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Abstract

The AGM postulates for belief revision, augmented by the DP postulates for iter-
ated belief revision, provide widely accepted criteria for the design of operators by
which intelligent agents adapt their beliefs incrementally to new information. These
postulates alone, however, are too permissive: They support operators by which all
newly acquired information is canceled as soon as an agent learns a fact that con-
tradicts some of its current beliefs. In this paper, we present a formal analysis of the
deficiency of the standard postulates alone, and we show how to solve the problem
by an additional postulate of independence. We give a representation theorem for
this postulate and prove that it is compatible with AGM and DP.
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1 Introduction

The capability of gathering information about the world and revising its beliefs
based on the new information is crucial for an intelligent agent. Belief revision
therefore is a central topic in Artificial Intelligence. Technically, belief revision
is the process of changing the beliefs of an agent to accommodate new, more
precise, or more reliable evidence that is possibly inconsistent with the existing
beliefs.

The formal study of belief revision took as starting point the work of Al-
chourrón, Gärdenfors, and Makinson (AGM) during the first half of the 1980s
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2005b].
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[Alchourrón and Makinson, 1982; Alchourrón et al., 1985; Alchourrón and
Makinson, 1985]. The AGM framework studies idealized mathematical mod-
els of belief revision. Given an underlying logic language L, the beliefs of an
agent are represented by a set of sentences in L (known as belief set) which is
closed under logical consequence. New evidence is also a sentence in L, and a
belief revision operator incorporates the new evidence into the current belief
set to obtain a revised belief set. The authors of the original AGM framework
have developed their theory under two basic assumptions regarding the new
evidence: it is intended to describe facts of the static world; and it is more
reliable (hence prioritized in the revision process) than the prior beliefs. The
latter assumption is often referred to as primacy of update. The necessity and
ideas of distinguishing belief revision from belief update (suitable for a situa-
tion where the new evidence describes a change of the world) was first noticed
by Keller and Winslett [1985] and later on formalized in [Katsuno and Mendel-
zon, 1991a]. Belief revision where the new evidence is not prioritized, is a rel-
atively recent topic studied by many researchers [Fermé and Hansson, 1999;
Booth, 2001; Hansson, 1999; Delgrande et al., 2006]. In this paper, we will
concentrate on the problem of prioritized belief revision where iterations are
necessary.

In situations where the new evidence is consistent with the existing beliefs,
the two can just be merged; we call this mild revision. More interesting and
complicated are situations where the evidence conflicts with the prior beliefs,
in which case the agent needs to remove some of its currently held beliefs in
order to accommodate the new evidence. This kind of revision is referred to as
severe revision [Freund and Lehmann, 1994]. To provide general design criteria
for belief revision operators, a set of postulates has been developed [Alchourrón
et al., 1985]. As first argued by the AGM trio and later frequently repeated by
others [Freund and Lehmann, 1994; Darwiche and Pearl, 1997], the guiding
principle of the AGM postulates is that of economy of information, or minimal
change of belief sets, which means not to give up currently held beliefs and
not to generate new beliefs unless necessary. However, Rott [1999; 2000] has
recently pointed out that “it is a pure myth that minimal change principles
are the foundation of existing theories of belief revision, at least as far as the
AGM tradition is concerned”. His argument is mainly based on the fact that
so-called full meet revision [Alchourrón and Makinson, 1982] discards all prior
beliefs in a severe revision and at the same time satisfies all AGM postulates.
This implies that the AGM postulates are too weak to capture the principle
of minimal change.

For the incremental adaptation of beliefs, the AGM postulates proved to be
overly weak, too [Darwiche and Pearl, 1994; Darwiche and Pearl, 1997]. This
has led to the development of additional postulates for iterated belief revision
by Darwiche and Pearl (DP), among others (e.g., [Freund and Lehmann, 1994;
Lehmann, 1995; Boutilier, 1993]).
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Still, however, the AGM and DP postulates together are too permissive in that
they support belief revision operators which assume arbitrary dependencies
among the pieces of information which an agent acquires along its way. These
operators have a drastic effect when the agent makes an observation which
contradicts its currently held beliefs: The agent is forced to cancel everything
it has learned up to this point [Nayak et al., 1996a; Nayak et al., 2003]. In this
paper, we first give a formal analysis of this problem of implicit dependence,
and then we present, as a solution, an Independence postulate for iterated
belief revision. We give a representation theorem for our new postulate and
prove its consistency by defining a concrete belief revision operator. We also
contrast the Independence postulate to the so-called Recalcitrance postulate
of [Nayak et al., 1996a; Nayak et al., 2003] and argue that the latter is too
strict in that it rejects reasonable belief revision operators.

The rest of the paper is organized as follows. In the next section, we recall the
classical AGM approach in a propositional setting as formulated by [Katsuno
and Mendelzon, 1991b], followed by the approach of [Darwiche and Pearl, 1994]

for iterated belief revision. In Section 3, we formally analyze the problem of the
DP postulates to be overly permissive. In Section 4, we present an additional
postulate to overcome this deficiency, and we give a representation theorem for
the postulate along with a concrete revision operator. We conclude in Section 5
with a detailed comparison to related work. Proofs of the main results can be
found in the appendix.

2 Background

In this paper, we will deal with a propositional language L generated from a
finite set P of atomic propositions. The language is that of classical proposi-
tional logic, i.e., with the classical consequence relation ⊢. We say that two
sentences α and β are logically equivalent, written as α ≡ β, iff α ⊢ β
and β ⊢ α. As usual, a propositional interpretation (world) is a mapping
from P to {⊤,⊥}. The set of all interpretations is denoted by W. If an in-
terpretation w truth-functionally maps a sentence µ to ⊤, then w is called a
model of µ (denoted by w |= µ). Given a sentence µ, we denote by Mods(µ)
the set of all models of µ.

A total pre-order ≤ (possibly indexed) is a reflexive, transitive binary relation
s.t., either α ≤ β or β ≤ α holds for any α, β. The strict part of ≤ is denoted
by <, that is, α < β iff α ≤ β and β 6≤ α. As usual, α = β abbreviates α ≤ β
and β ≤ α. Given any set S and total pre-order ≤, we denote by min(S,≤)
the set of minimal elements of S wrt. ≤.
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2.1 KM Postulates

Katsuno and Mendelzon (KM) rephrased the AGM postulates for the propo-
sitional setting [Katsuno and Mendelzon, 1991b]. The beliefs of an agent are
represented by a sentence ψ in L. 2 Any new evidence is a sentence µ in L,
and the result of revising ψ with µ is also a sentence (denoted by ψ ∗µ) which
belongs to L. This is then the reformulation of the original AGM postulates:

(KM1) ψ ∗ µ ⊢ µ.
(KM2) If ψ ∧ µ is consistent, then ψ ∗ µ ≡ ψ ∧ µ.
(KM3) If µ is consistent, then ψ ∗ µ is also consistent.
(KM4) If ψ1 ≡ ψ2 and µ1 ≡ µ2, then ψ1 ∗ µ1 ≡ ψ2 ∗ µ2.
(KM5) (ψ ∗ µ) ∧ φ ⊢ ψ ∗ (µ ∧ φ).
(KM6) If (ψ ∗ µ) ∧ φ is satisfiable, then ψ ∗ (µ ∧ φ) ⊢ (ψ ∗ µ) ∧ φ.

Readers are referred to [Gärdenfors and Makinson, 1988] for the motivation
and interpretation of these postulates.

Katsuno and Mendelzon have given a representation theorem for Postulates
(KM1)–(KM6) wrt. a revision mechanism based on total pre-orders over pos-
sible worlds:

Definition 1 A function that maps each belief set ψ to a total pre-order ≤ψ

on W is called a faithful assignment over belief sets iff

• If w1, w2 |= ψ, then w1 =ψ w2.
• If w1 |= ψ and w2 6|= ψ, then w1 <ψ w2.
• If ψ ≡ φ, then ≤ψ=≤φ.

The intuitive meaning of w1 ≤ψ w2 is that w1 is at least as plausible as w2 from
the viewpoint of the agent who possesses the belief set ψ. The total pre-order
≤ψ is also called a faithful ranking wrt. ψ.

We particularly note that the last condition in Definition 1 says that faithful
rankings of logically equivalent belief sets must be identical. This essentially
prohibits the possibility that in different situations the agent has the same
belief set but with different preferences among the beliefs.

