structure of the Situation Calculus has been replaced by a linear time structure in the Event
Calculus and a number of other approaches [18, 36, 4, 10]. The basic principles of knowledge representation
for actions are also used in special-purpose formalisms like the Game Description Language [8].

The co-existence of a multitude of knowledge representation languages for actions has two significant
consequences for the research in this area. Firstly, there is a growing need both for comparative analysis of
the expressiveness of different approaches as well as for translations from one specific language into another
one. Previous studies along this line are [17, 28, 35, 3], each of which concerns the comparison of two specific
formalisms. However, a method that encompasses a wide variety of alternative formalisms at the same time
may allow for a more uniform way of assessing and translating calculi. Secondly, issues of general interest
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need to be separately addressed within each individual language. This often leads to a multiplication of
research efforts. A notorious example is the Ramification Problem, that is, the problem of determining the
indirect effects of actions [9], for which a variety of individual solutions have been developed for different
formalisms, e.g., [19, 21, 11, 40, 38, 27]. A general method which enables a uniform treatment of problems
across different calculi would help to avoid this multiplication of research efforts.

In this paper, we address both of these issues at the same time by proposing a unifying action calculus,
which is independent of a specific solution to the Frame Problem and which is shown to be general enough
to encompass a variety of different action representation formalisms. Most notably, it abstracts from the
underlying time structure (branching or linear) and thus can be instantiated with both Situation Calculus-
style approaches as well as Event Calculus-like languages. In so doing, our general calculus provides a uniform
method for translating a variety of specific formalisms into each other. Moreover, the unifying approach
allows to abstract from specific formalisms when investigating problems of general interest. We exemplify
this by providing a new, calculus-independent solution to a problem of practical relevance for any action
representation language: the modularity of domain axiomatizations [13]. Our result is a contribution to
McCarthy’s quest for elaboration tolerant formalisms [24], since modularity is a prerequisite for elaboration
tolerance: theories with a variety of dependencies among different parts may not allow for the addition of
new information without disrupting the entire axiomatization [14]. We use our unifying action calculus to
develop a general method for verifying that a given set of domain constraints, precondition axioms, and
effect formulas is free of undesired, implicit dependencies. We exemplify the range of applicability of this
result by instantiating it for several specific approaches, in particular the Situation-, Fluent-, and Event
Calculus.

The remainder of this paper is organized as follows. In the next section, we formally define an action
calculus which abstracts from a specific underlying time structure and is independent of a specific solution
to the Frame Problem. We illustrate the expressiveness of our definition by formalizing several example
domains known from the literature, including nondeterministic actions, indirect effects, and actions with
duration. In Section 3, we show how our unifying calculus can be used as an intermediary language for
translations between specific languages. Specifically, we present two new results: a translation from ADL
planning problems into the Event Calculus and a translation from the basic Fluent Calculus into a new
extension—suitable for nondeterministic actions—of Reiter’s basic Situation Calculus. In the second part
of the paper, in Section 4, we show how the unifying action calculus can be used to provide a calculus-
independent solution to the problem of implicit dependencies among domain axioms, and we again exemplify
the range of applicability of this result by instantiating it for several action formalisms. We conclude with
a discussion in Section 5.

2. A Unifying Action Calculus

The purpose of this section is to develop a unifying action calculus that abstracts from a variety of existing
axiomatization techniques for describing actions and change. Logic-based action representation formalisms
have in common two fundamental elements: Fluents [22] (sometimes called features [33]) represent properties
of the domain that may change in response to the execution of actions (or events [18]). Fluents and actions
are therefore basic sorts in the sorted logic language we are going to define. Action calculi also need to
distinguish different points in time in order to axiomatize the changes caused by actions. We assume an
abstract notion of time—which may be linear or branching—as the third fundamental sort.

The three basic sorts are used for three fundamental predicates: The relation t1 < t2 denotes a (possibly
partial) ordering on the time structure. Predicate Holds(f, t) is used to say that fluent f is true at time t.
Finally, the intended meaning of expression Poss(a, s, t) is that it is possible to do action a beginning at
time s and ending at time t. These three predicates, along with the three fundamental sorts, form the
basis of a domain signature in our unifying action calculus.

Definition 1. A domain signature is a finite, sorted logic language which includes the sorts fluent,
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action, and time along with the predicates

<: time× time

Holds : fluent× time

Poss : action× time × time

We tacitly assume that a signature always includes the standard predicate “=”, interpreted as true equality.
As usual, then, s ≤ t stands for s < t ∨ s = t. �

Throughout the paper we will denote variables of sort action by the letter a, variables of sort fluent

by f and g, and variables of sort time by s and t. We tacitly assume uniqueness-of-names [1] for all
functions into fluent and action, which is a common assumption in all standard action calculi.

Next, we define the notion of a state formula, which allows to express properties of a domain at given
times.

Definition 2. Let ~t be a non-empty sequence of variables of sort time in a given domain signature. A
state formula in ~t is a first-order formula Φ[~t ] in which the variables in ~t occur free and such that

1. for each occurrence of Holds(f, t) in Φ we have t ∈ ~t ;
2. predicate Poss does not occur in Φ.

�

Similar notions are used in many existing calculi but usually restricted to a single time point. As will be
shown later in this section, the more general concept is useful, for instance, when axiomatizing actions with
ramifications.

We are now in a position to formalize, in our calculus, three fundamental categories of domain axioms:
domain constraints, which describe state properties that hold at all times; precondition axioms, which define
the conditions for actions to be applicable in a state; and effect axioms, which define the consequences of
actions. For the latter, we use a general form that allows to define nondeterministic actions with the help of
different possible “cases” i = 1, . . . , k of updates Υi[s, t] (cf. axiom (1) below). Each of these sub-formulas
defines the fluents that hold after the action, at time t, relative to the state when the action starts, at
time s. This does not only concern all (possibly conditional) effects of an action but also all non-effects.
This formulation is general enough to subsume specific solutions to the Frame and Ramification Problem.

Definition 3. Consider a domain signature, and let A be a function into sort action.

1. A domain constraint is of the form
δ[t]

which is a state formula in t.1

2. A precondition axiom is of the form

Poss(A(~x), s, t) ≡ πA[s]

where πA[s] is a state formula in s with free variables among s, t, ~x.
3. An effect axiom is of the form

Poss(A(~x), s, t) ⊃ Υ1[s, t] ∨ . . . ∨ Υk[s, t] (1)

where k ≥ 1 and each Υi[s, t] (1 ≤ i ≤ k) is a formula of the form

(∃~yi)(Φi[s] ∧ (∀f) [Γ+
i [s, t] ⊃ Holds(f, t)]

∧ (∀f) [Γ−

i [s, t] ⊃ ¬Holds(f, t)])
(2)

in which Φi[s] is a state formula in s with free variables among s, ~x, ~y,2 and both Γ+
i [s, t] and Γ−

i [s, t]
are state formulas in s, t with free variables among f, s, t, ~x, ~y.

1Throughout the paper, free variables are assumed universally quantified.
2The purpose of sub-formula Φi[s] is to define conditions for case i to apply. Whenever it is tautology, we will simply

omit this formula.
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A domain axiomatization consists of precondition and effect axioms, one each for every function into sort
action, along with a finite set of domain constraints and a finite set of foundational axioms without the
predicates Holds and Poss . �

The purpose of the foundational axioms is to define the underlying time structure. In the following we
present example axiomatizations of several domains known from the literature to illustrate the wide range
of phenomena that can be expressed in this unifying calculus.

Example 1. (branching time, nondeterministic actions)
The Situation Calculus and related axiomatization techniques are based on a branching time-structure,

where the situations are commonly defined by the constant S0 : time and the function Do : action ×
time 7→ time. A standard example for a nondeterministic action is that of dropping a pin on a checker-
board [20]. The pin may land on a white square, a black square, or both. Let the fluents Pin(x), White(x),
and Black(x) denote that x is a pin and that it is, respectively, on a white and a black square. The action
Drop(x) can then be axiomatized by the following precondition and effect axiom.

Poss(Drop(x), s, t) ≡ Holds(Pin(x), s) ∧ ¬Holds(White(x), s) ∧ ¬Holds(Black(x), s)∧
t = Do(Drop(x), s)

(3)

Poss(Drop(x), s, t) ⊃ ((∀f) [f = White(x) ∨ Holds(f, s) ⊃ Holds(f, t)]∧
(∀f) [f 6= White(x) ∧ ¬Holds(f, s) ⊃ ¬Holds(f, t)])
∨
((∀f) [f = Black(x) ∨ Holds(f, s) ⊃ Holds(f, t)]∧
(∀f) [f 6= Black(x) ∧ ¬Holds(f, s) ⊃ ¬Holds(f, t)])
∨
((∀f) [f = White(x) ∨ f = Black(x) ∨ Holds(f, s) ⊃ Holds(f, t)]∧
(∀f) [f 6= White(x) ∧ f 6= Black(x) ∧ ¬Holds(f, s) ⊃ ¬Holds(f, t)])

(4)

The three disjuncts in the effect axiom encode the three possible outcomes of the nondeterministic action,
including the case where the pin lands on both white and black. Each of the sub-formulas describing the
update includes a solution to the Frame Problem: all fluents except possibly Black(x) and White(x) retain
their value in the successor situation t = Do(Drop(x), s). As an example, suppose given the initial state
description,

Holds(Pin(A), S0) ∧ ¬Holds(White(A), S0) ∧ ¬Holds(Black(A), S0) (5)

along with the observation ¬Holds(White(A),Do(Drop(A), S0)). Together with the domain axioms this
implies that Holds(Black(A),Do(Drop(A), S0)). To see why, from (5) and precondition axiom (3) it fol-
lows that Poss(Drop(A), S0,Do(Drop(A), S0)). The first and third disjunct in effect axiom (4) then imply
Holds(White(A),Do(Drop(A), S0)), which contradicts the observation. Therefore the claim follows by the
second disjunct. �

It is worth mentioning that some nondeterministic actions can be formulated in the unifying calculus without
a disjunctive effect axiom, namely by simply excluding one or more fluents from the frame assumption. An
example is the following axiomatization of the effect of tossing a coin.

