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Abstract. Intelligent agents in open environments inevitably face the Qualification Problem:
The executability of an action can never be predicted with absolute certainty; unexpected cir-
cumstances, albeit unlikely, may at any time prevent the successful performance of an action.
Reasoning agents in real-world environments rely on a solution to the Qualification Problem in
order to make useful predictions but also to explain and recover from unexpected action failures.
Yet the main theoretical result known today in this context is a negative one: While a solution to
the Qualification Problem requires to assume away by default abnormal qualifications of actions,
straightforward minimization of abnormality falls prey to the production of anomalous models.
We present an approach to the Qualification Problem which resolves this anomaly. Anomalous
models are shown to arise from ignoring causality, and they are avoided by appealing to just
this concept. Our theory builds on the established predicate logic formalism of the Fluent Cal-
culus as a solution to the Frame Problem and to the Ramification Problem in reasoning about
actions. The monotonic Fluent Calculus is enhanced by a default theory in order to obtain
the nonmonotonic approach called for by the Qualification Problem. The approach has been
implemented in an action programming language based on the Fluent Calculus and successfully
applied to the high-level control of robots.

1 Introduction

To program software agents and robots equipped with high-level cognitive capabilities is the
enterprise of Cognitive Robotics [Lespérance et al., 1994; Shanahan, 1996]. Rooted in the ability
to reason—on the basis of a mental world model—about goals and means to achieve them, these
cognitive capabilities free agents from pre-defined problem solutions and so are expected to lead
to truly autonomous intelligent, artificial agents. An early scientific experiment in this direction
was the robot Shakey [Nilsson, 1974], capable of shuffling around regular-shaped toy blocks so
as to achieve certain goals like building a particular stack of blocks. This case study showed
success insofar as it proved it feasible to build robots which plan ahead and use their plans
to actually pursue their goals. On the other hand, Shakey acted in an artificially constrained,
closed environment, in which no disturbances from unexpected sources had to be taken into
account.

Some years later, a crucial problem with scaling Shakey’s success up to open, real-world
environments was named theQualification Problem [McCarthy, 1977]. It arises from the fact that
in natural environments the successful execution of actions can never be predicted with absolute
certainty. Unexpected circumstances, albeit unlikely, may at any time prevent an autonomous
agent from performing the intended actions. Planning and acting under this proviso requires the
agent to rigorously assume away, by default, all of the numerous possible but unlikely abnormal
qualifications of his actions, lest the agent is unable to devise plans which are perfectly reasonable
although they cannot guarantee success.

Every daily-life action serves as witness to us humans constantly ignoring a raft of possible
obstacles to the successful performance of an action. The classical example in the AI literature
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is planning to start the engine of a car without making sure that there is no potato in the tail
pipe, despite the fact that a clogged tail pipe necessarily renders this action impossible.1 This
ignorance prima facie is rational since it is simply impossible to verify all preconditions of actions
in real-world environments: Aside from the fact that besides a clogged tail pipe there could be
lots of other obstacles for starting the car, how can we ensure that after checking the tail pipe it
does not become clogged during us walking to the front door and taking a seat prior to turning
the ignition key? Hence, while improbable preconditions must not be completely disregarded
in an adequate representation of the world, a proposition like “there is no potato in the tail
pipe” should not be treated as a ‘regular’ precondition in the formal specification of the action
of starting the engine. For otherwise the reasoning agent is always forced to verify this condition
before assuming that the action can be successfully executed. This is the Qualification Problem.
Intelligent agents rely on a solution to this problem in order to make useful predications but
also to explain and recover from unexpected action failures.2

Assuming away unlikely but not impossible qualifications means that if in a certain situ-
ation there are hints to the presence of such unexpected qualifications, or if to the surprise
of the agent an action actually fails, then the default conclusion should no longer be adhered
to. In this respect the entire process is intrinsically nonmonotonic. Consequently, McCarthy
proposed circumscription [McCarthy, 1980] as a means to minimize abnormal qualifications [Mc-
Carthy, 1986]. However, a severe defect with this approach was discovered soon after [Lifschitz,
1987]. In a nutshell, this so-called problem of anomalous models arises if the successful per-
formance of some action, say DisableEmission , brings about a situation which is exceptional
in that another action, say StartEngine , is blocked. Suppose an agent considers performing
DisableEmission followed by StartEngine in a situation where he has no reason to assume
unusual circumstances. Then the agent can reasonably expect that DisableEmission will be
successful, thus blocking StartEngine . Yet with simple minimization of abnormal qualifications
in a straightforward axiomatization of this scenario along the line of [McCarthy, 1986] this does
not follow. For there exists a minimal but anomalous model where DisableEmission is quali-
fied in the first place. This without any actual reason at all except for the exclusively formal
argument that assuming an abnormality wrt. DisableEmission avoids assuming an abnormality
wrt. StartEngine . Anomalous models like this leave the logic totally impotent as regards the
tasks of prediction and planning.