Theorem 1 [Katsuno and Mendelzon, 1991b] A revision operator ∗ satisfies
Postulates (KM1)–(KM6) iff there exists a faithful assignment that maps a

2 As L is assumed finite, any belief set can be represented as a sentence (modulo
logical consequence). In this paper, we therefore do not distinguish belief sets from
sentences.
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belief set ψ to a total pre-order ≤ψ s.t.,

Mods(ψ ∗ µ) = min(Mods(µ),≤ψ)

Although the KM postulates were meant to be a reformulation of the AGM
postulates for propositional logics, there is an important difference: The AGM
postulates do not constrain operations wrt. varying belief sets [Alchourrón
et al., 1985], whereas Postulate (KM4) stipulates that logically equivalent
belief sets revised by logically equivalent sentences must result in logically
equivalent (new) belief sets. This essentially implies that a revision operator ∗
is a function on belief sets (modulo logical equivalence). This, in turn, is highly
controversial among the belief revisionists; in fact, it is commonly believed
that this amounts to too excessive a restriction on the conditions of a faithful
assignment over belief sets [Darwiche and Pearl, 1997; Hansson, 1998; Nayak
et al., 2003; Freund and Lehmann, 1994].

We follow this consensus and argue that for a faithful reformulation of the
AGM postulates, Postulate (KM4) should be weakened as follows:

(KM4′) If µ1 ≡ µ2, then ψ ∗ µ1 ≡ ψ ∗ µ2.

The principle of minimal change is often argued to be the foundation of the
AGM postulates. Indeed, Postulate (KM2) says that in the case of a mild
revision the agent must retain both the prior beliefs and the new evidence.
But how about the case of severe revisions? The following finding unveils
the striking fact that the AGM postulates put no constraints at all on the
retention of prior beliefs in the case of a severe revision. So-called full meet
revision [Alchourrón and Makinson, 1982], denoted by ∗a, is a revision operator
which completely “forgets” the prior beliefs when they contradict the new
evidence:

ψ ∗a µ =











ψ ∧ µ if ψ 0 ¬µ

µ otherwise
(1)

Full meet revision is also called amnesic revision by [Rott, 2000]. Despite its
radical behavior, amnesic revision perfectly satisfies all of (KM1)–(KM6) [Al-
chourrón and Makinson, 1982]. Consequently, in order to sufficiently impose
the principle of minimal change, the KM postulates must be strengthened.
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2.2 DP Framework

As proposed by many researchers [Gärdenfors and Makinson, 1988; Spohn,
1988], a general belief revision operator should exploit some kind of extra-
logical information concerning the preference over different beliefs to deter-
mine the revision strategy. In particular, this preference information should
uniquely determine a set of conditional beliefs : An agent is said to hold a
conditional belief α ≫ β (with α, β sentences in L) precisely when it will
believe β after a revision with α [Gärdenfors, 1988; Boutilier, 1993]. The Triv-
iality Theorem of [Gärdenfors and Makinson, 1988] shows that, when using
the AGM postulates, then it is improper to include conditional beliefs into
the belief sets. As a consequence, we need to distinguish a belief set (referred
to as propositional beliefs) from a belief state (also called epistemic state).
The latter contains, in addition to its belief set, the conditional beliefs which
determine the revision strategy. In concrete constructions of belief revision
operators, this extra-logic preference information could take the form of a re-
lation over all possible worlds (as in Definition 1), or a relation over the set of
all sentences [Gärdenfors and Makinson, 1988], or a relation over all subsets
of the belief set [Alchourrón et al., 1985].

Darwiche and Pearl [1997] have suggested to make this idea explicit by re-
garding a belief revision operator as a function on belief states (rather than
on belief sets), that is, a function which maps a prior belief state and new
evidence to a revised belief state. This has resulted in Postulates (R*1)–(R*6)
shown below. From a pragmatic point of view, it is very important that a
revision operator delivers a revised belief state instead of a belief set, because
only in this way the revision operator can be iterated when another piece
of new evidence arrives. This also conforms with the criterion of categorial
matching [Hansson, 2003].

As in [Darwiche and Pearl, 1997], for the sake of simplicity we will abuse
notation by using interchangeably a belief state Ψ and its belief set Bel(Ψ).
For example, Ψ and Ψ∗µ in Postulate (R*1) refer, respectively, to the current
belief state and to the posterior belief state, while Ψ ∗µ ⊢ µ is just shorthand
for Bel(Ψ ∗ µ) ⊢ µ. The following are the modified KM postulates for revision
operators on belief states:

(R*1) Ψ ∗ µ ⊢ µ.
(R*2) If Ψ ∧ µ is consistent, then Ψ ∗ µ ≡ Ψ ∧ µ.
(R*3) If µ is consistent, then Ψ ∗ µ is also consistent.
(R*4) If µ1 ≡ µ2, then Ψ ∗ µ1 ≡ Ψ ∗ µ2.

3

3 The original version of (R*4) in [Darwiche and Pearl, 1997] is as follows:
If Ψ1 = Ψ2 and µ1 ≡ µ2, then Ψ1 ∗ µ1 ≡ Ψ2 ∗ µ2

where Ψ1 = Ψ2 means Ψ1 and Ψ2 are equal. However, Darwiche and Pearl have not
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(R*5) (Ψ ∗ µ) ∧ φ ⊢ Ψ ∗ (µ ∧ φ).
(R*6) If (Ψ ∗ µ) ∧ φ is satisfiable, then Ψ ∗ (µ ∧ φ) ⊢ (Ψ ∗ µ) ∧ φ.

It is easy to observe that these postulates only put constraints on the change of
the logical part (propositional beliefs) of the belief state, and those constraints
are exactly the same as imposed by the original AGM postulates. Therefore,
we consider the modified KM postulates (R*1)–(R*6), which are sometimes
referred to as a weakening of the AGM postulates [Freund and Lehmann, 1994;
Nayak et al., 2003], to be in fact a proper interpretation of them.

In a way symmetric to Theorem 1, Darwiche and Pearl have given a represen-
tation theorem for Postulates (R*1)–(R*6):

Definition 2 A function that maps each belief state Ψ to a total pre-order
≤Ψ on W is called a faithful assignment over belief states iff

• If w1, w2 |= Ψ, then w1 =Ψ w2.
• If w1 |= Ψ and w2 6|= Ψ, then w1 <Ψ w2.

Note that the conditions for a faithful assignment over belief states are much
weaker than those for a faithful assignment over belief sets, since logically
equivalent belief sets now are allowed to have distinct faithful rankings.

Theorem 2 [Darwiche and Pearl, 1997] A revision operator ∗ satisfies Pos-
tulates (R*1)–(R*6) iff there exists a faithful assignment that maps a belief
state Ψ to a total pre-order ≤Ψ such that

Mods(Ψ ∗ µ) = min(Mods(µ),≤Ψ)

According to the above theorem, for any revision operator ∗ (that satisfies
Postulates (R*1)–(R*6)) there exists at least one faithful assignment over
belief states for which the specified condition holds. In general, there could be
more than one such assignment; however, it is not difficult to see that if L is
finite then this faithful assignment must be unique. In the sequel, we will call
this the faithful assignment corresponding to ∗.

Theorem 2 only says which models of the new propositional beliefs are ob-
tained after a single revision. In order to allow for successive revisions, in each
revision step it must also be fully specified how the conditional beliefs are to
be modified. Following the principle of economy of information, some restric-
tions should be imposed on the change of conditional beliefs, too. By concrete
counterexamples, Darwiche and Pearl have shown that the KM postulates

given an explicit definition of the notion of a belief state, let alone a definition of
two belief states being equal. This is the reason why we have deliberately refrained
from using the equality and reformulated this postulate for the sake of precisison.
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alone are too weak to adequately characterize iterated belief revision, because
they support unreasonable revision behaviors [Darwiche and Pearl, 1994]. To
overcome this deficiency, they have proposed these four additional postulates
[Darwiche and Pearl, 1997]:

(C1) If β ⊢ µ, then (Ψ ∗ µ) ∗ β ≡ Ψ ∗ β.
(C2) If β ⊢ ¬µ, then (Ψ ∗ µ) ∗ β ≡ Ψ ∗ β.
(C3) If Ψ ∗ β ⊢ µ, then (Ψ ∗ µ) ∗ β ⊢ µ.
(C4) If Ψ ∗ β 0 ¬µ, then (Ψ ∗ µ) ∗ β 0 ¬µ.

Motivation and interpretation for these postulates can be found in [Darwiche
and Pearl, 1994; Darwiche and Pearl, 1997].