Poss(Toss(c), s, t) ⊃ (∀f) [f 6= Heads(c) ∧ Holds(f, s) ⊃ Holds(f, t)]∧
(∀f) [f 6= Heads(c) ∧ ¬Holds(f, s) ⊃ ¬Holds(f, t)]

where fluent Heads(c) denotes that coin c shows heads. This corresponds to the notion of occlusion or
release as used in, e.g., [34] and [37].

Example 2. (branching time, ramifications)
Consider a variant, introduced in [2], of the famous Yale Shooting scenario [12] with fluents Loaded,

Alive, and Walking representing that a gun is loaded and that the turkey is alive and walking, respectively.
The following domain constraint says that the turkey can walk only if it is alive.

Holds(Walking, t) ⊃ Holds(Alive, t) (6)
4



Let Load, Wait, and Shoot denote the actions of loading the gun, waiting, and shooting, respectively.
Their preconditions shall be as follows.

Poss(Load, s, t) ≡ t = Do(Load, s)
Poss(Wait, s, t) ≡ t = Do(Wait, s)

Poss(Shoot, s, t) ≡ t = Do(Shoot, s)
(7)

The following schema for the effect axioms encodes a combined solution to the Frame and Ramification
Problem which is a reformulation of the causal approach described in [10].

Poss(a, s, t) ⊃ (∀f) [CausedT (f, a, s, t) ∨ ¬CausedF (f, a, s, t) ⊃ Holds(f, t)]∧
(∀f) [CausedF (f, a, s, t) ∨ ¬CausedT (f, a, s, t) ⊃ ¬Holds(f, t)]

(8)

where
CausedT (f, a, s, t)

def

= Holds(f, s) ∧ Holds(f, t) ∨
f = Loaded∧ a = Load

CausedF (f, a, s, t)
def

= ¬Holds(f, s) ∧ ¬Holds(f, t) ∨
f = Alive ∧Holds(Loaded, s) ∧ a = Shoot ∨
f = Walking∧ ¬Holds(Alive, t)

(9)

Macro CausedT (f, a, s, t) combines a positive frame assumption (that is, Holds(f, s)∧Holds(f, t)) with the
possible positive effects in the domain; here, the fact that the gun becomes loaded by loading it. Likewise,
CausedF (f, a, s, t) combines a negative frame assumption with the possible negative effects: if the gun is
loaded when shooting it, then the turkey dies; and if in a successor situation the turkey is not alive, then
this causes it not to be walking. The latter describes an indirect effect related to the domain constraint, (6),
but conveying additional, causal information to solve the Ramification Problem [10]. (Note also that, after
two decades of shooting a turkey in Yale, so doing no longer unloads the gun.) It is easy to see that action
variable a in schema (8) can be instantiated by the three actions of this domain in order to obtain effect
axioms that are actually of the form required by Definition 3.

The domain axiomatization entails, for example, ¬Holds(Walking,Do(Shoot,Do(Wait,Do(Load, S0)))).
To see why, let S1 = Do(Load, S0), S2 = Do(Wait, S1), and S3 = Do(Shoot, S2). Precondition axioms (7)
imply Poss(Load, S0, S1), Poss(Wait, S1, S2), and Poss(Shoot, S2, S3). From definition (9), we obtain
CausedT (Loaded, Load, S0, S1); hence, effect axiom (8) entails

Holds(Loaded, S1) (10)

The gun remains loaded through the subsequent Wait action: given uniqueness-of-names, (9) implies that
CausedF (Loaded, Wait, S1, S2) is equivalent to ¬Holds(Loaded, S1)∧¬Holds(Loaded, S2). Because of (10),
this actually implies ¬CausedF (Loaded, Wait, S1, S2). It follows from (8) that

Holds(Loaded, S2) (11)

(It is worth mentioning that this, together with (10), implies CausedT (Loaded, Wait, S1, S2). This is how
the Frame Problem is solved in the axiomatization technique used here: fluent Loaded is “caused” to be
true in S2 simply by staying true from S1 to S2 .) Given that the gun is still loaded, the Shoot action
has the effect that the turkey dies and, as an indirect effect, that it stops walking: from (9) and (11)
it follows that CausedF (Alive, Shoot, S2, S3). Hence, ¬Holds(Alive, S3) by (8). This, in turn, implies
CausedF (Walking, Shoot, S2, S3) according to (9), from which the claim follows by (8) again. �

Example 3. (linear time, actions with duration)
The Event Calculus and other axiomatization techniques use a linear time structure, like for example

the natural numbers. The following scenario is adapted from [33]. Let the fluents Assembled and Instr

denote, respectively, the state of an assembly kit and the availability of assembly instructions. To represent
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the occurrence of actions, we add a fluent called Occurs(a, s, t), which describes the fact that action a

actually happens, starting at time s and ending at time t. We consider two actions: Assemble, which has
the effect that the kit is assembled in the end; and the special action Inert, which is used to axiomatize
the frame assumption between two time points when nothing else happens:

Poss(Assemble, s, t) ⊃ (∀f) [f = Assembled∨ Holds(f, s) ⊃ Holds(f, t)]∧
(∀f) [f 6= Assembled∧ ¬Holds(f, s) ⊃ ¬Holds(f, t)]

Poss(Inert, s, t) ⊃ (∀f) [Holds(f, s) ⊃ Holds(f, t)]∧
(∀f) [¬Holds(f, s) ⊃ ¬Holds(f, t)]

(12)

The preconditions for the two actions are as follows.

Poss(Assemble, s, t) ≡ Holds(Occurs(Assemble, s, t), s)∧
[Holds(Instr, s) ⊃ t = s+ 20] ∧ [¬Holds(Instr, s) ⊃ t = s+ 60]

Poss(Inert, s, t) ≡ ¬(∃a, s′, t′) (Holds(Occurs(a, s′, t′), s) ∧ s′ < t ∧ t′ > s)

(13)

Put in words, assembling has a variable duration, depending on the availability of instructions. The generic
Inert action is possible between any two time points s and t whenever there is no action that starts
before t and ends after s. In order that the second precondition axiom in (13) complies with Definition 3,
the right-hand side must be a state formula in s. This, in turn, requires all action occurrences to be “known”
at all times, which can be easily obtained by the generic definition of domain constraints via the following
macro.

Happens(a, s, t)
def

= (∀t′)Holds(Occurs(a, s, t), t′) (14)

As an example, consider a scenario in which only a single action occurs,

(∃ta) (Poss(Assemble, 100, ta) ∧ (∀a, s, t) [Happens(a, s, t) ≡ a = Assemble∧ s = 100 ∧ t = ta] ) (15)

along with the observation ¬Holds(Assembled, 130). This, together with the domain axioms, implies
¬Holds(Instr, 0); that is to say, if the kit is not yet assembled at time 130 then the instructions were not
present from the beginning. To see why, suppose, for the sake of argument, that Poss(Assemble, 100, 120).
We show that this leads to a contradiction: from (12) it follows that

Holds(Assembled, 120) (16)

Moreover, (15), definition (14), and Poss(Assemble, 100, 120) along with (13) imply that there is no in-
stance Holds(Occurs(a, s′, t′), 120) such that t′ > 120. Therefore, Poss(Inert, 120, 130) according to (13).
In turn, this and (16) imply Holds(Assembled, 130) by (12), which contradicts the observation. Hence,
¬Poss(Assemble, 100, 120). This and Poss(Assemble, 100, ta) entail ¬Holds(Instr, 100) due to (13). The
claim ¬Holds(Instr, 0) then follows from (12) and the fact that Poss(Inert, 0, 100) (which the reader
may easily verify from (14) and (15)). �

These examples show that the unifying calculus allows to model a variety of ontological features. We
conclude this section by defining three important sub-classes of domain axiomatizations, which will be used
later in the paper. To begin with, a domain axiomatization is called progressing if there is a least time point
and if time always moves forward when an action is executed.

Definition 4. A domain axiomatization with precondition axioms Π and foundational axioms Ω is
progressing if

1. Ω |= (∃s : time) (∀t : time) s ≤ t and

2. Π ∪ Ω |= Poss(a, s, t) ⊃ s < t.

�
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A domain axiomatization is called sequential if it is progressing and no two actions overlap.

Definition 5. A domain axiomatization with precondition axioms Π and foundational axioms Ω is
sequential if it is progressing and

Π ∪ Ω |= Poss(a, s, t) ∧ Poss(a′, s′, t′) ⊃ (t < t′ ⊃ t ≤ s′) ∧ (t = t′ ⊃ a = a′ ∧ s = s′)

�

In Example 2 we have seen how ramifications of actions are obtained if an effect depends on conditions
of the successor state, as in

f = Walking∧ ¬Holds(Alive, t) ⊃ ¬Holds(f, t)

(cf. (9) and (8), respectively). This gives rise to the following definition.

Definition 6. A domain axiomatization is ramification-free if each Υi[s, t] in an effect axiom (1) is of
the form

(∃~yi)(Φi[s] ∧ (∀f) [Γ+
i [s] ⊃ Holds(f, t)]

∧ (∀f) [Γ−

i [s] ⊃ ¬Holds(f, t)])

where both Γ+
i [s] and Γ−

i [s] are state formulas in s. �

3. Translations Based on the Unifying Approach

In this section, we show how the unifying calculus can be used as an intermediary language for translating
specific calculi into each other. The general idea is to map domain descriptions in one language into domain
axiomatizations in the unifying calculus, and then to re-write those into the target language. This provides
a uniform method for embedding (well-defined classes) of domains in a variety of existing approaches, which
also allows to compare their relative expressiveness. The advantage of using the unifying action calculus as
a middle language is two-fold:

1. A mapping from the source language into the unifying calculus results in a generic representation,
which can then be further mapped onto a variety of different target languages, thus avoiding the need
for complete translations in each case.