We recall in more detail the problem with the original approach to the Qualification Problem
in the following Section 2, in which we also pin down the reason for the failure. In a nutshell
again, it is the lack of a suitable notion of causality: The action DisableEmission causes a
qualification of action StartEngine while no such cause can be given for the suggested qual-
ification of DisableEmission . Guided by this insight, we develop a method for coping with
the Qualification Problem which overcomes the problem of anomalous models by respecting
causality when minimizing abnormality. Our theory builds on the axiomatization technique of
the Fluent Calculus, which provides, in classical predicate logic, a solution to the basic Frame
Problem [McCarthy and Hayes, 1969] by means of state update axioms [Thielscher, 1999], and
to the Ramification Problem [Ginsberg and Smith, 1988a] by means of causal propagation of in-

1 According to [Ginsberg and Smith, 1988b], this example is also due to McCarthy.
2 Some authors, e.g., [Ginsberg and Smith, 1988b; Lin and Reiter, 1994; Shanahan, 1997] have narrowed the
Qualification Problem to the problem of determining implicit preconditions of actions which derive from state
constraints. Yet these are treated as regular preconditions in the above sense, that is, they must provably
hold in correct plans. Hence, they are not meant by McCarthy’s original conception of the problem, which
concerns preconditions that can be assumed true by default.

2



direct effects [Thielscher, 1997; Thielscher, 1998].3 The Fluent Calculus is recalled in Section 3.
This monotonic solution to two fundamental problems in reasoning about actions is enhanced
in Section 4 to account for the Qualification Problem. Minimization of abnormalities is carried
out by means of default logic [Reiter, 1980] but with an important difference to the problematic
standard minimization as sketched above: We assume away unjustified causes for abnormali-
ties rather than abnormalities themselves. The crucial advantage of this approach is that the
standard reasoning techniques for actions and effects apply whenever the only abnormalities
that occur are justified. Our theory is shown to thus solve the problem of anomalous models.
In Section 5 this basic account of the Qualification Problem is extended by the possibility to
specify priorities among abnormal qualifications, by which is aided the search for reasonable
explanations in case of unexpected action failure. In Section 6 we introduce into our theory the
distinction between strong and weak qualification, where the latter means that performing an
action is possible but fails to produce the usual effect [Gelfond et al., 1991]. In Section 7 we
further extend our theory so as to also cover accidents, which are non-recurring action failures.
Our results are summarized, discussed, and compared to related work in Section 8.

2 The Anomalous Model Problem

2.1 A straightforward approach to the Qualification Problem

We will illustrate and analyze the occurrence of anomalous models in the context of the Qualifi-
cation Problem with a formalization of a popular dynamic AI environment, the world of blocks.
A number of toy blocks of equal size and shape are arranged on a table and can be stacked onto
each other by a robot equipped with a gripper. Our model of this domain will, however, differ
in a crucial aspect from standard models. We will not rely on the usual assumption that the
action of moving a block is always guaranteed with absolute certainty to be both executable and
successful provided that the block to be moved and the destination are unobstructed.

Consider, for example, a Situation Calculus [McCarthy, 1963] axiomatization which uses the
two situation-dependent properties, or fluents as they are called, On(x, y, s) and Clear(x, s),
meaning, respectively, that block x is on y in situation s (where y is either another block or
the constant Table) and that block x is clear in situation s, that is, it is not obstructed by
another block. Let Move(r, u, v, w) denote the action of robot r moving block u away from v
onto w, and consider the generic predicate Poss(a, s) which shall be true if action a is possible
in situation s. Then a typical axiom of the idealized blocks world is the following:4

Poss(Move(r, u, v, w), s) ≡ u 6= w ∧ v 6= w ∧ Clear(u, s) ∧On(u, v, s) ∧ Clear(w, s) (1)

Yet this axiom is clearly not true in a real-world realization of the blocks world, with real blocks
on a real table and a real robot shuffling the blocks around. For it may of course happen that
in a certain situation, say S17, one robot Robbie tries to move a particular block B9 from the
table onto another block B34 but fails to accomplish this task although both blocks are free
at the time the action is invoked. There are numerous possible reasons for such an unexpected
failure: Block B9 may somehow be stuck to the table, the robot’s gripper may be stuck, or the

3 It should be stressed that we refer exclusively to the narrow technical Frame and Ramification Problem, as
opposed to the general problem of justifying assumptions of persistence [Pylyshyn, 1987].

4 A word on the notation: Predicate and function symbols, including constants, start with a capital letter
whereas variables are in lower case, sometimes with sub- or superscripts. Free variables in formulas are
assumed universally quantified.
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robot itself may just have run short of energy, and so on and so forth.5 Whatever caused the
non-executability of Move(Robbie, B9,Table, B34) in situation S17, the factual observation,

Clear(B9, S17) ∧On(B9,Table, S17) ∧ Clear(B34, S17) ∧B9 6= B34 ∧ Table 6= B34 ∧
¬Poss(Move(Robbie, B9,Table, B34), S17)