To provide formal justifications, Darwiche and Pearl have given an extension
of the above representation theorem for Postulates (C1)–(C4):

Theorem 3 [Darwiche and Pearl, 1997] Suppose that a revision operator sat-
isfies Postulates (R*1)–(R*6). The operator satisfies Postulates (C1)–(C4) iff
the operator and its corresponding faithful assignment satisfy:

(CR1) If w1, w2 |= µ, then w1 ≤Ψ w2 iff w1 ≤Ψ∗µ w2.
(CR2) If w1, w2 6|= µ, then w1 ≤Ψ w2 iff w1 ≤Ψ∗µ w2.
(CR3) If w1 |= µ and w2 6|= µ, then w1 <Ψ w2 implies w1 <Ψ∗µ w2.
(CR4) If w1 |= µ and w2 6|= µ, then w1 ≤Ψ w2 implies w1 ≤Ψ∗µ w2.

This theorem gives an elegant characterization of the seemingly natural con-
straints that the DP postulates impose on the change of the conditional beliefs:
When Ψ is revised by µ, Conditions (CR1) and (CR2) require not to change
the relative plausibility ordering of µ-worlds (¬µ-worlds, respectively); Condi-
tions (CR3) and (CR4) require that if a µ-world w1 is (strictly) more plausible
than a ¬µ-world w2, then w1 continues to be (strictly) more plausible than
w2.

In addition, [Darwiche and Pearl, 1997] have shown that their four postulates
are consistent with the (modified) KM postulates. They did so by defining a
concrete revision operator which satisfies both (R*1)–(R*6) and (C1)–(C4).

Theorem 3 implies that the DP postulates together impose constraints on
the change of conditional beliefs. The following result shows that it is in fact
only Postulate (C2) which puts additional constraints on the retention of
propositional beliefs.

Proposition 1 Amnesic revision ∗a satisfies (C1), (C3), and (C4), but vio-
lates (C2).

To our knowledge, this observation has not been formalized elsewhere before.
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2.3 Two Radical Cases

A different approach to studying iterated belief revision is by defining con-
crete revision operators. For instance, [Boutilier, 1993] has proposed a specific
revision operator (known as natural revision) which satisfies the modified KM
postulates and also the following one:

(CB) If Ψ ∗ µ ⊢ ¬β, then (Ψ ∗ µ) ∗ β ≡ Ψ ∗ β.

It is easy to see that the DP postulates are a weakening of Postulate (CB), in
the sense Postulate (CB) implies all of the DP postulates but not vice versa.

As shown by [Darwiche and Pearl, 1997; Boutilier, 1996], Postulate (CB) im-
poses absolute minimization on the change of conditional beliefs:

Theorem 4 Suppose that a revision operator satisfies Postulates (R*1)–(R*6).
The operator satisfies Postulate (CB) iff the operator and its corresponding
faithful assignment satisfy

(CBR) If w1, w2 |= ¬(Ψ ∗ µ), then w1 ≤Ψ w2 iff w1 ≤Ψ∗µ w2

Note that now w2, w2 |= Ψ ∗ µ is the only case where the relative ordering of
w1, w2 in Ψ ∗ µ is not determined, since ≤Ψ∗µ must satisfy the conditions of
Definition 2. Therefore, Condition (CBR) imposes absolute minimization on
the change of conditional beliefs permitted by the modified KM postulates.
At first glance, therefore, it seems that Condition (CBR) complies with the
principle of economy of information.

However, the following example of Darwiche and Pearl shows that Postu-
late (CB) is too radical, since a severe revision forces to cancel all previous
evidences under any circumstances, which is usually not desirable.

Example 1 We encounter a strange new animal and it appears to be a bird,
so we believe the animal is a bird. As it comes closer to our hiding place, we
see clearly that the animal is red, so we believe that it is a red bird. To remove
further doubts about the animal birdhood, we call in a bird expert who takes
it for examination and concludes that it is not really a bird but some sort of
mammal. The question now is whether we should still believe that the animal
is red.

As argued in [Darwiche and Pearl, 1997], we have every reason to keep our
belief that the animal is red, since birdhood and color are not correlated.
However, natural revision requires us to give up the belief of the animal’s
color: According to Postulate (CB), from bird∗red ⊢ ¬(¬bird) it follows that
(bird∗red)∗¬bird ≡ bird∗¬bird .
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The above discussion suggests that the most conservative way of changing
conditional beliefs is overly strict and not desirable in general.

While natural revision is the most conservative of all possible DP revision op-
erators, another revision operator, called lexicographic revision (with “naked
evidence”) [Nayak, 1994], sits exactly on the opposite side of the spectrum.
Lexicographic revision satisfies, in addition to Postulate (C1) and (C2), an-
other so-called postulate of Recalcitrance:

(Rec) If β 0 ¬µ, then (Ψ ∗ µ) ∗ β ⊢ µ.

Semantically, Postulate (Rec) corresponds to the following condition [Nayak
et al., 2003]:

(RecR) If w1 |= µ and w2 |= ¬µ, then w1 <Ψ∗µ w2.

According to (RecR), all possible worlds satisfying the new evidence become
more reliable than those falsifying the new evidence, hence (Rec) is also said to
impose the principle of strong primacy of update [Konieczny and Pérez, 2000],
which is arguably only suitable when the agent has full confidence in the
new evidence. Based on its semantic characterization (i.e., Conditions (CR1),
(CR2) and (RecR)), it it easy to see that lexicographic revision is the least
conservative of all possible DP revision operators, effecting most changes in
the relative ordering of worlds permitted by the KM and DP postulates [Booth
et al., 2005]. In the next section, we will give a formal analysis of the problems
of the DP postulates in general and the problems of the greatest conservatism
in particular. The discussion on the problems of the least conservatism is
postponed to Section 5.

3 The Problem of Implicit Dependence

Although most counter-examples in [Darwiche and Pearl, 1997] against the
KM postulates are solved by adding the DP postulates, several open problems
remain. Specifically, the DP postulates are consistent with (CB), hence they
do not block counter-examples against natural revision.

Recall Example 1, where the DP postulates, in being compatible with (CB),
are not strong enough to guarantee that the belief of the animal’s color is
retained. This can be intuitively explained as follows: After observing the
animal’s color, we are actually acquiring a new conditional belief as a side-
effect, namely, that the animal is red even if it were not a bird, that is, ¬bird ≫
red . But none of the DP postulates enforces the acquisition of conditional
beliefs. In the sequel, we first give a formal analysis of this weakness of the
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DP postulates, and then we present an additional postulate by which this
problem is overcome.

It is well known (see, e.g., [Gärdenfors and Makinson, 1988]) that if a belief
state Ψ suffices to uniquely determine a revision strategy that satisfies the
AGM (or the KM) postulates, then the belief state determines a unique, total
pre-order ≤Bel(Ψ) (known as epistemic entrenchment) over L which satisfies
the following conditions:

(EE1) If α ≤Bel(Ψ) β and β ≤Bel(Ψ) γ, then α ≤Bel(Ψ) γ.
(EE2) If α ⊢ β, then α ≤Bel(Ψ) β.
(EE3) α ≤Bel(Ψ) α ∧ β or β ≤Bel(Ψ) α ∧ β, for any α and β.
(EE4) If Ψ is consistent, then Ψ 0 α precisely when α ≤Bel(Ψ) β for all β.
(EE5) If β ≤Bel(Ψ) α for all β, then ⊢ α.

If α <Bel(Ψ) β, then we say that the degree of the belief in β is higher than the
degree of the belief in α (wrt. Ψ).

Given an epistemic entrenchment, the corresponding belief revision operator
is defined by the following condition: For any β,

(C*) Ψ ∗ µ ⊢ β if either ⊢ ¬µ or ¬µ <Bel(Ψ) ¬µ ∨ β.

Other forms of total pre-orderings on L have been proposed, e.g., [Rott, 1991;
Williams, 1992]. In fact, a recent result of Rott [2003] shows that such kind
of pre-orderings exist even if the revision operator satisfies only (R*1), (R*3),
and (R*4). All of these orderings require extra-logical information, that is,
they cannot be determined by pure logical relations among the sentences. In
the following, we focus on pre-orderings given by epistemic entrenchments;
however, our analysis does not depend on this particular choice and can be
easily adapted to the other approaches just mentioned.

To begin with, we define the notion of dependence between sentences wrt. a
belief state as follows [Fariñas del Cerro and Herzig, 1996]:

Definition 3 A sentence β depends on another sentence µ in belief state Ψ
precisely when Ψ ⊢ β and Ψ∗¬µ 0 β. Two sentences µ, β are called dependent
in Ψ if either µ depends on β or β depends on µ in Ψ.