2. Once a mapping into a target language has been developed for a specific class of domains in the unifying
calculus, it suffices to map a source language into that class to obtain a full translation from source to
target.

We exemplify our method by two new results: an axiomatic characterization of ADL planning problems
in the Event Calculus, and a translation of the basic Fluent Calculus into the Situation Calculus. As a
by-product we define an extension of Reiter’s basic Situation Calculus which is suitable for nondeterministic
actions and which is somewhat more general than the approach proposed in [20].

3.1. Translating ADL into the Event Calculus

3.1.1. From ADL . . .

In order to give an Event Calculus characterization of the planning language ADL, introduced in [29],
we first interpret ADL in our unifying calculus. For the definition of this planning language we follow [6].

Definition 7. An ADL signature consists of: a finite set of types, possibly including definitions of types
as disjunctive unions of other types; a finite set of typed constants; a finite set of typed fluents; and a finite
set of typed action names.

An ADL planning problem is composed of the following elements.

1. For each operator name A(~x) a precondition π, which is a first-order formula with free variables
among ~x and whose atoms are fluents F (~t ) or equalities t1 = t2 .
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2. For each operator name A(~x) a finite set of effect specifications , which are of either of the forms

(∀~yi) (γ+
i ⇒ Fi(~yi)) or (∀~yj) (γ−j ⇒ ¬Fj(~yj)) (17)

where the conditions γ+
i and γ−j are first-order formulas with free variables among, respectively, ~x, ~yi

and ~x, ~yj , and whose atoms are fluents F (~t ) or equalities t1 = t2 .
3

3. A conjunction of ground fluent literals as the (possibly incomplete) initial state specification and a
closed first-order formula as the planning goal .

�

Example 4. Consider the following specification of the action Move(object, old, new) in the well-known
blocksworld:

Precondition: On(object, old) ∧ ¬(old = new)∧
¬(∃z) On(z, object) ∧ ¬(∃z) On(z, new)

Effects: (∀x, y) (x = object∧ y = new ⇒ On(x, y))
(∀x, y) (x = object∧ y = old ⇒ ¬On(x, y))
(∀x, y) (x = object∧ y = new ⇒ Above(x, y))
(∀x, z) (x = object∧ Above(new, z) ⇒ Above(x, z))
(∀x, z) (x = object∧ Above(x, z) ⇒ ¬Above(x, z))

(18)

The bottommost two expressions specify an unbounded number of effects, which is one of the characteristic
features of ADL that go beyond the expressiveness of STRIPS. �

The semantics of an ADL domain description requires the definition of a transition function on complete
states. These are represented as ground sets of fluents S , and the basis for entailment is the definition
S |= F (~t ) iff F (~t ) ∈ S for a ground fluent F (~t ).

Definition 8. Consider an ADL planning problem, and let S and S ′ be two sets of ground fluents and
A(~t ) a ground instance of an action with precondition π and effect specifications (17), then

S  A(~t ) S′

if the action is applicable in S , that is, S |= π{~x 7→ ~t }, and if S′ = S \ D ∪ A, where the delete-list D is
the set of all ground fluents Fj(~r) such that S |= γ−j {~x 7→ ~t, ~yj 7→ ~r} and the add-list A is the set of all

ground fluents Fi(~r) such that S |= γ+
i {~x 7→ ~t, ~yi 7→ ~r}.

A sequence α1, . . . , αn of ground actions is a solution to the planning problem if for every S0 which
satisfies the initial state,

S0  α1
. . .  αn

Sn

such that Sn entails the planning goal. �

Because it is not a purely logical axiomatization, an ADL description does not presuppose a particular
time structure. This allows for various interpretations; for example, [3] uses branching time for an embedding
of ADL in the Situation Calculus. In view of a translation into the Event Calculus, we map ADL planning
problems into our unifying calculus using a linear time structure, specifically the natural numbers. To
begin with, the type declarations are taken as a specification of domain sorts. The ADL operator names
are mapped onto functions into sort action, and the ADL fluents are mapped onto functions into sort
fluent. Much like in Example 3, we add the special fluent Occurs(a : action, t : N) to represent the
occurrence of an action at a specific time. An ADL domain description can then be translated into a domain
axiomatization using our unifying calculus as follows.

3The original definition actually allows to partially instantiate the arguments of the fluents Fi(~yi) and Fj(~yj) in (17). For

the sake of simplicity, we assume that this is equivalently represented by equations in γ+

i and γ−

j , respectively.
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1. The foundational axioms define the time structure to be the natural numbers N with least element 0.

2. The precondition axioms are,

Poss(A(~x), s, t) ≡ Holds(Occurs(A(~x), s), s) ∧ t = s+ 1 ∧ πA[s] (19)

where πA[s] is the ADL precondition for operator A(~x) but with every occurrence of a fluent φ

replaced by Holds(φ, s).

3. The effect axioms are,

Poss(A(~x), s, t) ⊃ (∀f) [ (Γ+
A ∨ Holds(f, s) ∧ ¬Γ−

A) ⊃ Holds(f, t)]∧
(∀f) [ (Γ−

A ∨ ¬Holds(f, s) ∧ ¬Γ+
A) ⊃ ¬Holds(f, t)]

(20)

where
Γ+

A

def

=
∨

i(∃~yi) (γ+
i [s] ∧ f = F (~yi) )

Γ−

A

def

=
∨

j(∃~yj) (γ−j [s] ∧ f = F (~yj) )
(21)

Here, γ+
i [s] and γ−j [s] are as γ+

i and γ−j in the ADL effect specifications for action A(~x) but with
every fluent φ replaced by Holds(φ, s).

4. An initial state I is mapped to the formula I[0] where every fluent φ is replaced by Holds(φ, 0).

5. A sequence of actions α1, . . . , αn is mapped onto the formula

(∀t) (Holds(Occurs(a, s), t) ≡ a = α1 ∧ s = 0 ∨ . . . ∨ a = αn ∧ s = n− 1) (22)

Example 4. (Continued) Recall effect specifications (18). These are mapped onto the general effect
axiom (20) for Move(object, old, new) with

Γ+
Move

def

= f = On(object, new) ∨ f = Above(object, new)∨
(∃z) (Holds(Above(new, z), s) ∧ f = Above(object, z))

Γ−
Move

def

= f = On(object, old)∨
(∃z) (Holds(Above(object, z), s) ∧ f = Above(object, z))

(23)

�

The mapping of ADL into the unifying calculus can be easily proved correct under the assumption that
the effect specifications (17) for every action are consistent , that is,

|= ¬(
∨

i

γ+
i ∧

∨

j

γ−j ) (24)

where i and j range over all effect formulas for the same fluent.

Proposition 9. Let Σ be the domain axiomatization obtained from a consistent ADL domain with goal G,
then a sequence of actions α1, . . . , αn is a solution to the planning problem iff

Σ ∪ {(22)} |= G[n]

where G[n] is G but with every fluent φ replaced by Holds(φ, n).

Proof: Let S,S′ be two sets of ground fluents, s a time point, and A(~t ) a ground action. In the
following, by S[s] we denote the conjunction of all atoms Holds(φ, s) for which φ ∈ S , plus all ¬Holds(φ, s)
for ground fluents such that φ 6∈ S . This is possible because there are only finitely many fluent functions
and object constants.

Since the fluent for action occurrences does not feature in the ADL effect specifications, effect axiom (20)
implies that

Holds(Occurs(a, s), t) ⊃ (∀t′)Holds(Occurs(a, s), t′)
9



From (19) it then follows that A(~t ) is applicable in S iff

Σ ∪ {Holds(Occurs(A(~t ), s), s)} |= S[s] ⊃ Poss(A(~t ), s, s+ 1)

Under the consistency assumption (24), effect axiom (20) then implies that S  A(~t ) S
′ iff

Σ ∪ {Poss(A(~t ), s, s+ 1)} |= S[s] ⊃ S′[s+ 1]

since, by Definition 8, for any ground fluent we have Fi(~r) ∈ A iff S |= γ+
i {~x 7→ ~t, ~y 7→ ~r} iff S[s] |= Γ+{~x 7→

~t, ~y 7→ ~r}, and Fj(~r) ∈ D iff S |= γ−j {~x 7→ ~t, ~y 7→ ~r} iff S[s] |= Γ−{~x 7→ ~t, ~y 7→ ~r}. Hence, F (~t ) ∈ S \D∪A

iff {(20)} ∪ {Poss(A(~t ), s, s + 1)} |= S[s] ⊃ Holds(F (~t ), s + 1), and, conversely, F (~t ) 6∈ S \ D ∪ A iff
{(20)} ∪ {Poss(A(~t ), s, s+ 1)} |= S[s] ⊃ ¬Holds(F (~t ), s+ 1). This shows that the precondition and effect
axioms correctly encode the update of states in ADL according to Definition 8. The claim then follows by
straightforward induction on n.

3.1.2. . . . to the Event Calculus

The Event Calculus uses a linear time structure, which allows us to adopt directly the natural numbers
used in the axiomatization of an ADL planning problem from above. In the simple Event Calculus [37], the
predicate Happens(a, t) denotes the occurrence of an action (a.k.a. event) at a given time point. Effects
of actions are axiomatized based on the predicates Initiates(a, f, t) and Terminates(a, f, t) representing,
respectively, the initiation and termination of fluent f at time t by action a. The Frame Problem is then
solved in two steps. First, by minimizing predicates Initiates and Terminates using circumscription [23],
and then by applying the following foundational axioms, where InitP (f) and InitN (f) are used to specify
positive and negative initial conditions.