(2)

is plainly inconsistent in the light of axiom (1).
In order to obtain a realistic representation, the idealized definition of Poss(Move(r, u, v, w), s)

needs to be modified. A crucial obstacle towards this end is that it is usually impossible to pro-
vide in advance an exhaustive enumeration of all conceivable reasons for a particular instance
of the action to turn out non-executable [McCarthy, 1977]. The only way out is to intro-
duce one or more general propositions by which are captured all possible qualifications but
which themselves are not assumed exhaustively described. Two such propositions are appro-
priate for describing the abnormal (strong) qualifications of a robot trying to move a block:
The block may not be movable or the robot’s gripper does not work (possibly due to a mal-
function of the robot itself). Formally, we introduce the binary atoms Ab(Movable(x), s) and
Ab(Functioning(Gripper-of (r)), s) representing, respectively, that block x cannot be moved in
situation s for some abnormal reason and that the gripper of robot r does not function in sit-
uation s in the way it normally does. Then the first step towards coping with the Qualification
Problem in the blocks world is to rewrite axiom (1) to,

Poss(Move(r, u, v, w), s) ≡ u 6= w ∧ v 6= w ∧ Clear(u, s) ∧On(u, v, s) ∧ Clear(w, s)∧
¬Ab(Movable(u), s) ∧ ¬Ab(Functioning(Gripper-of (r)), s)

(3)

The added preconditions summarize all abnormal qualifications, that is, obstacles which are
a priori unlikely to happen and therefore need to be assumed away by default in order to jump
to the conclusion that the action is possible under normal circumstances. Hence, the extension
of Ab should be minimized, e.g., by circumscription [McCarthy, 1980]. Suppose, for example,
this is all that is known of the initial situation S0:

Clear(A,S0) ∧On(A,Table, S0) ∧ Clear(B,S0) (4)

Then CIRC[(3) ∧ (4);Ab] 6 entails Poss(Move(Robbie, A,Table, B), S0), tacitly assuming that
A 6= B and Table 6= B. Under normal circumstances the new formulation thus behaves just like
the idealized precondition axiom (1), allowing to predict that actions are normally successful. On
the other hand, the realistic account is flexible enough to handle abnormal circumstances. For
instance, it is consistent with (3) to make the observation above, (2), stating that unexpectedly
our robot was unable to move B9 onto B34 in situation S17. Moreover, if additional knowledge
hints at the presence of an abnormal qualification, then the default conclusion no longer applies.
Consider, for example, the fluent GluedToTable(x, s) meaning that block x is glued to the
table in situation s. This new fluent relates to the existing ones in our axiomatization thus:

GluedToTable(x, s) ⊃ On(x,Table, s)

GluedToTable(x, s) ⊃ Ab(Movable(x), s)
(5)

5 All of these circumstances render the action of moving the block physically impossible. Following [Gelfond
et al., 1991] we call them strong qualifications of the action. A weak qualification, on the other hand, occurs
when an action can be performed but its execution produces effects other than the expected ones. The gripper
may, for instance, accidentally drop the block, or the tower on top of which the block shall be placed may
be too instable to carry the additional weight, etc. Formally, a weak qualification of action a in situation s

means that Poss(a, s) is true but the usual effects do not materialize. In what follows, we confine ourselves
to strong qualifications; the notion of weakly qualified actions is reconsidered in Section 6.

6 By CIRC[Ψ;Ab] we denote the formula which is obtained by circumscribing, in Ψ, predicate Ab with all
other predicates allowed to vary [Lifschitz, 1994].
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Then CIRC[(3) ∧ (4) ∧ (5);Ab] still entails Poss(Move(Robbie, A,Table, B), S0); but if the
observation GluedToTable(A,S0) is added, then it can no longer be concluded that A, now
known to be fixed, can be moved.

2.2 The defect of the straightforward approach

So far the basic approach to the Qualification Problem, which McCarthy already anticipated in
his seminal paper [McCarthy, 1977] and formalized some 10 years later using his nonmonotonic
formalism of circumscription [McCarthy, 1986]. However, the Qualification Problem turned out
to resist this straightforward attack [Lifschitz, 1987]. A serious problem turns up as soon as
an action is considered which causes abnormal circumstances as regards the executability of
another action. Simple minimization of abnormalities then sanctions anomalous models. Take,
for example, the action denoted by GlueToTable(r, x) of agent r gluing a block x to the table.
Realistically, this action is possible whenever robot r possesses glue, x is clear and on the
table, and no abnormal qualification occurs:

Poss(GlueToTable(r, x), s) ≡
Has(r,Glue, s) ∧ Clear(x, s) ∧On(x,Table, s)∧
¬Ab(Movable(x), s) ∧ ¬Ab(Functioning(Gripper-of (r)), s) ∧ ¬Ab(Usable(Glue), s)

(6)

where fluent Has(r, x, s), constant Glue , and abnormality atom Ab(Usable(x), s) bear the
obvious meaning. Let the effect of the action be given by this implication:7

Poss(GlueToTable(r, x), s) ⊃ GluedToTable(x,Do(GlueToTable(r, x), s)) (7)

where the generic function Do(a, s) denotes the situation reached by performing action a in
situation s. To see how this domain axiomatization reveals the defect with the straightforward
approach to the Qualification Problem, consider the following description of the initial situation:

On(A,Table, S0) ∧ Clear(A,S0) ∧ Clear(B,S0) ∧Has(Robbie,Glue, S0) (8)