Consider, now, a (non-tautological) new evidence µ. Whenever Ψ ⊢ β, condi-
tion (C*) implies that if µ 6<Bel(Ψ) µ∨β, then β is (implicitly) dependent on µ
in Ψ. This kind of dependency could be problematic. In particular, it is pos-
sible that two initially independent sentences become, undesirably, dependent
after a revision step. In Example 1, for instance, red becomes dependent on
bird after revising by red when natural revision is used.
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The problem of natural revision is that it assigns the lowest degree of belief to a
new evidence without asserting conditional beliefs for independence. Thus the
new evidence depends on all other beliefs which survive the revision process.
This explains why severe revision necessarily cancels all previous evidences.
Of course, this is not merely a problem of natural revision: In the revised
belief state Ψ ∗ µ, regardless of the belief degree of the new evidence µ, a
belief β (logically unrelated to µ) with a lower belief degree will depend on µ
unless the revision operator explicitly asserts the condition µ <Bel(Ψ∗µ) µ ∨ β.
In other words, a rational revision operator has to bring about explicitly the
conditional belief ¬µ ≫ β. Symmetrically, a rational revision operator also
should take care of the implicit dependence of the new evidence on other
beliefs with higher degrees.

4 A Postulate of Independence

The analysis in the previous section shows that in order to overcome the
problem of implicit dependence, the revision operator must explicitly assert
some conditional beliefs. It is easy to see that the DP postulates only require
the preservation of conditional beliefs when a belief state Ψ is revised with
µ: Postulates (C1) and (C2) neither require to add nor to remove certain
conditional beliefs; Postulate (C3) requires to retain the conditional belief β ≫
µ; finally, Postulate (C4) requires not to obtain the new conditional belief β ≫
¬µ. Since none of the DP postulates stipulates the addition of independence
assumptions, a new postulates is necessary to avoid undesired dependencies.

As already mentioned, the revision process may introduce undesirable depen-
dencies in both directions. That is to say, it could be that the new evidence
becomes dependent on existing beliefs, or that it is the other way round. Prior
to stating the new postulate, we show that the DP postulates impose some
constraints on the retention of the independence information in one direction.
In the presence of the KM postulates, Postulate (C2) implies the following
(since (Ψ ∗ ¬µ) ≡ (Ψ ∗ µ) ∗ ¬µ):

(WC2) If Ψ ∗ ¬µ ⊢ β, then (Ψ ∗ µ)∗¬µ ⊢ β.

This essentially means that if β is not dependent on the new evidence µ in Ψ,
then it also does not depend on µ in Ψ ∗ µ.

In order to ensure the explicit assertion of independence information in the
other direction, we propose the following postulate of Independence (weak
version) dual to (WC2):

(WInd) If Ψ∗¬β ⊢ µ, then (Ψ∗µ)∗¬β ⊢ µ.
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Suppose Ψ ⊢ µ, then Postulate (WInd) guarantees that if some new infor-
mation µ does not depend on β in Ψ, then it also does not depend on β in
Ψ ∗ µ.

As it is too much to require that the new information µ is already believed (i.e,
Ψ ⊢ µ), we propose the following postulate of Independence (strong version):

(Ind) If Ψ∗¬β 0 ¬µ then (Ψ∗µ)∗¬β ⊢ µ.

It is not difficult to see that (Ind) is a strengthening of (WInd). The new
postulate essentially says that if the conditional belief ¬β ≫ ¬µ is not held
in Ψ, then µ does not depend on β in Ψ ∗ µ.

Postulate (Ind) is sufficient to overcome the problem of implicit dependence, as
can be shown by reconsidering Example 1. According to (Ind), (bird∗red)∗¬bird ⊢
red , given that bird∗¬bird 0 ¬red . This shows that the new postulate blocks
unreasonable behaviors which are admitted by the DP postulates. In Section 5,
we will also argue that Postulate (Ind) is not overly strict.

4.1 A Representation Theorem

In order to formally justify our new postulate, we will first provide a repre-
sentation theorem along the line of Theorem 3. Thereafter, we will design a
concrete belief revision operator which satisfies (Ind).

Theorem 5 Suppose that a revision operator satisfies Postulates (R*1)–(R*6).
The operator satisfies Postulate (Ind) iff the operator and its corresponding
faithful assignment satisfy:

(IndR) If w1 |= µ and w2 |= ¬µ, then w1 ≤Ψ w2 implies w1 <Ψ∗µ w2.

The above theorems shows that Postulate (Ind) is quite natural and not overly
constrained: Condition (IndR) requires that a world w1 conforming with the
new evidence becomes more plausible than a world w2 violating the new evi-
dence only if w1 was at least as plausible as w2.

An immediate consequence of Theorem 3 and 5 is that Postulate (Ind) implies
both (C3) and (C4).

Proposition 2 Suppose that a revision operator satisfies Postulates (R*1)–
(R*6). If the operator satisfies Postulate (Ind), then it also satisfies Postu-
lates (C3) and (C4).
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4.2 An OCF-based Iterated Revision Operator

We suggest to use the modified KM postulates along with Postulates (C1),
(C2), and (Ind) to govern iterated belief revision. To show that these postu-
lates together are consistent, we present a concrete revision operator which
satisfies all of them. The operator is a modification of Spohn’s proposal of
revising ordinal conditional functions [Spohn, 1988], which can be viewed as a
qualitative version of Jeffrey’s Rule of probabilistic conditioning [Goldszmidt,
1992].

Originally, an ordinal conditional function (OCF) has been defined as a map-
ping k from W to the class of ordinals. As in [Spohn, 1991], for the sake of
simplicity we take the signature of an OCF k as W → N, where k(w) is called
the rank of w. Intuitively, the rank of a world represents its degree of implausi-
bility, that is to say, the lower its rank, the more plausible is a world. An OCF
encodes both a belief set and the conditional beliefs. The belief set Bel(k) is
the set of sentences which hold in all worlds of rank 0:

Mods(Bel(k)) = {w|k(w) = 0} (2)

From now on, we use an OCF and its belief set interchangeably; e.g., µ ∈ k
means µ ∈ Bel(k), and k ∧ µ denotes

∧

Bel(k) ∧ µ.

Given an OCF k, we can induce a ranking of sentences as follows:

k(µ) =











∞ if ⊢ µ

min{k(w) |w |= ¬µ} otherwise
(3)

Put in words, the rank of a sentence is the lowest rank of a world in which
the sentence does not hold. 4 Hence, the higher the rank of a sentence, the
firmer the belief in it, and the belief set consists of sentences with rank greater
than 0. In fact, it is not hard to see that an OCF k determines an epistemic
entrenchment as follows:

α ≤k β iff k(α) ≤ k(β) (4)

Proposition 3 Given an OCF k, the binary relation ≤k defined by (4) sat-
isfies (EE1)–(EE5).

By a slight modification of Spohn’s Conditionalization, we now define a revi-
sion operator which we call reinforcement revision operator. Like Condition-

4 In Spohn’s original proposal, the rank of a sentence is the lowest rank of a world
in which it is true. So the rank of β there is equal to k(¬β) here.
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alization, reinforcement revision allows to assign different evidence degrees to
new evidences; standard KM/DP revision is easily obtained as a special case
by using a fixed value in all iterations [Darwiche and Pearl, 1997]. An OCF k
is revised according to new evidence µ with evidence degree m > 0 as follows:

(k∗µ.m)(w) =











k(w) − k(¬µ) ifw |= µ

k(w) +m otherwise
(5)

Reinforcement revision is distinct from Spohn’s Conditionalization [Spohn,
1988] in three aspects. First of all, it is merely a revision operator, whereas
Conditionalization defines both a revision and a contraction operator (when
the degree of the new information is 0). Secondly, in reinforcement revision
the rank of the new evidence in the revised OCF is the sum of its old rank
and the evidence degree, whereas in Conditionalization the rank of the new
evidence is just its evidence degree. The last, and crucial, difference is that
Conditionalization does not satisfy Postulate (Ind).

Assuming the same evidence degree for any new information, satisfiability of
the KM postulates along with Postulates (C1), (C2), and (Ind) by reinforce-
ment revision operator is a direct consequence of Theorem 2, 3, and 5.

Theorem 6 Assume a fixed evidence degree for any new information. Re-
inforcement revision satisfies all modified KM postulates, DP postulates, and
Postulate (Ind).