Holds(f, t) ⊂ InitP (f) ∧ ¬Clipped (0, f, t) ∨
(∃a, s) (Happens(a, s) ∧ Initiates(a, f, s) ∧ s < t ∧ ¬Clipped (s, f, t))

¬Holds(f, t) ⊂ InitN (f) ∧ ¬Declipped (0, f, t) ∨
(∃a, s) (Happens(a, s) ∧ Terminates(a, f, s) ∧ s < t ∧ ¬Declipped(s, f, t))

Clipped(s, f, t)
def

= (∃a, t′) (Happens(a, t′) ∧ Terminates(a, f, t′) ∧ s < t′ < t)

Declipped(s, f, t)
def

= (∃a, t′) (Happens(a, t′) ∧ Initiates(a, f, t′) ∧ s < t′ < t)

(25)

Put in words, a fluent holds at time t if it is true initially or is initiated by an earlier action and not
terminated in between (definition Clipped ). Conversely, a fluent does not hold at time t if it is false
initially or terminated by an earlier action and not initiated in between (definition Declipped ).

In the following we show how the domain axiomatization resulting from mapping an ADL planning prob-
lem into our unifying calculus can be translated into the simple Event Calculus. Generally, the translation
of a domain axiomatization into a language based on a linear time structure would require to introduce a
special “occurrence” fluent Occurs(a, s) and to identify, in case of the simple Event Calculus with natural
numbers, the predicate Happens(a, s) with Poss(a, s, s+ 1) ∧ Holds(Occurs(a, s), s). For the sake of sim-
plicity, however, we can exploit the fact that this fluent is already present in the domain axiomatizations of
ADL planning problems. In this way, we obtain the following translation into the Event Calculus.

1. The sorts, actions, and fluents are the same.

2. The foundational axioms on the time structure are augmented by (25).

3. The precondition axioms (19) are re-written to

Happens(A(~x), s) ⊃ πA[s] (26)

4. The set of effect axioms (20) is translated into the formulas

Γ+
A ⊃ Initiates(A(~x), f, s)

Γ−

A ⊃ Terminates(A(~x), f, s)
(27)

10



Predicates Initiates and Terminates are circumscribed locally, which results in the second-order axiom

CIRC [
∨

A(27); Initiates ,Terminates ] (28)

5. The initial formula I[0] is mapped onto a formula where each Holds(f, 0) is replaced by InitP (f) and
each ¬Holds(f, 0) by InitN (f).

6. The encoding of a plan, (22), remains unchanged.

Example 4. (Continued) Recall the sub-formulas (23) of the general effect axiom (20). Assuming that
Move is the only action in this domain with an actual effect, the corresponding Event Calculus definition of
initiation and termination is equivalent to the following.

Initiates(Move(object, old, new), On(object, new), s)
Initiates(Move(object, old, new), Above(object, new), s)
Initiates(Move(object, old, new), Above(object, z), s) ⊂ Holds(Above(new, z), s)

Terminates(Move(object, old, new), On(object, old), s)
Terminates(Move(object, old, new), Above(object, z), s) ⊂ Holds(Above(object, z), s)

�

The equivalence of the domain constraints and precondition axioms are obvious. The correctness of the
translation of the effect axioms is given by the following result.

Proposition 10. Let Σ be a domain axiomatization resulting from an ADL planning problem, and let
α1, . . . , αn be an action sequence such that Σ |= Poss(α1, 0, 1) ∧ . . . ∧ Poss(αn, n− 1, n). Let ΣEC be the
mapping of Σ into the Event Calculus, then for any fluent φ

Σ |= (¬)Holds(φ, t) iff ΣEC |= (¬)Holds(φ, t)

for all t = 1, . . . , n.

Proof: Suppose Σ |= Holds(φ, t), then by (20), Σ |= Γ+
αt

∨ Holds(φ, t − 1) ∧ ¬Γ−
αt

. Correspondingly,
foundational axioms (25) imply that if ΣEC |= Holds(φ, t), then ΣEC entails either

1. Initiates(αt, φ, t− 1), or

2. (∃m, s) (Initiates(αm, φ,m− 1) ∧m < n− 1 ∧ ¬Clipped (m,φ, n)), or

3. InitP (φ) ∧ ¬Clipped (0, φ, n).

By (28), the first case is equivalent to Γ+
αt

while the other two, by (25) and (28), are equivalent to
Holds(φ, t− 1) ∧ ¬Γ−

αt
.

Suppose Σ |= ¬Holds(φ, t), then by (20), Σ |= Γ−
αt

∨ ¬Holds(φ, t− 1)∧ ¬Γ+
αt

. Correspondingly, founda-
tional axioms (25) imply that if ΣEC |= ¬Holds(φ, t), then ΣEC entails either

1. Terminates(αt, φ, t− 1), or

2. (∃m, s) (Terminates(αm, φ,m− 1) ∧m < n− 1 ∧ ¬Declipped(m,φ, n)), or

3. InitN (φ) ∧ ¬Declipped (0, φ, n).

By (28), the first case is equivalent to Γ−
αt

while the other two, by (25) and (28), are equivalent to
¬Holds(φ, t− 1) ∧ ¬Γ+

αt
.

Together with Proposition 9 this shows that we have obtained a correct translation of ADL planning problems
into the Event Calculus.

3.2. Translating the Fluent Calculus into the Situation Calculus

As a second result, we present a translation from the simple Fluent Calculus via the unifying calculus
into the Situation Calculus based on Reiter’s solution to the Frame Problem. As a by-product we obtain an
extension of the latter suitable for nondeterministic actions.
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3.2.1. From the Fluent Calculus . . .

The Fluent Calculus is a variant of the Situation Calculus which uses the same branching time structure
(cf. Example 2) and which adds to it a sort state as an explicit representation for states. Intuitively, a
state is identified with the fluents that hold in it. The state in situation s is denoted by the standard
function State(s). By definition, each fluent itself is a (singleton) state, and if z1 and z2 are states, then
so is their composition denoted by z1 ◦ z2. The empty state is represented by the special constant ∅. The
behavior of the function “◦” is governed by the following foundational axioms, which essentially define states
as non-nested sets of fluents. In the following, Holds(f, z) is used as an abbreviation for the equational
formula (∃z′) z = f ◦ z′, which amounts to an axiomatic characterization of set membership.4

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3) z1 ◦ z2 = z2 ◦ z1
¬Holds(f, ∅) Holds(f1, f) ⊃ f1 = f

Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨ Holds(f, z2) (∀f) (Holds(f, z1) ≡ Holds(f, z2)) ⊃ z1 = z2
(∀P )(∃z)(∀f) (Holds(f, z) ≡ P (f))

(29)

The last axiom, where P is a second-order predicate variable of sort fluent, stipulates the existence of a
state for any (possibly infinite) set of fluents. These axioms are accompanied by the foundational axioms
on situations, inherited from the Situation Calculus of [30]:

(∀s)¬s < S0

(∀a, a′, s, s′) (Do(a, s) = Do(a′, s′) ⊃ a = a′ ∧ s = s′)
(∀a, s, s′) (s < Do(a, s′) ≡ s ≤ s′)
(∀P ) (P (S0) ∧ (∀a, s) (P (s) ⊃ P (Do(a, s))) ⊃ (∀s)P (s))

(30)

The last axiom, where P is a second-order predicate variable of sort sit, defines an induction principle
over situations: if the initial situation satisfies a property P and this property is preserved through the
execution of actions, then P is true for all situations.

Effects of actions are specified in the Fluent Calculus with the help of a purely axiomatic characterization
of subtraction and addition of fluents from and to states:

z2 = z1 + f
def

= z2 = z1 ◦ f

z2 = z1 − f
def

= (z2 = z1 ∨ z2 ◦ f = z1) ∧ ¬Holds(f, z2)

These macros can be straightforwardly generalized to the subtraction and addition of finitely many fluents.
On this basis, domains are axiomatized in the simple Fluent Calculus as follows, where the expression
Holds(f, s) in uniform state formulas (in the sense of Definition 2) stands for Holds(f,State(s)).

Definition 11. A simple Fluent Calculus domain is composed of the following elements.

1. Domain constraints, which are of the form
δ[s] (31)

where δ is a state formula in s.

2. Precondition axioms, one for every action A(~x), which are of the form

Poss(A(~x), s) ≡ πA[s] (32)

where πA[s] is a state formula in s with free variables among s, ~x.

3. So-called state update axioms, one for every action A(~x), which are of the form

Poss(A(~x), s) ⊃ (∃~y1) (Φ1[s] ∧ State(Do(A(~x), s)) = State(s) − ϑ−1 + ϑ+
1 )

∨ . . . ∨
(∃~yn) (Φn[s] ∧ State(Do(A(~x), s)) = State(s) − ϑ−n + ϑ+

n )
(33)

4Below, the letter z always denotes variables of sort state.
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where each Φi[s] is a state formula in s with free variables among s, ~x, ~yi and ϑ−i (the negative
effects) and ϑ+

i (the positive effects) stand for zero or more subtractions and additions, respectively,
of fluent terms with variables among ~x, ~yi.

�

The basic theorem of the Fluent Calculus (see, e.g., [42]) says that the equations in state update axioms
provide a solution to the Frame Problem.

Theorem 12. Foundational axioms (29) entail that

State(s′) = State(s) − g1 − . . .− gm + f1 + . . .+ fn

implies

Holds(f,State(s′)) ≡
∨

i

f = fi ∨



Holds(f,State(s)) ∧
∧

j

f 6= gj





and vice versa.

A state update axiom (33) specifies an action with indeterminate effects if n > 1 and the conditions
Φi are not mutually exclusive. But an action can also be nondeterministic if its state update axiom has a
single update equation which is accompanied by an underspecified condition.