This specification does not give any reason for expecting abnormal circumstances in S0. There-
fore it is reasonable to assume that both of the two actions Move(Robbie, A,Table, B) and
GlueToTable(Robbie, A) are possible initially since all of the respective ‘regular’ precondi-
tions are known to be satisfied. Hence, we must expect that when our robot actually uses
the glue, then the action’s effect, (7), materializes, that is, GluedToTable(A,S1), where S1 =
Do(GlueToTable(Robbie, A), S0). In turn, this conclusion leads to the prediction that Ab(Movable(A), S1)
according to (5), hence ¬Poss(Move(Robbie, A,Table, B), S1) according to axiom (3). To sum-
marize, in the light of the given information about the initial situation, reasonable predictions
are,

1. The robot should succeed if he tried to move block A onto block B in S0;

2. The robot should also succeed if he tried to glue block A to the table in S0;

3. The robot should, however, not succeed with moving block A onto block B after having
glued A to the table in S0.

Yet none of these desirable conclusions follows by simple minimization of abnormality, as the
following result shows.

7 We do not presuppose a particular solution to the Frame Problem here since it is irrelevant at this point.
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Proposition 1 Let Σ consist of the axioms (3) and (5)–(8). There exists a minimal (wrt.
the set of true instances of Ab) model M of Σ such that

M |= ¬Poss(Move(Robbie, A,Table, B), S0) ∧ ¬Poss(GlueToTable(Robbie, A), S0)
∧Poss(Move(Robbie, A,Table, B), S1)

where S1 = Do(GlueToTable(Robbie, A), S0).

Proof: Let M be a model of Σ with Ab(Movable(A), S0) the sole true instance of an
abnormality predicate.8 Then M |= ¬Poss(Move(Robbie, A,Table, B), S0) according to (3)
and M |= ¬Poss(GlueToTable(Robbie, A), S0) according to (6). The latter moreover implies
that M can be chosen in such a way that M |= Poss(Move(Robbie, A,Table, B), S1).

To show that M is minimal in the above sense, it suffices to prove that Σ does not admit a
model in which Ab is false for all instances. So, suppose such a model M′ existed, then M′ |=
(∀x)¬Ab(x, S0); hence, M′ |= Poss(GlueToTable(Robbie, A), S0) according to (6) and (8).
This implies M′ |= GluedToTable(A,S1) according to (7). From (5) it follows that M′ |=
Ab(Movable(A), S1), which contradicts the assumption that M′ falsifies all instances of Ab.

The ease with which such anomalous models like M arise, prevents the Qualification Prob-
lem from admitting a straightforward solution [Lifschitz, 1987]. This is just as severe as the
infamous Yale Shooting counter-example was for attempts to solve the Frame Problem [Hanks
and McDermott, 1987].9 In the above scenario, for instance, there is actually not a single action
that is possible in all minimal models, which leaves our robot paralyzed. The Frame Problem
being the more fundamental of the two, past research has concentrated on finding solutions
which overcome the Yale Shooting problem (as documented, e.g., in [Shanahan, 1997]), and the
Qualification Problem stayed in the background. Nowadays, however, more than one satisfac-
tory solution to the Frame Problem exists, each providing a firm basis for reconsidering the
Qualification Problem and in particular the problem of anomalous models.10

2.3 The defect’s cause: ignoring causality

The intended model and the anomalous ones in our example differ in the abnormality instances
they consider true: Intended is Ab(Movable(A), S1), anomalous is each of Ab(Movable(A), S0),
Ab(Functioning(Gripper-of (Robbie)), S0), and Ab(Usable(Glue), S0). The crucial question to
be answered towards an extensive solution to the anomalous model problem is this: Which
general principle allows us to distinguish the first abnormality from the others?

The reason for Ab(Movable(A), S1) being the expected conclusion reveals when one tries
to find explanations for the occurrence of each of the competing abnormal circumstances—
explanations which go beyond the exclusively formal argument that there is no model without
making true at least one instance of the abnormality predicate. Actually it is only the in-
tended abnormality which admits such an explanation: Successfully gluing a block to the table

8 Other anomalous models are obtained by taking either Ab(Functioning(Gripper-of (Robbie)), S0) or
Ab(Usable(Glue), S0), respectively, as the sole abnormality.

9 The parallels are indeed intriguing: Both problems invalidate the nonmonotonic approaches to the Frame
and Qualification Problem proposed in the very same paper [McCarthy, 1986]; both problems reveal the
inadequacy of global minimization in that anomalous models are produced; and, though this is not widely
known, a variant of the Yale Shooting problem was found independently by the discoverer of the problem of
anomalous models in the context of the Qualification Problem [V. Lifschitz, personal communication].