A stronger result shows that all postulates are still satisfied in the general
case, where the evidence degrees varies in the course of iterated revision. To
begin with, we have the following:

Theorem 7 For any m > 0, reinforcement revision satisfies all KM postu-
lates (R*1)–(R*6), where Bel(Ψ) and Ψ ∗ µ are, respectively, identified with
∧

Bel(k) and k∗µ,m.

To show the validity of the remaining postulates (in case of varying evidence
degrees), we need the following lemma, which fully characterizes the change
of belief degrees of non-tautological sentences.

Lemma 1 Let k be an arbitrary OCF and µ a new evidence with degree m,
then for any non-tautological sentence β,

k∗µ,m(β) =



























k(β) +m if ⊢ µ ⊃ β

k(µ ⊃ β) − k(¬µ) else if k(µ ⊃ β) = k(β)

min(k(µ ⊃ β) − k(¬µ), k(β) +m) otherwise
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As a direct consequence of Lemma 1, it can be seen that our reinforcement re-
vision operator has indeed a reinforcement effect, that is, the evidence degrees
of the new information are accumulated.

Proposition 4 Let k be an arbitrary OCF and µ a new non-tautological evi-
dence with degree m, then

k∗µ,m(µ) = k(µ) +m

From a pragmatic point of view, this is a desirable property in particular for
domains where several independent information sources provide new informa-
tion. In this case, it is appropriate to sum up the evidence degrees of the same
information from different sources.

Finally, with the help of Lemma 1, we are able to prove that reinforcement
revision satisfies (C1), (C2), and (Ind), regardless of evidence degrees.

Theorem 8 For arbitrary m1, m2 > 0, reinforcement revision satisfies the
following conditions: 5

(EC1) If α ⊢ µ, then (k∗µ,m1
)∗α,m2

≡ k∗α,m2
.

(EC2) If α ⊢ ¬µ, then (k∗µ,m1
)∗α,m2

≡ k∗α,m2
.

(EInd) If there exists m such that k∗¬β,m 0 ¬µ, then (k∗µ,m1
)∗¬β,m2

⊢ µ.

Theorem 7 and 8 show that Postulate (Ind) is consistent with the KM and DP
postulates. On the other hand, (Ind) does not follow from these postulates, as
can be seen by the fact that (Ind) is incompatible with (CB), the postulate
that characterizes natural revision.

It is worth mentioning that revision operators based on OCFs are particu-
larly suitable for implementations of belief revision. For instance, in [Jin and
Thielscher, 2004] we have presented a method (and its implementation) for the
revision of belief bases which is equivalent to reinforcement revision. Moreover,
we have shown that the complexity of reinforcement revision is lower than that
of most well-known operators [Jin and Thielscher, 2005a].

5 Related Work and Conclusion

We have suggested to use the modified KM postulates along with Postu-
lates (C1), (C2), and (Ind) to govern iterated belief revision, that is to say,

5 Note that, as before, we abuse notation by simply writing k∗
µ,m instead of

∧

Bel(k∗
µ,m) etc.
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any rational iterated revision operator should satisfy all of these postulates.
In the belief revision community there is, however, an ongoing controversy
on what the proper framework for studying iterated belief revision should be.
As in Darwiche and Pearl’s original work [1994], revision operators are most
commonly viewed as binary functions which map a belief set and the new
information to the revised belief set. This is problematic in two aspects. First
of all, the revision operators studied in the AGM theory are local in the sense
that a fixed belief set is assumed. Such revision operators are more appropri-
ately considered as unary functions, which map the new information µ to a
revised belief set K∗µ, with the understanding that K is taken to be the back-
ground knowledge [Rott, 1999]. Secondly, the extra-logical preference informa-
tion should play a role in the revision process. Based on the characterization
of revision operators as unary functions, [Nayak et al., 2003] have proposed to
view belief revision as dynamic, in the sense that the operator itself (i.e., the
revision policy) evolves after each revision by taking the revised belief set as
the new background knowledge. While theoretically sound, the idea of dynamic
revision is technically quite confusing in the sense that realizing a dynamic
revision seems like devising an algorithm which evolves after each run. Most
belief revisionists maintain that (iterated) revision operators should be func-
tions on belief states [Lehmann, 1995; Rott, 1999; Darwiche and Pearl, 1994;
Williams, 1994; Konieczny and Pérez, 2000], although there is no consensus
on what is a belief state.

Furthermore, while Postulate (C1) is almost universally accepted, Postulate
(C2) seems to be more problematic. In fact, it is mainly different attitudes to-
wards Postulate (C2) which provoke the dispute over the framework of iterated
belief revision. In defense of our framework, we argue that, according to the
semantical characterization (Conditions (CR1) and (CR2)), Postulate (C2)
seems just as reasonable as Postulate (C1). If being informed about µ does
not change the relative plausibility ordering of µ-worlds, why should the rela-
tive ordering of ¬µ-worlds be changed? This idea is also supported by Spohn,
who argues that it is only reasonable to change the relative ordering between
µ-worlds and ¬µ-worlds [Spohn, 1988].

In the sequel, we will first give a detailed comparison of our framework with
the most prominent existing approaches to iterated revision. Thereafter, we
will discuss the problems of least conservatism as promised in Section 2.3.

5.1 Freund and Lehmann’s Proposals

Freud and Lehmann were the first to point out that Postulate (C2) is inconsis-
tent with the original KM postulates [Freund and Lehmann, 1994]. To avoid
the inconsistency, they have suggested to replace the DP postulates by the
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so-called minimal influence postulate:

(MinInf) If Ψ1 ⊢ ¬µ and Ψ2 ⊢ ¬µ, then Ψ1 ∗ µ ≡ Ψ2 ∗ µ.

According to (MinInf), the revision Ψ∗µ does not depend on Ψ at all in the case
of a severe revision. This is of course a very strong restriction, which violates
the intuition that the prior beliefs should play a major role. Furthermore, in
the presence of the AGM postulates, (MinInf) implies (C1), (C3), (C4) and
the following weakening of (C2):

(C2′) If Ψ ⊢ ¬β and β ⊢ ¬µ, then (Ψ ∗ µ) ∗ β ≡ Ψ ∗ β

Strong as it is, Postulate (MinInf) is, on the other hand, too weak to rule out
amnesic revision. Moreover, from the fact that the modified KM postulates
are consistent with (C2), it follows that the inconsistency of (C2) with regard
to the original KM postulates is due to the assumption the latter made on
the signature of revision operators (i.e., that they are functions on belief sets).
As already discussed, this assumption is not accepted, if not denied, by many
researchers. Therefore, the proposal of (MinInf) is in some sense not well-
supported.

A conclusion Freund and Lehmann have drawn is that the AGM framework is
not the right one in which to study iterated revision. In a later work, Lehmann
therefore has proposed an alternative approach to iterated revision, in which a
belief state Ψ is a finite sequence of consistent (propositional) sentences 〈β1 :
. . . : βn〉 (the revision history of the agent) [Lehmann, 1995]. In Lehmann’s
framework, the iterated revision operator is trivial: Ψ ∗ µ is simply defined as
the concatenation 〈Ψ : µ〉 of Ψ and µ. Similarly, we might denote 〈Ψ1 : Ψ2〉
by Ψ1 ∗Ψ2. What seems more difficult to define, however, is a mapping “Bel”
from a belief state to its belief set. For this purpose, Lehmann has proposed
the following set of postulates:

(I1) Bel(Ψ) is consistent.
(I2) µ ∈ Bel(Ψ ∗ µ).
(I3) If β ∈ Bel(Ψ ∗ µ), then µ ⊃ β ∈ Bel(Ψ).
(I4) If µ ∈ Bel(Ψ), then Ψ ∗ Ψ1 ≡ (Ψ ∗ µ) ∗ Ψ1.
(I5) If β ⊢ µ, then ((Ψ ∗ µ) ∗ β) ∗ Ψ1 ≡ (Ψ ∗ β) ∗ Ψ1.
(I6) If ¬β /∈ Bel(Ψ ∗ µ), then ((Ψ ∗ µ) ∗ β) ∗Ψ1 ≡ ((Ψ ∗ µ) ∗ µ ∧ β) ∗Ψ1.
(I7) Bel((Ψ ∗ ¬β) ∗ β) ⊆ Bel(Ψ) + β.

Readers are referred to [Lehmann, 1995] for the relation between Lehmann’s
postulates and the AGM postulates. It is worth to mention that Postulate (I5)
is in fact just an adaptation of Postulate (C1).