Example 5. Consider the following axiom, which specifies alternative forms of payments.

Poss(Pay, s) ⊃
(∃y) (Holds(HasPayment(y), s) ∧ State(Do(Pay, s)) = State(s) − HasPayment(y))

(34)

Suppose, for example, Holds(HasPayment(y), S0) ≡ y = Cash ∨ y = Cheque, then according to Theorem 12
this state update axiom implies

¬Holds(HasPayment(Cash),Do(Pay, S0)) ∨ ¬Holds(HasPayment(Cheque),Do(Pay, S0))

but neither of the disjuncts alone is entailed. �

Based on Theorem 12, the translation of basic Fluent Calculus theories into our unifying calculus is
straightforward. Domain constraints are taken as they are. A precondition axiom (32) is re-written as

Poss(A(~x), s, t) ≡ πA[s] ∧ t = Do(A(~x), s) (35)

A state update axiom (33) is mapped onto the effect axiom

Poss(A(~x), s, t) ⊃ (∃~y1)(Φ1[s] ∧ (∀f) [
∨

i f = f1i ∨ Holds(f, s) ∧
∧

j f 6= g1j ⊃ Holds(f, t)]

∧ (∀f) [
∨

j f = g1j ∨ ¬Holds(f, s) ∧
∧

i f 6= f1i ⊃ ¬Holds(f, t)])

∨ . . . ∨
(∃~yn)(Φn[s]∧ (∀f) [

∨

i f = fni ∨ Holds(f, s) ∧
∧

j f 6= gnj ⊃ Holds(f, t)]

∧ (∀f) [
∨

j f = gnj ∨ ¬Holds(f, s) ∧
∧

i f 6= fni ⊃ ¬Holds(f, t)])

(36)

Here, the fki and gkj are the fluent terms that occur in ϑ+
k and ϑ−k , respectively. The equivalence of

this mapping is obvious for both domain constraints and precondition axioms. As the following proposition
shows, correctness of the effect axioms follows if the updates are consistent, that is,

∧

i

∧

j

fki 6= gkj (37)

for all k = 1, . . . , n.
13



Proposition 13. Suppose Poss(A(~x), s) and Poss(A(~x), s, t) ≡ t = Do(A(~x), s), and assume that (37)
holds for a state update axiom (33), then the foundational axioms of the Fluent Calculus imply that (33)
and (36) are equivalent.

Proof: Under the consistency assumption, the implication
∨

j

f = gkj ∨ [¬Holds(f, s) ∧
∧

i

f 6= fki] ⊃ ¬Holds(f, t)

is logically equivalent to

Holds(f, t) ⊃ [
∧

j

f 6= gkj ∧Holds(f, s)] ∨
∨

i

f = fki

Hence, (36) can be equivalently written as

Poss(A(~x), s, t) ⊃
∨

k

(∃~yk)(Φk[s] ∧ (∀f) [
∨

i

f = fki ∨ Holds(f, s) ∧
∧

j

f 6= gkj ≡ Holds(f, t)]) (38)

The equivalence of this effect axiom and state update axiom (33) follows immediately from Theorem 12.

Example 5. (Continued) Recall state update axiom (34) for the Pay action. The corresponding effect
axiom is

Poss(Pay, s, t) ⊃
(∃y) (Holds(HasPayment(y), s)∧ (∀f) [Holds(f, s) ∧ f 6= HasPayment(y) ⊃ Holds(f, t)]

∧ (∀f) [¬Holds(f, s) ∨ f = HasPayment(y) ⊃ ¬Holds(f, t)])

which can be equivalently written as

Poss(Pay, s, t) ⊃
(∃y) (Holds(HasPayment(y), s) ∧ (∀f) [Holds(f, s) ∧ f 6= HasPayment(y) ≡ Holds(f, t)])

(39)

�

3.2.2. . . . to the Situation Calculus

In the following, we show how a domain axiomatization resulting from a Fluent Calculus domain can
be mapped onto the Situation Calculus using so-called successor state axioms [31] for each fluent F (~u) as
a solution to the Frame Problem. The general form of these axioms in the reified version (that is, where
fluents are represented as terms) is

Poss(a, s) ⊃ [Holds(F (~u),Do(a, s)) ≡ Γ+
F [s] ∨Holds(F (~u), s) ∧ ¬Γ−

F [s]] (40)

Here, Γ+
F and Γ−

F describe the conditions on a, s, ~u under which fluent F (~u) is, respectively, a positive
or a negative effect. Reiter’s basic action theories do not, however, allow to axiomatize nondeterministic
actions. In [20], it has been shown how a generic predicate Case(k, a, s), where k : N, can be used in the
sub-formulas Γ+

F and Γ−

F to model nondeterministic effects by distinguishing different “cases” of updates.
For a correct mapping of effect axioms of the form (38), however, this concept needs to be generalized in
view of actions which are characterized by an underspecified condition, like action Pay (cf. axiom (34)). To
this end, we introduce, for every action A(~x) with effect axiom (36), the more general predicates

CaseA
k (~x, ~yk, s)

for every k = 1, . . . , n. The behavior of these predicates is governed by the following axioms.5

Poss(A(~x), s) ⊃
⊕

k(∃~yk) (CaseA
k (~x, ~yk, s) ∧ Φk[s])

(∀~yk, ~y
′
k) (CaseA

k (~x, ~yk, s) ∧ CaseA
k (~x, ~y′k, s) ⊃ ~yk = ~y′k)

(41)

5Below, the notation
L

k Fk means that exactly one of the sub-formulas Fk is true.
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Put in words, for every situation s in which the action is possible, there exists a unique applicable “case” k

with a unique instance ~yk .
We are now in a position to map an axiomatization characterizing a Fluent Calculus domain into the

Situation Calculus, provided the original Fluent Calculus domain satisfies the consistency assumption (37).
Domain constraints are taken as they are while precondition axioms (35) are re-written to

Poss(A(~x), s) ≡ πA[s] (42)

Given in their equivalent form (38), the effect axioms are all together mapped onto the following schema for
the (possibly nondeterministic) successor state axioms.

Poss(a, s) ⊃
[Holds(f,Do(a, s)) ≡

∨

A (∃~x) (a = A(~x) ∧
∨

k(∃~yk) (CaseA
k (~x, ~yk, s) ∧

∨

i f = fki))
∨
(∃~x) (a = A(~x)∧Holds(f, s) ∧

¬[
∨

k(∃~yk) (CaseA
k (~x, ~yk, s) ∧

∨

j f = gkj)])]

(43)

The fluent variable f in this schema can then be instantiated by all fluents of the domain in order to obtain
actual successor state axioms.

Example 5. (Continued) Recall general effect axiom (34) for the Pay action. Assuming this to be the
only action in the domain, we obtain the following successor state axiom schema.

Poss(a, s) ⊃

[Holds(f,Do(a, s)) ≡ a = Pay ∧ Holds(f, s) ∧ ¬[(∃y)CasePay

1 (y, s) ∧ f = HasPayment(y)]]
(44)

along with the “case” axiom6

Poss(Pay, s) ⊃ (∃!y) (CasePay

1 (y, s) ∧ HasPayment(y, s))

Instantiating (44) for fluent {f 7→ HasPayment(y)}, we obtain

Poss(a, s) ⊃

[Holds(HasPayment(y),Do(a, s)) ≡ a = Pay ∧ Holds(HasPayment(y), s) ∧ ¬CasePay

1 (y, s)]

�

It is easy to prove that the mapping of the effect axioms into successor state axioms is correct.

Proposition 14. Suppose Poss(A(~x), s) and Poss(A(~x), s, t) ≡ t = Do(A(~x), s), then (36) and (43),
instantiated by {a 7→ A(~x)}, are equivalent under axioms (41).

Proof: Instantiating (43) by {a 7→ A(~x)}, we obtain

Holds(f,Do(A(~x), s)) ≡
∨

k(∃~yk) (CaseA
k (~x, ~yk, s) ∧

∨

i f = fki)
∨
Holds(f, s) ∧ ¬[

∨

k(∃~yk)CaseA
k (~x, ~yk, s) ∧

∨

j f = gkj ]

Given (41), this can be re-written to
∨

k(∃~yk) (Φk[s] ∧ (∀f) [Holds(f,Do(A(~x), s)) ≡
∨

i f = fki ∨ Holds(f, s) ∧ ¬[
∨

j f = gkj ]])

which, given Poss(A(~x), s, t) ≡ t = Do(A(~x), s), is equivalent to (38).
We have thus obtained, with the help of the unifying calculus, an embedding of the full basic Fluent Calculus
into the Situation Calculus using a variant of successor state axioms which is suitable for nondeterministic
actions and somewhat more general than [20]. The translation itself generalizes an earlier result that was
restricted to deterministic actions [35].

6Below, the notation (∃!y)F means the existence of a unique instance y such that sub-formula F is true.
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3.3. Translations into Different Time Structures

The two example translations presented above have in common that the target language uses the same
time structure as the input language. Since the unifying action calculus is not confined to a particular time
structure, it can also serve as intermediary language for translating approaches with different time structures
into each other. Domain axiomatizations with branching time, such as situations in the Situation- or the
Fluent Calculus, can be mapped onto a linear time structure by introducing a special fluent to denote the
actual occurrence of an action, like Occurs, and adding this to the precondition so that the possibility of
an action can be identified with its actual occurrence. Conversely, domain axiomatizations with linear time
(with time points t) can be mapped onto a branching time structure (with time points s) by adding a
special fluent Time(s, t) to denote that t is the “actual” time of a branching time point s. Precondition
and effect axioms in the target language then inherit the relation between the beginning and end of an action
as specified in the domain axioms with the linear time structure.