10 By “satisfactory solutions” to the Frame Problem we mean established predicate logic formalisms which allow
to succinctly specify actions without the need to devise a large number of non-effect axioms, and which do
not fall prey to the Yale Shooting problem.
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is known to produce an effect which naturally brings about the fact that this block can no
longer be moved. No such cause can be given for the three anomalous abnormalities. That
is to say, while an abnormal qualification of the initial action GlueToTable(Robbie, A) comes
out of the blue in the anomalous models, an abnormal qualification of the subsequent action
Move(Robbie, A,Table, B), as is claimed in the intended models, is easily explicable. One even
tends to not consider the latter truly abnormal since being unable to move a block after having
glued it to the table is, after all, what one would normally expect. Here lies the obvious parallel
to the Yale Shooting problem: A gun that becomes magically unloaded while waiting deserves
being called abnormal, whereas causality explains the death of the turkey if being shot at with
a loaded gun.11

2.4 The solution: respecting causality

The anomalous models sanctioned by straightforward circumscription illustrate the necessity of
a minimization strategy which respects causality. Abnormalities which do not admit a causal
explanation should be preferably assumed away. One way of achieving this is to not let abnormal
circumstances be subject to minimization if they are the expected effect of some preceding action.
This would solve the problem of anomalous models because then caused abnormal qualifications
cannot be compensated for by granting other—truly unpredictable—abnormalities. In our blocks
world scenario, for instance, the abnormality in the intended model, Ab(Movable(A), S1), is an
effect of the action GlueToTable(Robbie, A) which has been performed in the preceding situa-
tion, S0. More precisely, the abnormality is obtained as an indirect effect triggered by the direct
effect GluedToTable(A,S1). This is a consequence of the second state constraint in (5), which
generally gives rise to the indirect effect that Ab(Movable(x), s) whenever GluedToTable(x, s)
has been caused. Extending the Frame Problem to indirect effects is known as the Ramification
Problem [Ginsberg and Smith, 1988a], and hence a solution to the problem of anomalous models
presupposes a solution to the latter.

The foregoing analysis sets out a strategy for overcoming the problem of anomalous models
in the context of the Qualification Problem: The fact that abnormal circumstances could arise
as the normal effect of performing certain actions is accounted for by treating instances of Ab

propositions as fluents which can be (indirectly) affected by actions. Abnormal qualifications,
once they materialize, persist, again just like ordinary fluents do. If, for instance, the robot
initially glues some block to the table, then shuffles around a number of other blocks, and finally
goes back to the first block and tries to move it, then it should not come as a surprise if this
action still fails. On the other hand, abnormal qualifications are only present in exceptional
cases and therefore need to be minimized. This assumption of normality applies in particular
to the initial situation, where the agent could not yet have caused an abnormal qualification.

To summarize, an approach to the Qualification Problem which does not fall prey to the
generation of anomalous models needs to achieve the following:

1. Abnormal qualifications of actions are assumed not to hold initially and not to arise in
11 The Yale Shooting problem goes as follows (c.f. [Hanks and McDermott, 1987]): Suppose we call abnormal

any change of a proposition’s truth value during the execution of an action (as suggested in [McCarthy,
1986]). Given that shooting at a turkey with a loaded gun causes the animal to drop dead, we would expect
exactly this to happen when we start with the gun loaded, wait for a moment, and then shoot. Yet globally
minimizing abnormalities in this example produces a second model where the gun becomes unloaded during
the first action, waiting, and the turkey survives. While this magical change of the gun’s status is abnormal,
the turkey surviving the shot is normal in the above sense (as opposed to the change of its life status in the
intended model)—hence, this second model minimizes abnormality as well, though it is obviously wrong from
the perspective of causality.
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later situations unless they are caused .

2. The foregoing assumption regarding uncaused abnormalities is made prima facie and there-
fore applies by default only.

A formal theory that satisfies these needs requires at the very least a solution to the basic Frame
Problem and to the Ramification Problem in order to obtain caused abnormalities as indirect
effects. Furthermore, a nonmonotonic theory is called for by the desire to assume away certain
properties by default. We propose a formal account of the Qualification Problem which adds a
nonmonotonic theory to the established predicate logic formalism of the Fluent Calculus, to be
introduced next. This calculus constitutes an ideal basis for a realization of the above sketch
since it provides a monotonic solution to both the Frame and Ramification Problem. Starting
out from a monotonic theory is of advantage when integrating a solution to the Qualification
Problem because there will be no interference among nonmonotonic rules for inertia and those
for qualifications.

3 The Fluent Calculus

3.1 Solving the inferential Frame Problem in pure first-order logic:

An informal introduction to the simple Fluent Calculus

The motivation for the development of the Fluent Calculus was to solve not only the representa-
tional but also the inferential Frame Problem. While the former means finding a succinct way of
specifying all non-effects of actions, the latter means the problem of effectively computing these
non-effects [Bibel, 1986; Bibel, 1998]. The inferential Frame Problem arises whenever the value
of a fluent in one situation has to be derived from its value in another situation. Apparently,
one-by-one and using separate instances of the relevant non-change axioms, every such fluent
value needs to be carried stepwise from one situation to the other. This is done, for instance,
in the Situation Calculus if successor state axioms are used, no matter whether reasoning is
performed forward in time or via regression [Reiter, 1991], and in the Event Calculus where
persistence needs to be proven independently for each fluent value [Shanahan, 1997]. The more
fluents have to be carried unchanged through many intermediate situations or event occurrences,
the more valuable is a solution to the inferential Frame Problem.

With roots in the logic programming formalism of [Hölldobler and Schneeberger, 1990], the
Fluent Calculus addresses the inferential Frame Problem by specifying the effects of actions in
terms of how an action modifies the state of the environment [Thielscher, 1999]. The notion
of a state is therefore central to this axiomatization technique. State terms can be abstract
denotations, like the generic State(s) denoting the state of a world in a situation s. On the
other hand, each fluent represents a concrete state, namely, the one in which just this fluent
holds. Fluents are reified to this end [Quine, 1960], that is, denoted by terms like On(A,Table),
where On is a binary function symbol.