To provide a constructive model, Lehmann has shown that his postulates
characterize the so-called widening ranked revision. A widening ranked model
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is a function λ which maps an ordinal to a non-empty subset of W s.t.,

(1) for any n,m, if n ≤ m, then λ(n) ⊆ λ(m), and
(2) for any w ∈ W, there exists n with w ∈ λ(n).

Given a widening ranked model λ, we can inductively define a rank r(Ψ) and
a set of worlds p(Ψ) for any belief state Ψ:

• r(〈〉) = 0 and p(〈〉) = λ(0), and
• r(〈Ψ : µ〉) = mino(Ψ, µ) and p(〈Ψ : µ〉) = λ(r(〈Ψ : µ〉)) ∩ [µ],

where mino(Ψ, µ) is the minimal ordinal n s.t., n ≥ r(Ψ) and λ(n) ∩ [µ] 6= ∅.

The widening ranked revision (thus, essentially, the mapping Bel) is then
defined as follows:

Mods(Ψ ∗ µ) = p(〈Ψ : µ〉)

Lehmann has shown that the widening ranked revision generated from a
widening ranked model satisfies Postulates (I1)-(I7). Conversely, any revision
operator that satisfies Postulates (I1)-(I7) can be constructed as widening
ranked revision. A major problem with widening ranked revision is that it
is based on a fixed widening ranked model which is external to the agent’s
beliefs. Therefore, the agent is supposed to adhere to the same revision pol-
icy regardless of its actual beliefs. Moreover, it is not at all clear where the
external, extra-logical preference information comes from and how it is to be
interpreted. Therefore, this kind of revision has been criticized by Rott as
embodying a bad philosophy [Rott, 2003].

5.2 Revision Operators with Memory

Konieczny and Pérez have proposed yet another framework for iterated re-
vision, which also considers, as the agent’s belief state, the sequence of con-
sistent sentences the agent has learned [Konieczny and Pérez, 2000]. Like in
Lehmann’s approach, the revised belief state Ψ ∗ µ is just the concatenation
of Ψ and µ. However, Konieczny and Pérez have suggested a different set of
postulates for iterated belief revision, which are essentially a reformulation of
the AGM postulates along with the following one: 6

(H7) Ψ ∗ Ψ1 ≡ Ψ ∗ (∧Bel(Ψ1))

6 As L is assumed finite in [Konieczny and Pérez, 2000], the conjunction
∧

Bel(Ψ1)
is a well-defined sentence.
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Postulate (H7) is a kind of associativity law, which expresses the strong confi-
dence in the new information. It is not difficult to see that (H7) implies (Rec)
(cf. Section 2.3).

The postulates proposed by Konieczny and Pérez characterize the so-called
revision operators with memory, which are based on external faithful assign-
ments over belief sets: Given a faithful assignment over belief sets, we can
inductively define a ranking �Ψ of the possible worlds for any belief state Ψ:

• �〈〉= W ×W, and
• for any w1, w2: w1 �〈Ψ:µ〉 w2 iff w1 ≺µ w2 or

w1 =µ w2 and w1 �Ψ w2.

The revision operator with memory is then defined as follows:

Mods(Ψ ∗ µ) = min([µ],�Ψ) (6)

Just like Lehmann’s revision, a revision operator with memory assumes a fixed
(external) faithful assignment, which means that the agent never changes its
revision policy. Hence, Rott’s criticism regarding widening ranked revisions
also applies to revision operators with memory.

As a special case, a so-called basic memory operator is generated from a basic
faithful assignment over L which additionally satisfies the following condition:

• If w1, w2 |= ¬µ, then w1 =µ w2.

Put in words, �µ partitions W into two levels, where the lower level contains
all µ-worlds while the other level contains all ¬µ-worlds.

In fact, a basic memory operator is equivalent to Nayak’s lexicographic re-
vision (with “naked evidence”) (cf. Section 2.3). Not surprisingly, therefore,
Konieczny and Pérez were able to show that basic memory operators also
satisfy all DP postulates.

In their later work, Konieczny and Pérez [2002] have suggested to lift the
unrealistic restriction by allowing the faithful ranking of the new evidence
to be dynamic, meaning that logically equivalent evidences may come with
distinct faithful rankings. These new revision operators have therefore been
named dynamic revision operators with memory.

Konieczny and Pérez have shown that any dynamic revision operator with
memory satisfies (C1), (C3), and (C4), but violates (C2). Based on this, they
have criticized (C2) as too strong [Konieczny and Pérez, 2000]. In particular,
they have proposed the following counterexample:
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Example 2 Consider an electric circuit containing an adder and a multiplier.
The atomic propositions adder ok and multiplier ok denote respectively that
the adder and the multiplier are working. Initially we have no information
about this circuit (Ψ = 〈〉), and we then learn that the adder and the multiplier
are working (µ = adder ok∧multiplier ok). Thereafter, someone tells us that
the adder is actually not working (β = ¬adder ok). There is no reason to
“forget” that the multiplier is working, whereas imposed by (C2) we have
(Ψ ∗ µ) ∗ β ≡ Ψ ∗ β, since β ⊢ ¬µ.

In favour of (C2), we give a counterargument to Konieczny and Pérez’s crit-
icism. First we observe that a (dynamic) revision operator with memory is
not a single revision operator, unlike what the AGM framework attempts to
model. Since the new information is coupled with a faithful ranking, a revision
operator with memory (except basic memory revision) essentially is a multiple
revision operator which revises a belief state with another belief state. After
observing that, it is no surprise that (C2) is violated since this postulate is only
intended for single revision operators. This argument is supported by the fact
that basic memory revision does satisfy (C2). From the perspective of single
revision, the behavior imposed by (C2) in Example 2 is perfectly reasonable,
since the evidence µ is supposed to be an atomic piece of information. Note
that in case we learned adder ok and mutiplier ok in succession, then thanks
to Postulate (Ind) we will retain multiplier ok after the ¬adder ok-revision.
In fact it is not difficult to see that if we want the revision operator with mem-
ory to exhibit the behavior expected by Konieczny and Pérez, then the faithful
ranking that comes with µ should encode the independence of multiplier ok
and adder ok. This somehow highlights the subtle distinction between revising
by a conjunction of sentences and revising by a set of sentences (with different
plausibility degrees) (cf. the discussions in [Nayak et al., 1996b]), which will
be further cultivated in the future. Based on the above argument, we consider
(C2) a well justified postulate for single revision operators, although it could
be too strong for multiple revision operators.

5.3 Dynamic Revision Operators

Independently, [Nayak et al., 1996a] have also noticed the inconsistency be-
tween (C2) and the original KM postulates. Their solution to avoid inconsis-
tency has been to view belief revision as dynamic, as mentioned above. By so
doing, it becomes possible to safely accept the DP postulates. The framework
of dynamic revision operators is not too different from the DP framework,
except that the former makes explicit the idea of evolutionary revision policy
in its postulates, by distinguishing between an original and a revised policy.

The problem of the DP postulates to be overly permissive has also been studied
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by Nayak et al. [1996a; 2003]. They have suggested to strengthen the DP
postulates by the following so-called postulate of Conjunction: 7

(Conj) If µ 0 ¬β, then (Ψ ∗ µ) ∗ β ≡ Ψ ∗ (β ∧ µ).

In the presence of the modified KM postulates, (Conj) is strong enough to
imply Postulate (Rec).

In the following, we argue that Postulate (Conj), while strengthening the DP
postulates, is overly strict. To this end, we show that even Postulate (Rec) is
too strong. As shown in Section 2.3, (Rec) corresponds to the least conser-
vatism in the DP framework. Thus, the following argument is also an analysis
of the problems of the least conservatism.

Postulate (Rec) says that, as long as β ⊃ ¬µ is not a tautology, it should be
canceled after a successive revision by µ followed by β, no matter how strong
the initial belief in β ⊃ ¬µ. A simple example shows that this behavior may
not be reasonable:

Example 3 All her childhood, Alice was taught by her parents that a person
who has told a lie is not a good person. So Alice believed, initially, that if Bob
has told a lie then he is not a good person. After her first date with Bob, she
began to believe that he is a good guy. Then a reliable friend of Alice warns
her that Bob is in fact a liar, and Alice chooses to believe her. Now, should
Alice still believe that Bob is a good guy?

According to Postulate (Rec), Alice should not challenge Bob’s morality and
still believe he is good, and hence disbelieve what her parents taught her. But
in fact it is at least as reasonable to give up the belief that Bob is good. This
shows that Postulate (Rec) is too strict a criterion for belief revision operators.