4. Modularity of Domain Axiomatizations

In this second part of the paper, we show how the unifying action calculus allows us to analyze and solve
problems of general interest across different formalisms. The motivation for using the unifying approach is
that it enables proofs of results without being confined to a specific approach. Once established, instantiating
such a result to a particular action calculus is likely to be much easier than solving the problem individually
and from the scratch for each individual formalism. We exemplify this by providing a new, calculus-
independent solution to a problem that arises across different approaches: the question whether a domain
axiomatization is modular. This problem, which has recently gained interest [15], is of particular relevance
for the practical use of domain axiomatizations in high-level action programming languages like GOLOG [32]
or FLUX [42], and it is intimately related to McCarthy’s concept of elaboration tolerance [24].

The problem of modularity arises from the fact that axiomatizations of action domains combine different
categories of formulas which serve different purposes. Domain constraints describe static properties which
hold in all states; precondition axioms define the conditions for actions to be applicable; and effect axioms
define the consequences of actions. As a uniform logical theory, however, a domain axiomatization may
easily give rise to dependencies among the different kinds of axioms: effect formulas can entail implicit
preconditions, domain constraints can entail implicit effects, etc. [13]. Implementations like GOLOG or
FLUX, on the other hand, rely on the assumption that dependencies like these do not exist. The reason is
that, for the sake of efficiency, the implementations use domain axiomatizations in a modular fashion: agents
refer to the domain constraints only when they initialize their world model, they check the applicability of an
action merely against the precondition axioms, and they update their world model entirely on the basis of the
effect axioms. Agent programs would be much less efficient if the entire domain theory had to be taken into
account for each specific reasoning task. However, this modular use of a domain axiomatization is incorrect
whenever there is a dependency between axioms of different kind. As a consequence, the modularity of a
domain axiomatization must always be verified prior to using it as the knowledge base for an agent. This is
an excellent example of the value of McCarthy’s elaboration tolerance principle [24]: the more dependencies
there are between different types of axioms, the less elaboration tolerant is a formalism, because the addition
of new information may disrupt an entire existing axiomatization if it is not modular [14].

In the following, we use our unifying action calculus as the formal basis for a general, calculus-independent
analysis of the problem of modularity of domain constraints, precondition axioms, and effect formulas in
domain axiomatizations. We present conditions for modularity against which a domain axiomatization
can be checked. As the main result, we prove that the class of sequential and ramification-free domain
axiomatizations, as defined at the end of Section 2, are guaranteed to be free of dependencies if they satisfy
these conditions. We then show how this result can be straightforwardly instantiated to several concrete
formalisms. In this way, our general conditions for independence can be easily checked, e.g., by applying
automated theorem proving, for a given domain theory in a specific action calculus.
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4.1. Examples for Implicit Dependency

In order to illustrate the universality of the problem of modularity, we first present three simple example
axiomatizations in three different calculi which entail implicit domain constraints, preconditions, and effects,
respectively.

4.1.1. Implicit Domain Constraints

The first example, axiomatized in the Situation Calculus, shows how effect axioms—successor state
axioms in this case—may entail additional, implicit domain constraints.

Example 6. For a scheduling domain consider the fluents Job(m, j) and Free(m), respectively repre-
senting that machine m has been allocated job j and that machine m is free. Two actions Schedule(j,m)
and Unschedule(j) are for allocating job j to machine m and for deallocating job j .

Consider the single domain constraint7

Holds(Free(m), t) ⊃ ¬(∃j)Holds(Job(m, j), t) (45)

Let the action precondition axioms be

Poss(Schedule(j,m), s) ≡ Holds(Free(m), s)
Poss(Unschedule(j), s) ≡ (∃m)Holds(Job(m, j), s)

(46)

The successor state axioms for the two fluents are as follows.

Poss(a, s) ⊃
[Holds(Job(m, j),Do(a, s)) ≡ a = Schedule(j,m) ∨

Holds(Job(m, j), s) ∧ a 6= Unschedule(j) ]

Poss(a, s) ⊃
[Holds(Free(m),Do(a, s)) ≡ (∃j) (Holds(Job(m, j), s) ∧ a = Unschedule(j)) ∨

Holds(Free(m), s) ∧ ¬(∃j) a = Schedule(j,m) ]

(47)

Put in words, Job(m, j) holds in a successor situation if job j was just allocated to machine m, or
if Job(m, j) was true beforehand and j was not deallocated. Similarly, Free(m) holds in a successor
situation if the job allocated to m just got unscheduled, or if machine m was free beforehand and has not
just got some job j .

We claim that this axiomatization entails the following implicit domain constraint (which does not follow
from (45) alone):

Holds(Job(m, j), s) ⊃ ¬(∃i) (Holds(Job(m, i), s) ∧ j 6= i) (48)

To see why, suppose Holds(Job(m, j), s), then (46) implies Poss(Unschedule(j), s). By (47),

Holds(Free(m),Do(Unschedule(j), s))

Hence, from (45) it follows that

¬(∃i)Holds(Job(m, i),Do(Unschedule(j), s)) (49)

Also, by (47) and uniqueness-of-names,

Holds(Job(m, i),Do(Unschedule(j), s)) ≡ Holds(Job(m, i), s) ∧ j 6= i

This and (49) imply ¬(∃i) (Holds(Job(m, i), s) ∧ j 6= i). �

7It should be stressed that the converse of the following implication is left out intentionally; that is to say, for many other
reasons a machine may not be available even if it has not been allocated a job.
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4.1.2. Implicit Preconditions

The next example, which is axiomatized in the simple Event Calculus as introduced in Section 3.1.2,
shows how effect axioms can give rise to implicit preconditions of actions.

Example 7. To model the movement of a robot, consider the fluent At(x) representing that the robot
is at position x. The action Go(x, y) denotes the movement of the robot from x to y. Let the domain
axiomatization consist of the single domain constraint

Holds(At(l1), t) ∧ Holds(At(l2), t) ⊃ l1 = l2 (50)

Put in words, the robot must be at a unique location at any time. Let the precondition of the only action
be axiomatized as

Happens(Go(x, y), s) ⊃ Holds(At(x), s) (51)

The effects in this domain are determined by the following circumscribed definition of initiation and termi-
nation.

Initiates(a, f, s) ≡ (∃x, y) (f = At(y) ∧ a = Go(x, y))
Terminates(a, f, s) ≡ (∃x, y) (f = At(x) ∧ a = Go(x, y))

(52)

We claim that, under the assumption that the Go action can be performed in isolation, this axiomati-
zation entails the following implicit precondition (which does not follow from (51) alone):

Happens(Go(x, y), s) ⊃ x 6= y (53)

To see why, (52) implies both Initiates(Go(x, y), At(y), s) and Terminates(Go(x, y), At(x), s). Suppose
Happens(a, s) ≡ a = Go(x, y), then foundational axioms (25) entail both Holds(At(y), t) as well as the
negation ¬Holds(At(x), t) for t > s, which in turn implies x 6= y. �

4.1.3. Implicit Effects

The last example, given in the basic Fluent Calculus, shows how domain constraints can give rise to
additional, implicit effects.

Example 8. To model the operation of two elevators, consider the fluent AtFloor(e, n) with e ∈ {E1, E2}
and n ∈ {0, 1, . . . , 9}, representing the current floor of each elevator. The only action Call(n) means to
activate the call button at floor n. Let the domain axiomatization consist of the two domain constraints,

(∃!k)Holds(AtFloor(e, k), t)
¬Holds(AtFloor(E1, 0), t)

(54)

that is to say, both elevators are at a unique floor in every situation, and the first elevator does not serve
the basement. We assume that it is possible to activate the call button at any floor as long as there is no
elevator at this floor, that is,

Poss(Call(n), s) ≡ 0 ≤ n ≤ 9 ∧ ¬(∃e)Holds(AtFloor(e, n), s) (55)

The following state update axiom specifies a nondeterministic effect.

Poss(Call(n), s) ⊃ ((∃m) (Holds(AtFloor(E1,m), s)∧
State(Do(Call(n), s)) = State(s) − AtFloor(E1,m) + AtFloor(E1, n)))

∨
((∃m) (Holds(AtFloor(E2,m), s)∧

State(Do(Call(n), s)) = State(s) − AtFloor(E2,m) + AtFloor(E2, n)))

(56)

Put in words, calling an elevator to a floor n has the indeterminate effect that either of the two elevators
arrives.
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We claim that this domain axiomatization entails the following implicit effect (which does not follow
from (56) alone):

Poss(Call(0), s) ⊃ Holds(AtFloor(E2, 0),Do(Call(0), s)) (57)

To see why, note that State(Do(Call(0), s)) = State(s) − AtFloor(E1,m) + AtFloor(E1, 0) implies

Holds(AtFloor(E1, 0),Do(Call(0), s))

according to Theorem 12. By (54), therefore, the first disjunct in state update axiom (56) is false if
substituted by {n 7→ 0}. This entails (57) according to (56) and Theorem 12. �

4.2. A General Method for Verifying Modularity

The examples in the previous section show that the problem of domain axiomatizations not being modular
arises in many different action formalisms. With the help of our unifying action calculus, we can give a
general, formal definition of what are implicit domain constraints, preconditions, and effects. To this end,
we introduce the following notation for a given action A(~x). In a domain axiomatization with precondition
axioms Π, by ΠA we denote the one which is for A(~x), with πA[s] being its right-hand side as usual.
Likewise, if Υ are the effect axioms, then by ΥA we denote the one for action A(~x). For notational
convenience, we will refrain from stating the foundational axioms of a domain axiomatization. These are
tacitly assumed to be satisfiable, and entailment (|=) and consistency of sets of formulas is always meant to
be modulo them.

Definition 15. Consider a domain axiomatization Σ = ∆ ∪ Π ∪ Υ consisting of domain constraints ∆,
precondition axioms Π, and effect axioms Υ.