State terms, in particular fluents, can be composed to new states with the special binary
function “ ◦ ”. Written in infix notation, this function maps two states into a state in which the
fluents of both arguments hold. For example, the term State(S0) ◦ GluedToTable(A) denotes
the state which is exactly like the one in the initial situation but where block A is glued to the
table. For technical reasons, the Fluent Calculus includes the pre-defined constant ∅ denoting
the empty state, in which—intuitively—no fluent is true.

A fundamental notion is that of a fluent to hold in a state. Fluent f holds in state z just in
case z can be decomposed into two states one of which is the singleton f . For notational con-
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venience, we introduce the macro Holds(f, z) as an abbreviation for the corresponding equality
formula:

Holds(f, z)
def
= (∃z′) z = f ◦ z′ (9)

This fundamental notion of truth and falsity of fluents in states requires a special theory of state
terms, by which “◦” is characterized as the union operation with ∅ as the empty set of fluents
(for the formal details see Section 3.3 below). Based on the standard function State(s), a fluent
is defined to hold in a situation just in case it holds in the corresponding state:

Holds(f, s)
def
= Holds(f,State(s)) (10)

As an example, suppose that of the initial state in some scenario of our world of toy blocks it
is known that block A is on some block x, which in turn stands on the table; that no block y
is on top of block A or block B; and that our robot Robbie is in possession of glue. In the
Fluent Calculus, this incomplete state knowledge can be axiomatized as follows:

(∃x) (Holds(On(A, x), S0) ∧Holds(On(x,Table), S0)) ∧
(∀y) (¬Holds(On(y,A), S0) ∧ ¬Holds(On(y,B), S0)) ∧ Holds(Has(Robbie,Glue), S0)

(11)

With the help of macro definitions (9) and (10) and the foundational axioms, this specification
can be transformed into an equivalent formula which specifies what is known about the ‘contents’
of State(S0):

(∃x, z) [State(S0) = On(A, x) ◦On(x,Table) ◦Has(Robbie,Glue) ◦ z
∧ (∀y) (¬Holds(On(y,A), z) ∧ ¬Holds(On(y,B), z) ) ]

(12)

Put in words, State(S0) contains On(A, x) and On(x,Table) for some x, Has(Robbie,Glue),
and possibly more fluents z—with the restriction that z does not include a fluent On(y,A)
nor a fluent On(y,B), of which we know they are false in S0 for any y.

Based on the notion of states, the Frame Problem is solved by so-called state update axioms,
which specify how a state State(Do(A(~x), s)) after performing an action A(~x) relates to the
original state State(s) [Thielscher, 1999]. Following the classical Strips solution to the infer-
ential Frame Problem [Fikes and Nilsson, 1971], positive effects are modeled by adding them
to State(s). This is straightforwardly specified as State(s) ◦ f1 ◦ . . . ◦ fn. Negative effects are
modeled by removing them from the current state. We denote removal of a fluent by z − f .
Generalizing Strips to incomplete state knowledge, this set operation requires a case distinction
if the truth value of f is unknown in z: In case ¬Holds(f, z), we have that z−f is just z, else
z−f = z′ implies z′◦f = z and ¬Holds(f, z′). A suitable, rigorously first-order axiomatization
of removal is thus given by the following definition:

z′ = z − f
def
= ¬Holds(f, z′) ∧ [z′ ◦ f = z ∨ z′ = z] (13)

It is easy to see that this macro can be generalized to finitely many negative effects:

z′ = z − ∅
def
= z′ = z

z′ = z − (f1 ◦ . . . ◦ fn ◦ fn+1)
def
= (∃z′′) (z′′ = z − (f1 ◦ . . . ◦ fn) ∧ z′ = z′′ − fn+1)

(14)

As an example, consider the action Move(r, u, v, w), whose direct effect is that block u is
on w and no longer on v:12

Poss(Move(r, u, v, w), s) ⊃
State(Do(Move(r, u, v, w), s)) = State(s) ◦On(u,w)−On(u, v)

(15)

12 For the moment we ignore how the action affects the fluent Clear used above. We wish to model this as an
indirect effect (see Section 3.4 below).
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This state update axiom says that if Move(r, u, v, w) is possible and performed in s, then
the new state equals the old state except that On(u,w) becomes true and On(u, v) becomes
false. Take, for example, the action of moving block A away from its current location onto
block B, and suppose, for the sake of argument, that (∃x)Poss(Move(Robbie, A, x,B), S0)
where State(S0) is specified by (12). Then the instance {r/Robbie, u/A, v/x,w/B, s/S0} of
state update axiom (15) yields

State(Do(Move(Robbie, A, x,B), S0)) = State(S0) ◦On(A,B)−On(A, x)

Let S1 = Do(Move(Robbie, A, x,B), S0). Replacing State(S0) by an equal term according
to (12) yields

(∃x, z)State(S1) = On(A, x) ◦On(x,Table) ◦Has(Robbie,Glue) ◦ z ◦On(A,B)−On(A, x)