With regard to the postulate we have proposed, it is easy to see that (Ind)
is a weakening of Postulate (Rec). This raises the question whether Postulate
(Ind) weakens too much. Let us consider an example, taken from [Nayak et
al., 1996a], which, at first glance, seems to show that this is indeed the case.

Example 4 Our agent believes that Tweety is a singing bird. However, since
there is no strong correlation between singing and birdhood, the agent is pre-
pared to retain the belief that Tweety sings even after accepting the informa-
tion that Tweety is not a bird, and conversely, if the agent were to be informed
that Tweety does not sing, she would still retain the belief that Tweety is a
bird. Imagine that the agent first receives the information that Tweety is in

7 In [Nayak et al., 2003], (Conj) is written as “if µ 0 ¬β, then (Ψ ∗ µ) ∗µ β ≡
Ψ ∗ (β ∧µ)”, where ∗µ denotes the evolved operator after a µ-revision. Accordingly,
they have reformulated the DP postulates in the same spirit.
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fact not a bird, and later learns that Tweety does not sing.

Nayak et al. claimed that it is only reasonable to assume that the agent should,
in the end, always believe that Tweety is a non-singing non-bird. Indeed, with
Ψ ≡ singing∧bird it follows from Postulate (Rec) that (Ψ∗¬bird)∗¬singing ⊢
¬bird , since 0 ¬singing ⊃ bird . Postulate (Ind), on the other hand, does not
apply in this case. But the behavior which is claimed to be the only reasonable
one is not generally justified. Suppose, for example, the agent initially believes
firmly that ¬singing ⊃ bird . It is then possible, after revising by ¬bird , that
the belief in ¬singing ⊃ bird is stronger than the belief in ¬bird . In this case,
after further revising by ¬singing , the agent believes that Tweety is a bird
after all.

5.4 Conclusion

In this paper, we have formally analyzed the problem of implicit dependence
which is intrinsic to belief revision but largely overlooked in the community
over the past decade. As (at least a partial) solution to the problem, we have
proposed to strengthen the DP theory by a new postulate of independence.
The resulting framework for iterated belief revision now consists of the (mod-
ified) KM postulates, (C1), (C2), and (Ind). We have informally argued in
favor of our new postulate (Ind) by means of examples, and we have given a
formal justification by an elegant semantic characterization. Also, a detailed
comparison to related work has shown that our new framework is the most
satisfactory one thus far in the literature. As a conclusion, we argue that the
new framework provides better criteria for the design of rational iterated belief
revision operators.
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Appendix: Proofs

Proposition 1. The amnesic revision ∗a satisfies (C1), (C3), and (C4), but
violates (C2).

Proof Note that, in the case of the amnesic revision ∗a, a belief state is
identified with its propositional beliefs.
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Assume ⊢ ¬β. According to (1), we have (Ψ ∗a µ) ∗a β = β and Ψ ∗a β = β.
Hence, ∗a satisfies (C1), (C2), and (C3). Moreover, (C4) is vacuously satisfied.
In the rest of the proof, we consider the case 0 ¬β.

Assume β ⊢ µ. We consider two cases: 1) Assume Ψ 0 ¬µ. It follows from
β ⊢ µ that we have Ψ∧µ 0 ¬β. According to (1), if Ψ 0 ¬β then (Ψ∗aµ)∗aβ =
(Ψ ∧ µ) ∗a β = Ψ ∧ µ ∧ β and Ψ ∗a β = Ψ ∧ β; otherwise (Ψ ∗a µ) ∗a β =
(Ψ ∧ µ) ∗a β = β and Ψ ∗a β = β. 2) Assume Ψ ⊢ ¬µ. From β ⊢ µ, if follows
that Ψ ⊢ ¬β. Since 0 ¬β and β ⊢ µ, we have µ 0 ¬β. According to (1),
(Ψ ∗a µ) ∗a β = µ ∗a β = µ ∧ β and Ψ ∗a β = β. Therefore ∗a satisfies (C1).

Assume Ψ ∗a β ⊢ µ. We consider two cases: 1) Assume Ψ 0 ¬β. According
to (1), Ψ ∗a β = Ψ ∧ β. It follows from Ψ ∧ β ⊢ µ and Ψ 0 ¬β that we have
Ψ ∧ µ 0 ¬β. According to (1), (Ψ ∗a µ) ∗a β is either Ψ ∧ µ ∧ β or µ ∧ β. 2)
Assume Ψ ⊢ ¬β. According to (1), Ψ∗a β = β. From Ψ∗a β ⊢ µ it follows that
β ⊢ µ. Since ∗a satisfies (*1), we have (Ψ ∗a µ) ∗a β ⊢ µ. Therefore ∗a satisfies
(C3).

Assume Ψ∗aβ 0 ¬µ. Obviously, we have 0 ¬µ. Consider two cases: 1) Assume
Ψ 0 ¬β. According to (1), Ψ ∗a β = Ψ ∧ β. From Ψ ∧ β 0 ¬µ and Ψ 0 ¬β it
follows Ψ ∧ µ 0 β. According to (1), (Ψ ∗a µ) ∗a β=Ψ ∧ µ ∧ β. From 0 ¬µ it
follows Ψ ∧ µ ∧ β 0 ¬µ. 2) Assume Ψ ⊢ ¬β. According to (1), Ψ ∗a β = β.
Since ∗a satisfies (*1), we have (Ψ ∗a µ) ∗a β ⊢ β. From 0 ¬β and β 0 ¬µ it
follows (Ψ ∗a µ) ∗a β 0 ¬µ. Therefore ∗a satisfies (C4).

The following counterexample shows that ∗a violates (C2). Let µ, β, and Ψ
be, respectively, p, ¬p, and p ∨ q (p, q are propositional atoms). Obviously,
β ⊢ ¬µ holds. According to (1), (Ψ ∗a µ) ∗a β = ¬q and Ψ ∗a β = (p∨ q)∧¬q.
Therefore ∗a violates (C2). 2

For the proof of the representation theorem, we need the following observation,
which is a direct consequence of Theorem 2.

Lemma 2 Suppose that a revision operator satisfies Postulates (R*1)–(R*6).
If 0 ¬β, then Ψ∗β ⊢ µ precisely when there exists a world w such that w |=
µ∧β and w <Ψ w′ for any w′ |= ¬µ∧β, where ≤Ψ is the corresponding faithful
assignment.

Theorem 5. Suppose that a revision operator satisfies Postulates (R*1)–
(R*6). The operator satisfies Postulate (Ind) iff the operator and its corre-
sponding faithful assignment satisfy:

(IndR) If w1 |= µ and w2 |= ¬µ, then w1 ≤Ψ w2 implies w1 <Ψ∗µ w2.

Proof “⇐”: Assume Ψ∗β 0 ¬µ. From Lemma 2, it follows that for any world
w |= β∧¬µ, there exists another world w′ |= β∧µ such that w′ ≤Ψ w. Hence,
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since ≤Ψ is total, there must be a world w1 such that w1 |= µ∧β and w1 ≤Ψ w2

for any w2 |= ¬µ ∧ β. Condition (IndR) then implies that w1 <Ψ∗µ w2 for any
w2 |= ¬µ ∧ β. Due to Lemma 2, we have (Ψ∗µ)∗β ⊢ µ.

“⇒”: Assume w1 |= µ, w2 |= ¬µ, and w1 ≤Ψ w2. Let β be such that Mods(β) =
{w1, w2}. From Theorem 2 it follows that w1 ∈ Mods(Ψ∗β). Hence Ψ∗β 0 ¬µ.
Postulate (Ind) implies (Ψ ∗ µ) ∗ β ⊢ µ. Due to Postulates (R*1) and (R*3),
Mods((Ψ ∗ µ) ∗ β) = {w1}. From Theorem 2 it follows that w1 <Ψ∗µ w2. 2

Proposition 3. Given an OCF k, the binary relation ≤k defined by (4) sat-
isfies (EE1)–(EE5).

Proof Due to the transitivity of ≤ on N, ≤k satisfies (EE1).

Assume α ⊢ β. By contra-position, we have ¬β ⊢ ¬α. Hence, for any w ∈ W,
if w |= ¬β then w |= ¬α. According to (3), we have k(α) ≤ k(β), i.e., α ≤k β.
Thus ≤k satisfies (EE2).