1. The domain axiomatization is free of implicit domain constraints if for every state formula δ[t],

Σ |= δ[t]

implies ∆ |= δ[t].

2. The domain axiomatization is free of implicit preconditions if for every action A(~x) and state formula
π[s],

Σ |= Poss(A(~x), s, t) ⊃ π[s]

implies ∆ ∪ ΠA |= Poss(A(~x), s, t) ⊃ π[s].

3. The domain axiomatization is free of implicit effects if for every action A(~x) and state formula ε[t],

Σ |= Poss(A(~x), s, t) ⊃ ε[t]

implies ∆[S] ∪ ΠA[S] ∪ ΥA[S, T ] |= Poss(A(~x), S, T ) ⊃ ε[T ], for any constants S, T of sort time.

�

Put in words, an implicit domain constraint is a (universally quantified) state formula which is entailed
by the entire domain axiomatization but which cannot be derived from the given domain constraints ∆
alone. An implicit precondition is entailed by the entire domain axiomatization but does not follow from
the precondition axioms alone in a state that satisfies the domain constraints. The rationale behind this
definition is the following: given a state that satisfies the domain constraints ∆, the precondition axiom for
an action A alone should suffice to entail all executability conditions for this action. Finally, an implicit
effect follows from the entire domain axiomatization but not from an effect axiom alone in a state that
satisfies the preconditions of an action and the domain constraints. The rationale behind this definition is
this: given a state that satisfies both the domain constraints ∆ and the preconditions of an action A, the
instantiated effect axiom for this action alone should suffice to infer everything that can be concluded of
the resulting state. The use of time constants in item 3 is motivated by the desire to verify modularity in
a local fashion, that is, by instantiating the domain constraints and precondition axioms by a single time
point, and the effect axioms by this time point and its successor.
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We now use our unifying calculus to provide three conditions which will then be shown to guarantee that a
domain axiomatization is free of implicit dependencies. Informally speaking, the first condition below, (C1),
essentially says that for every state at some time S which is consistent with the domain constraints and in
which an action A(~x) is applicable, the condition Φi[S] for at least one case i in the effect axiom for A

holds. Condition (C2) implies that none of the applicable effect specifications is self-contradictory, and (C3)
requires that any possible update leads to a state that satisfies the domain constraints. Here and in the
following, we consider only ramification-free domain axiomatizations according to Definition 6, so that the
sub-formulas Γ+

i and Γ−
i in effect axioms (cf. (2)) are state formulas solely in s.

Definition 16. Let S, T be constants of sort time. A domain axiomatization ∆∪Π∪Υ is called modular
if the following holds for every action A(~x) with effect axiom (1): there exist arbitrary time constants
S, T such that

|= ∆[S] ∧ πA[S] ⊃
k

∨

i=1

(∃~yi)Φi[S] (C1)

and, for all i ∈ {1, . . . , k},
|= ∆[S] ∧ πA[S] ∧ Φi[S] ∧ Γ+

i [S] ⊃ ¬Γ−

i [S] (C2)

|= ∆[S] ∧ πA[S] ∧ Υi[S, T ] ⊃ ∆[T ] (C3)

�

These conditions can in principle be checked for a given domain axiomatization by automated theorem
proving.8 When so doing, an advantage is that these conditions can be verified separately for each action
of a domain signature.

We are now ready to prove our main result, which says that modular domain axiomatizations are free
of implicit domain constraints, preconditions, and effects. We begin by proving that if a state formula is
consistent with the domain constraints, then it is also consistent with the entire domain axiomatization.

Lemma 17. Consider a sequential and ramification-free domain axiomatization ∆∪Π∪Υ which satisfies
conditions (C1)–(C3). Let S be an arbitrary constant of sort time and ψ(S) a state formula in S , then

∆[S] ∪ {ψ[S]} is consistent (58)

implies that ∆ ∪ Π ∪ Υ ∪ {ψ[S]} is consistent.

Proof: Let I ′ be an arbitrary model for ∆[S] ∪ {ψ[S]}. From this we can straightforwardly obtain a
model I in which SI is the least element of <I . We then construct a model J as follows.

1. For every fluent ϕ,
Holds(ϕ, S)J iff Holds(ϕ, S)I (59)

2. Given that the domain axiomatization is sequential, we can iteratively construct the following assign-
ment for every σ in the domain of I for sort time, starting with SI , and for every action α = A(~x)I

and time point τ >I σ :

(a) Let πα be the right-hand side of the precondition axiom for A, then

Poss(α, σ, τ)J iff J |= πα{s 7→ σ, t 7→ τ} (60)

8It is worth noting that condition (C2) is trivially true for both successor state axioms in the Situation Calculus and
(consistent) state update axioms in the Fluent Calculus, because the corresponding formulas Γ+

i and Γ−

i in the general effect
axioms are always negations of each other (cf. axiom (38)).
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(b) Let (1) be α’s effect axiom. If Poss(α, σ, τ)J then choose some i = 1, . . . , k and some ~yi such
that Φi[σ]J , and for every fluent ϕ let

Holds(ϕ, τ)J if J |= Γ+
i [σ]{f 7→ ϕ}

¬Holds(ϕ, τ)J if J |= Γ−

i [σ]{f 7→ ϕ}
(61)

The existence of some such i and ~yi is guaranteed by assumption (C1), and consistency of the
assignment (61) follows from assumption (C2).

Then J is a model for ψ[S] due to (59), for Π due to (60), for Υ due to (61), and for ∆ due to (58)
and (C3).

Next, we show that a state formula ψ[T ] is consistent with the entire domain axiomatization if only
it is consistent with an instance of an update ΥA[S, T ] for a state at time S that satisfies the domain
constraints and the preconditions of action A.

Lemma 18. Consider a sequential and ramification-free domain axiomatization Σ = ∆ ∪ Π ∪ Υ which
satisfies conditions (C1)–(C3). Let A(~x) be an action, S, T be arbitrary constants of sort time, and ψ[T ]
a state formula in T , then

∆[S] ∪ {πA[S]{t 7→ T }} ∪ ΥA[S, T ] ∪ {ψ[T ]} is consistent

implies
Σ ∪ {Poss(A(~x), S, T )} ∪ {ψ[T ]} is consistent.

Proof: Let I be a model for ∆[S]∪ {πA[S]{t 7→ T }}∪ΥA[S, T ]∪ {ψ[T ]}. We construct a model J as
in the proof of Lemma 17 and with a specific assignment for the state at time T :

Holds(ϕ, T )J iff Holds(ϕ, T )I (62)

for every ϕ in the domain of I for sort fluent. This is consistent with Υ because I is a model for
ΥA[S, T ]. As above, J is a model for Σ, a model for ψ[T ] due to (62), and for Poss(A(~x), S, T ) since I
is a model for πA[S]{t 7→ T }.

With the help of these two lemmas we can now prove our main result.

Theorem 19. Any sequential and ramification-free domain axiomatization which is modular is free of
implicit domain constraints, preconditions, and effects.

Proof: Let Σ be a modular domain axiomatization with domain constraints ∆, precondition axioms Π,
and effect axioms Υ.

Consider an arbitrary state formula δ[t]. If Σ |= δ[t] then Σ ∪ {¬δ[t]} is inconsistent. By Lemma 17,
∆ ∪ {¬δ[t]} is inconsistent, hence ∆ |= δ[t]. This shows that Σ is free of implicit domain constraints.

Consider a state formula π[s]. If Σ |= Poss(A(~x), s, t) ⊃ π[s] then Σ |= πA[s] ⊃ π[s], where πA is the
right-hand side of the precondition axiom for A(~x). Hence, Σ∪{πA[s]∧¬π[s]} is inconsistent. By Lemma 17,
∆ ∪ {πA[s] ∧ ¬π[s]} is inconsistent, hence ∆ |= πA[s] ⊃ π[s], hence ∆ ∪ Π |= Poss(A(~x), s, t) ⊃ π[s]. This
shows that Σ is free of implicit preconditions.

Finally, consider an action A(~x) along with a state formula ε[t]. If Σ |= Poss(A(~x), s, t) ⊃ ε[t] then
Σ ∪ {πA[S]{t 7→ T } ∧ ¬ε[T ]} is inconsistent for any S, T of sort time. By Lemma 18, ∆[S] ∪ {πA[S]{t 7→
T }} ∪ ΥA[S, T ] ∪ {¬ε[T ]} is inconsistent, hence ∆[S] ∪ ΠA[S] ∪ ΥA[S, T ] |= Poss(A(~x), S, T ) ⊃ ε[T ]. This
shows that Σ is free of implicit effects.

We conclude our analysis by illustrating how the general method can be easily instantiated and applied
in order to verify independence in each of the specific approaches of the Situation-, Event-, and Fluent
Calculus.
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4.2.1. Modularity in the Situation Calculus

In Section 3.2.2 we have seen how a specific class of domain axiomatizations in the unifying action
calculus can be mapped onto successor state axioms. The converse translation of action theories in the
Situation Calculus consisting of domain constraints, precondition axioms, and basic successor state axioms
in the sense of [31] is straightforward: domain constraints are taken as they are, precondition axioms of the
form (42) are re-written into the form (35), and the successor state axioms (40) for all fluents F together
are mapped onto the effect axiom schema

Poss(a, s, t) ⊃ (∀f) [
∨

F (f = F (~u) ∧ (Γ+
F [s] ∨ Holds(f, s) ∧ ¬Γ−

F [s]) ⊃ Holds(f, t))]
∧
(∀f) [

∨

F (f = F (~u) ∧ (Γ−

F [s] ∨ ¬Holds(f, s) ∧ ¬Γ+
F [s]) ⊃ ¬Holds(f, t))]

The action variable a in this schema can then be instantiated by all actions of the domain in order to obtain
actual effect axioms in the unifying calculus. By definition, these axiomatizations are ramification-free, and
the foundational axioms of the Situation Calculus, (30), imply sequentiality according to Definition 5. Based
on this translation, the verification of the modularity conditions in Situation Calculus axiomatizations is
straightforward.