Since On(A, x) holds in the state from which it is subtracted, macro definition (13) implies

¬Holds(On(A, x),State(S1))∧
(∃x, z)State(S1) ◦On(A, x) = On(A, x) ◦On(x,Table) ◦Has(Robbie,Glue) ◦ z ◦On(A,B)

Since ¬Holds(On(A, x),State(S1)) and because state variable z in (12) can be chosen such
that ¬Holds(On(A, x), z), fluent On(A, x) can be canceled out on both sides of the equation,
which yields

(∃x, z) [State(S1) = On(x,Table) ◦Has(Robbie,Glue) ◦On(A,B) ◦ z
∧ ¬Holds(On(A, x), z) ]

We have now obtained from an incomplete initial specification a still partial description of
the successor state, which in particular includes the unaffected fluent terms On(x,Table) and
Has(Robbie,Glue). These fluents have thus survived the computation of the effect of the action
and so need not be carried over by separate axioms. Moreover, knowledge specified in (12) as
to which fluents do not hold in z applies to the new state, which includes z, just as well. Thus
all unchanged fluent values have been concluded to persist without applying extra inference
steps. This is how the Fluent Calculus solves the inferential Frame Problem. Its computational
value is crucially dependent on an efficient treatment of equality. While the simple addition of
equality axioms may constitute a considerable handicap for theorem proving, a variety of efficient
constraint solving algorithms have been developed for the special equational theory needed for
the function “◦” (see, e.g., [Pacholski and Podelski, 1997]). An efficient implementation of the
Fluent Calculus has recently been developed using constraint logic programming [Thielscher,
2000a].

Next we will introduce the Fluent Calculus formally.

3.2 Fluent Calculus signatures

Fluent Calculus signatures [Thielscher, 1999] can be considered reified versions of standard
Situation Calculus signatures Σ, which are many-sorted logic languages with equality and which
include the special sorts action and sit for actions and situations, respectively [Levesque et
al., 1998]. Some predicate symbols in Σ are fluent denotations; these are of arity ≥ 1 with the
last argument being of sort sit. The corresponding Fluent Calculus signature is then obtained
by

1. replacing each n+ 1-place predicate symbol which denotes a fluent and whose argument
is of sort sorts× sit by an n-place function symbol whose argument is of sort sorts;
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2. adding a sort fluent to which belong all well-sorted terms with leading function symbol
obtained in step 1, and a sort state of which fluent is a sub-sort;

3. adding the binary function symbol “ ◦ ” of type state×state 7→ state and the constant
“ ∅ ” of sort state, which serves as a unit element of ◦;

4. adding the unary function State of type sit 7→ state.

In the remainder of this paper, variables of sort action will be denoted by the letter a, variables
of sort sit by s, variables of sort fluent by f , and variables of sort state by z, all possibly
with sub- or superscripts.

3.3 Foundational axioms

Fundamental for any Fluent Calculus axiomatization is a set of equational axioms, denoted
Fstate , which is a suitable subset of the Zermelo-Fraenkel axioms characterizing states as (pos-
sibly infinite) collections of fluents with “◦” acting as the union operation and ∅ as the empty
set of fluents:

1. Axioms ACI1 (associativity, commutativity, idempotency, unit element),

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3)
z1 ◦ z2 = z2 ◦ z1

z ◦ z = z
z ◦ ∅ = z

(16)

2. Irreducibility and decomposition,

¬Holds(f, ∅)

Holds(f1, f) ⊃ f = f1

Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨Holds(f, z2)

3. Equality of states,

(∀f) (Holds(f, z1) ≡ Holds(f, z2)) ⊃ z1 = z2

4. Existence of states,
(∀Φ)(∃z)(∀f) (Holds(f, z) ≡ Φ(f))

where Φ is a second-order predicate variable of sort fluent.

The very last one of the axioms above stipulates the existence of a state for all possible combi-
nations of fluents.

3.4 State update axioms

The schema Poss(A(~x), s) ⊃ Γ[State(Do(A(~x), s)),State(s)] is the universal form of state up-
date axioms. The form of the update component Γ depends on the ontological assumptions
that can be made of the action in question.
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The Simple Case

Deterministic actions with only direct and closed effects give rise to the simplest form of state
update axioms, where the update is a mere equation relating State(Do(A(~x), s)) to State(s).
By closed effects we mean that every action has a maximal, finite number of positive and negative
effects. An example of a simple state update axiom is (15) from above.

Under the provision that actions do have only direct and closed effects, simple state update
axioms can be fully mechanically generated from a set of Situation Calculus-style effect axioms if
the latter can be assumed to give a complete account of the relevant effects of an action. As the
primary theorem of the Fluent Calculus it has been proved that a collection of thus generated
state update axioms solves the technical Frame Problem, that is, it suitably reflects the basic
assumption of persistence [Thielscher, 1999].13

Non-deterministic actions can be very elegantly specified by means of disjunctive state update
axioms Poss(A(~x), s) ⊃ Γ[State(Do(A(~x), s)),State(s)] where Γ is a disjunction of the possible
effects, i.e., state updates, of the respective action [Thielscher, 2000c]. An example will be shown
at the end of Section 4.