Assume k(α) > k(α ∧ β) and k(β) > k(α ∧ β). From (3), it follows that there
exists w s.t., k(w) = k(α ∧ β) and w |= ¬α ∨ ¬β. Since k(α) > k(α ∧ β),
according to (3), we have w 6|= ¬α, i.e., w |= α. From w |= ¬α∨¬β, it follows
that w |= ¬β. It follows from (3) that k(β) ≤ k(α ∧ β), which contradicts
k(β) > k(α ∧ β). Thus ≤k satisfies (EE3).

Assume Bel(k) is consistent. According to (2), there exists w1 s.t., k(w1) =
0. From (3), it follows that k(from(w1)) = 0. According to (2) and (3),
Bel(k) 0 α iff there exists w s.t., k(w) = 0 and w |= ¬α, i.e., k(α) = 0.
Since k(from(w1)) = 0, we have Bel(k) 0 α iff k(α) ≤ k(β), for any β. Thus
≤k satisfies (EE4).

Assume 0 α. According to (3), k(⊤) > k(α). Hence, by contra-position, ≤k

satisfies (EE5). 2

The following lemma is needed in the proof of Theorem 7.

Lemma 3 Let k be an OCF and µ a new evidence, then for any m1, m2,

Bel(k∗µ,m1
) = Bel(k∗µ,m2

)

Proof According to (5), k∗µ,m(w) = 0 iff w |= µ and k(w) = k(¬µ), which
means the value of m does not affect the set of worlds with rank 0 in the
revised OCF. From (2) it follows immediately that Bel(k∗µ,m1

) = Bel(k∗µ,m2
). 2

Theorem 7. For any m > 0, reinforcement revision satisfies all KM postulates
(R*1)–(R*6), where Bel(Ψ) and Ψ∗µ are, respectively, identified with

∧

Bel(k)
and k∗µ,m.
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Proof Obviously, each OCF k can induce a faithful ranking ≤Bel(k) of Bel(k)
by letting

w1 ≤Bel(k) w2 iff k(w1) ≤ k(w2)

According to (5), k∗µ,m(w) = 0 iff w |= µ and k(w) = k(¬µ). From (3), it is
easy to see that k∗µ,m(w) = 0 iff w ∈ min(Mods(µ),≤Bel(k)).

If we fix the value of m, then according to Theorem 6, reinforcement revi-
sion satisfies all KM postulates (R*1)–(R*6). From Lemma 3, it follows that
satisfiability of (R*1)–(R*6) still holds for varying values of m. 2

Lemma 1. Let k be an arbitrary ordinal conditional function and µ a new
evidence with degree m, then for any non-tautological sentence β,

k∗µ,m(β) =



























k(β) +m if ⊢ µ ⊃ β

k(µ ⊃ β) − k(¬µ) else if k(µ ⊃ β) = k(β)

min(k(µ ⊃ β) − k(¬µ), k(β) +m) otherwise

Proof Assume ⊢ µ ⊃ β. From 0 β and (3) it follows that there exists w1 |= ¬β
s.t., k(w1) = k(β) and k(w) ≥ k(w1) for any w |= ¬β. Since ⊢ µ ⊃ β,
we have w1 |= ¬µ. According to (5), k∗µ,m(w1) = k(w1) + m. Similarly, for
any w |= ¬β we have k∗µ,m(w) = k(w) + m. Again according to (3) we have
k∗µ,m(β) = k(β) +m.

Assume 0 µ ⊃ β and k(µ ⊃ β) = k(β). From 0 µ ⊃ β and (3) it follows
that there exists w1 |= µ ∧ ¬β s.t., k(w1) = k(µ ⊃ β). According to (5),
k∗µ,m(w1) = k(w1) − k(¬µ). Since k(µ ⊃ β) = k(β), according to (3) we have
k(w) ≥ k(w1) for any w |= ¬β. It follows from (5) that for any w |= ¬β,
k∗µ,m(w) is either k(w) − k(¬µ) or k(w) + m. Therefore, according to (3) we
have k∗µ,m(β) = k(β) − k(¬µ).

Assume 0 µ ⊃ β and k(µ ⊃ β) 6= k(β). It is not difficult to see, according
to (3), that this is possible only if k(µ ⊃ β) > k(β). From 0 µ ⊃ β and (3), it
follows that there exists w1 |= µ∧¬β s.t., k(w1) = k(µ ⊃ β) and k(w) ≥ k(w1)
for any w |= µ ∧ ¬β. Analogously, there exists w2 |= ¬β s.t., k(w2) = k(β)
and k(w) ≥ k(w2) for any w |= ¬β. Consider two cases: 1) Assume k(µ ⊃
β)− k(¬µ) ≤ k(β) +m. According to (5), k∗µ,m(w1) = k(w1)− k(¬µ). For any
w |= ¬β, according to (5), if w |= µ, then k∗µ,m(w) = k(w)− k(¬µ) ≥ k(w1)−
k(¬µ); otherwise k∗µ,m(w) = k(w)+m ≥ k(w2)+m ≥ k(w1)−k(¬µ). From (3)
it follows that k∗µ,m(β) = k(µ ⊃ β) − k(¬µ). 2) Assume k(µ ⊃ β) − k(¬µ) >
k(β) + m. Since k(µ ⊃ β) > k(β), according to (3), we have w2 |= ¬µ. From
(5) it follows that k∗µ,m(w2) = k(w2)+m. For any w |= ¬β, according to (5), if
w |= µ, then k∗µ,m(w) = k(w)−k(¬µ) ≥ k(w1)−k(¬µ) > k(w2)+m; otherwise
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k∗µ,m(w) = k(w)+m ≥ k(w2)+m. From (3), it follows that k∗µ,m(β) = k(β)+m.
Therefore, k∗µ,m(β) = min(k(µ ⊃ β) − k(¬µ), k(β) +m). 2

Proposition 4. Let k be an arbitrary OCF and µ a new non-tautological
evidence with degree m, then

k∗µ,m(µ) = k(µ) +m

Proof This is a direct consequence of Lemma 1. 2

Theorem 8. For arbitrary m1, m2 > 0, reinforcement revision satisfies the
following conditions: 8

(EC1) If α ⊢ µ, then (k∗µ,m1
)∗α,m2

≡ k∗α,m2
.

(EC2) If α ⊢ ¬µ, then (k∗µ,m1
)∗α,m2

≡ k∗α,m2
.

(EInd) If there exists m such that k∗¬β,m 0 ¬µ, then (k∗µ,m1
)∗¬β,m2

⊢ µ.

Proof If ⊢ ¬α, Condition (EC1) holds trivially. Assume that α ⊢ µ and 0 ¬α.
By (5),

k∗α,m2
(w) = 0 iff w |= α and k(w) = k(¬α) (7)

Likewise,

(k∗µ,m1
)∗α,m2

(w) = 0 iff w |= α and k∗µ,m1
(w) = k∗µ,m1

(¬α) (8)

Since α ⊢ µ, for any w |= α we have k∗µ,m1
(w) = k(w)−k(¬µ) by (5). Since µ ⊃

¬α ≡ ¬α and 0 ¬α, it follows from Lemma 1 that k∗µ,m1
(¬α) = k(¬α)−k(¬µ).

Hence, (8) is equivalent to

(k∗µ,m1
)∗α,m2

(w) = 0 iff w |= α and k(w) = k(¬α)

This and (7) implies (k∗µ,m1
)∗α,m2

≡ k∗α,m2
. Condition (EC2) can be proved

analogously.

We prove Condition (EInd) by contradiction. To begin with, from the as-
sumption that k∗¬β,m 0 ¬µ it follows that 0 β and 0 µ ⊃ β. Furthermore,
there exists w such that k∗¬β,m(w) = 0, w |= ¬β ∧ µ, and k(w) = k(β). With
the help of (3), this implies k(β) = k(µ ⊃ β).

Now assume that (k∗µ,m1
)∗¬β,m2

0 µ. It follows that there exists w′ such that
(k∗µ,m1

)∗¬β,m2
(w′) = 0, w′ |= ¬β ∧ ¬µ, and k∗µ,m1

(w′) = k∗µ,m1
(β). Since k(w) =

8 Note that, as before, we abuse notation by simply writing k∗
µ,m instead of

∧

Bel(k∗
µ,m) etc.
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k(β) and w′ |= ¬β, we have k(w′) ≥ k(w). Hence by (5), k∗µ,m1
(w′) = k(w′) +

m1 > k(β). But from Lemma 1 it follows that k∗µ,m1
(β) ≤ k(β), since 0 β and

0 µ ⊃ β. This contradicts k∗µ,m1
(w′) = k∗µ,m1

(β). 2
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