Example 6. (Continued) We have seen that the given axiomatization entails an implicit domain con-
straint. Indeed, independence condition (C3) is not entailed. To see why, take arbitrary time constants S

and T and consider the action Unschedule(j). Successor state axioms (47) determine an update formula
which is equivalent to

Υ1[S, T ] := [Holds(Job(m, i), T ) ≡ Holds(Job(m, i), S) ∧ i 6= j] ∧
[Holds(Free(m), T ) ≡ Holds(Job(m, j), S) ∨ Holds(Free(m), S)]

Along with
∆[S] := Holds(Free(n), S) ⊃ ¬(∃k)Holds(Job(n, k), S)

πUnschedule[S] := (∃m)Holds(Job(m, j), S)

this does not entail
∆[T ] := Holds(Free(n), T ) ⊃ ¬(∃k)Holds(Job(n, k), T )

To see why, consider an interpretation that satisfies

Holds(Job(M,J), S), Holds(Job(M, I), S), ¬Holds(Free(M), S)
¬Holds(Job(M,J), T ), Holds(Job(M, I), T ), Holds(Free(M), T )

It is easy to verify that this is a model for the conjunction ∆[S] ∧ πUnschedule[S] ∧ Υ1[S, T ]{i 7→ I, j 7→ J}
but not for ∆[T ].9 �

4.2.2. Modularity in the Event Calculus

In Section 3.1.2 we have seen how a specific class of domain axiomatizations in the unifying action calculus
can be mapped onto the simple Event Calculus. This translation can be easily reversed. The only required
generalization is to additionally axiomatize the special action Inert as in Example 3 to capture arbitrary
sequential narratives, based on an arbitrary linear time structure (like, e.g., the positive real numbers) and
where actions may not immediately follow each other. With regard to verifying modularity, it is easy to see
that the axioms for Inert (cf. (12) and (13)) satisfy the conditions (C1)–(C3).

Example 7. (Continued) We have seen that the given axiomatization entails an implicit precondition.
Indeed, independence condition (C2) is not entailed. To see why, take an arbitrary time constant S

9The reader may verify that (C3) is entailed, however, once the implicit domain constraint (48) is added.
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and consider the action Go(x, y). Initiation and termination axioms (52) determine effect formulas in the
unifying action calculus where

Γ+
1 [S] := f = At(y) ∨ Holds(f, S) ∧ f 6= At(x)

Γ−
1 [S] := f = At(x) ∨ ¬Holds(f, S) ∧ f 6= At(y)

Then Γ+
1 [S] in conjunction with

∆[S] := Holds(At(l1), S) ∧ Holds(At(l2), S) ⊃ l1 = l2
Φ1[S] := ⊤
πGo[S] := Holds(At(x), S)

does not entail ¬Γ−
1 [S]. This can be easily seen by an interpretation that satisfies x = y.10 �

4.2.3. Modularity in the Fluent Calculus

In Section 3.2.1 we have shown how basic Fluent Calculus theories can be mapped onto domain ax-
iomatizations in the unifying calculus. This mapping can be directly applied to verify modularity of these
theories with the help of our general method.

Example 8. (Continued) We have seen that the given axiomatization entails an implicit effect. Indeed,
independence condition (C3) is not entailed. To see why, take arbitrary time constants S and T and
consider the action Call(n). State update axiom (56) determines an effect formula in the unifying action
calculus where

Υ1[S, T ] := (∃m) (Holds(AtFloor(E1,m), S)∧
(f = AtFloor(E1, n) ∨ Holds(f, S) ∧ f 6= At(E1,m) ⊃ Holds(f, T )) ∧
(f = At(E1,m) ∨ ¬Holds(f, S) ∧ f 6= AtFloor(E1, n) ⊃ ¬Holds(f, T )) )

Υ2[S, T ] := (∃m) (Holds(AtFloor(E2,m), S)∧
(f = AtFloor(E2, n) ∨ Holds(f, S) ∧ f 6= At(E2,m) ⊃ Holds(f, T )) ∧
(f = At(E2,m) ∨ ¬Holds(f, S) ∧ f 6= AtFloor(E2,m) ⊃ ¬Holds(f, T )) )

For the instance {n 7→ 0}, Υ1[S, T ] along with

∆[S] := (∃!k)Holds(AtFloor(e, k), S) ∧ ¬Holds(AtFloor(E1, 0), S)
πCall[S] := 0 ≤ n ≤ 9 ∧ ¬(∃e)Holds(AtFloor(e, n), s)

implies Holds(At(E1, 0), T ). This, however, contradicts ∆[T ].11 �

5. Discussion

We have proposed a unifying action calculus which abstracts from a concrete time structure and a
specific solution to the Frame Problem and thus encompasses a variety of existing, specific languages for
axiomatizing action domains. This unifying approach can be used as an intermediary language to facilitate
translations of specific calculi into each other. We have exemplified this by obtaining two new results: a
characterization of ADL planning problems in the Event Calculus and an embedding of the full basic Fluent
Calculus into a variant of the Situation Calculus with nondeterministic successor state axioms. Generally
speaking, the use of an intermediary axiomatization has two major advantages. First, it makes explicit how
the specific solution to the Frame Problem in the input language determines the effects and non-effects of an
action. This often makes it easier to find an appropriate translation into a different solution to the Frame

10The reader may verify that (C2) is entailed, however, once the implicit precondition (53) is added.
11The reader may verify that (C3) is entailed, however, once the implicit effect (57) is incorporated into the state update

axiom.

23



Problem. As an example, the domain axiomatization we have obtained in Section 3.2.1 from a basic Fluent
Calculus theory not only gives a clear indication of how the effect axioms can be translated into successor
state axioms, it also illustrates very explicitly what extension of Reiter’s basic action theories is needed in
order to capture the various ways in which nondeterministic actions can be axiomatized by state update
axioms in the Fluent Calculus. Second, the prior translation of an input language into an intermediary
language should allow for a generic and uniform way of embedding the input formalism into different target
languages. The domain axiomatization we have obtained in Section 3.1.1 as a characterization for ADL
planning problems, for example, can be readily used to define mappings into approaches other than the
Event Calculus.

Among the variety of potential applications of inter-calculi translations, we consider the following ones
most important.

1. Translations can be used to prove that (a well-defined class of) a specific calculus can be formally
embedded in another calculus.

2. The use of an implementation of a calculus to solve problems given in a different input language requires
a prior translation; examples are the problem specification languages used for the Planning Competi-
tions [6] or the General Game Description Language used for the General Game Playing Contest [8].

3. In order to use a different platform to run knowledge-based agent programs written in languages like
GOLOG or FLUX, the background knowledge of the agent needs to be transformed into an appropriate
encoding.

In comparison to related work, much like the systematic assessment methods of [33] or the Action
Description Language A [7] and extensions thereof, our unifying calculus can be used to analyze the
relative expressiveness of different axiomatization techniques in comparison. The main difference is that the
former define a specific semantics for action domains rather than providing a purely logical axiomatization.
This implies that the assessments are always restricted to problem classes that can be defined within the
special semantics. For example, Action Description Language A has been translated into both successor
state axioms [16] and state update axioms [39]. These results can be combined into a translation from the
Fluent Calculus into the Situation Calculus and vice versa, but this translation is confined to domains that
can be expressed in A and therefore does not allow for a full embedding of basic Fluent Calculus theories
into the Situation Calculus.

In the second part of the paper, we have used the unifying calculus to develop a general method for ver-
ifying independence of domain constraints, preconditions, and effects in axiomatizations of action domains.
We have shown how this general method can be easily instantiated for various specific calculi. Existing
results on the problem of implicit dependencies are restricted to specific calculi and less general classes of
domains. In [30], it has been shown that precondition axioms and deterministic successor state axioms in
the Situation Calculus are always independent, provided that there are no domain constraints at all. In [15],
algorithms have been presented for inferring implicit domain constraints and preconditions from domain
axiomatizations given in propositional modal logic. A conceptually different approach has been pursued
in [27], where it has been shown how a particular class of domain constraints can be compiled into successor
state axioms (deterministic only). Incidentally, condition (C3) in our Definition 16 is already known in this
context as a way to ensure that, if satisfied by a given initial situation, the result of such a compilation allows
to ignore the domain constraints. In our context, however, this condition serves a different purpose: instead
of showing that, for specific initial situations, the given domain constraints are redundant, it shows that
no further domain constraints are entailed (independent of the initial situation). With regard to the Event
Calculus, it should be stressed that our result is restricted to sequential domains. However, our unifying
calculus can be readily used to express concurrent actions, simply by taking as the elements of the sort
action collections of (simultaneous or overlapping) actions. It remains an issue for future work to define a
concrete sound and complete mapping of domains with concurrent actions given, say, in the Event Calculus,
into our unifying calculus in which single actions may represent collections of actual actions, which would
then allow to apply our modularity conditions as they are.

For future work along a different line, our unifying action calculus can be readily used for comparing
and assessing action formalisms other than those considered in this paper, and to generalize the specific
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translations we have developed to more general classes of domain axiomatizations. Most notably, our
approach to abstract from concrete solutions to the Frame Problem should facilitate formal comparisons of
the many different existing solutions to the Ramification Problem, thus going beyond comparisons based on
specific example scenarios only.

With regard to the result in the second part of the paper, it would be worthwhile for the future to develop
a general system for the automatic verification of modularity. By extracting implicit domain constraints,
preconditions, and effects from failed attempts to prove the independence conditions, such a system could
assist knowledge engineers with the design of “good” axiomatizations. A different line of future work could
be the use of the unifying calculus as a method of abstraction for analyzing other problems of general interest
across specific calculi.
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