State Update Axioms with Ramifications

Only for small domains with very few fluents and actions is it possible and convenient to spec-
ify state update axioms in the simple form where all effects are explicitly enumerated. More
complex domains require a solution to the Ramification Problem [Ginsberg and Smith, 1988b].
It denotes the problem of handling indirect effects of actions that follow from so-called state
constraints, which describe dependencies among fluents. Consider, for example, the following
state constraint, which relates the fluent Clear(x) to other fluents in the blocks world:

Holds(Clear(x), s) ≡ x = Table ∨ ¬(∃y)Holds(On(y, x), s) (17)

(This axiom implies, for instance, Holds(Clear(Table), z), Holds(Clear(A), z), and Holds(Clear(B), z)
for any z satisfying (12).) This state constraint gives rise to the indirect effect that a block x
becomes unclear or clear, respectively, as soon as some other block is moved onto it or away from
it. More precisely, if an action is performed with effect On(y, x) for some y, then this action
additionally causes Clear(x) to become false whenever x 6= Table . Conversely, if an action is
performed with effect ¬On(y, x), then Clear(x) becomes true as an indirect effect, provided
that nothing else is on x.

In the Fluent Calculus, indirect effects are accounted for by the successive application of
so-called causal relationships, which state under what conditions an effect triggers another
one [Thielscher, 1997; Thielscher, 1998]. A causal relationship is formally specified with the
help of the expression Causes(ε, %, z, s) where ε (the triggering effect) and % (the ramifica-
tion, i.e., indirect effect) are possibly negated atomic fluent formulas and z is a state and s
a situation. The intuitive meaning is that the change to ε causes the change to % in state z
and situation s.14 The following two causal relationships, for example, formalize the potential

13 Actually, in [Thielscher, 1999] a variant of the Fluent Calculus is used where states are axiomatized as
multisets of fluents using a slightly different equational foundation [Störr and Thielscher, 2000]. The result
can however be straightforwardly adapted to the new axiomatization of Section 3.3, which has been introduced
in [Thielscher, 2000a].

14 The situation argument of Causes was not used in the original approach of [Thielscher, 1997]. We need it
here because our approach to the Qualification Problem relies on causal relationships which apply only in
certain situations.
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State(σ) z

State(Do(α, σ))

direct effect
of α

indirect effects

Figure 1: Ramification as causal chains: The result of the direct effect of action α, state z, is
the source of a path through several intermediate states, linked by a causal relation. An example
would be to move a block in State(σ), in which case the block is on its new location in z. The
further states are obtained by concluding, in any order, that the old location is now clear and
the new one is no longer so (except for the special case of the table). The finally resulting state
is always a fixpoint in the sense that no further causal relationship applies.

indirect effects on fluent Clear(x):

x 6= Table ⊃ Causes(On(y, x),¬Clear(x), z, s)

(∀y′)¬Holds(On(y′, x), z) ⊃ Causes(¬On(y, x),Clear(x), z, s)
(18)

Put in words, if some y is put onto x which is not the table, then Clear(x) becomes false;
conversely, whenever some y is removed from x, then x becomes clear if nothing else is on this
block.15

On the basis of causal relationships, the Ramification Problem is solved by causally propagat-
ing indirect effects: Starting from the direct effects of an action, causal relationships are applied
successively. The overall result of performing the action is then a fixpoint of such a chain of
indirect effects. Figure 1 gives a schematic illustration of this approach.16

The formal axiomatization of causal propagation in the Fluent Calculus is as follows. The
above usage of Causes being syntactic sugar, the Fluent Calculus for ramifications actually
uses the predicate Causes with a more complex argument structure:

Causes : state
6 × sit

An instance Causes(z, e+, e−, z1, e
+
1 , e−1 , s) means that in situation s, if intermediate state z

is the result of positive effects e+ and negative effects e−, then an additional effect is caused
which leads to state z1 (now the result of positive and negative effects e+

1 , e−1 , respectively, in
which the new effect is additionally recorded).17 For example,

Causes(z, On(A,B), On(A, x),
z − Clear(B), On(A,B), On(A, x) ◦ Clear(B), s)

(19)

says that if a state z is the result of positive effect On(A,B) and negative effect On(A, x),
then this causes Clear(B) to become false in z as an additional negative effect.

15 In [Thielscher, 1997] we have proposed a method for the automatic generation of causal relationships from a
set of state constraints plus domain-dependent knowledge of ‘causal influence.’

16 For the sake of simplicity, here and in what follows we ignore the distinction between steady and stabilizing
indirect effects introduced and argued for in [Thielscher, 1998].

17 While formally collections of effects such as e+ and e− are terms of sort state, they should not be viewed
as corresponding to an actual complete state of the world. In what follows, all variables e with sub- or
superscripts are of sort state.
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The macro Causes(ε, %, z, s) is defined in terms of the 7-ary Causes by distinguishing between
positive and negative causes and effects:

Causes(f, f ′, z, s)
def
= (∀e+, e−)Causes(z, e+ ◦ f, e−, z ◦ f ′, e+ ◦ f ◦ f ′, e− − f ′, s)

Causes(f,¬f ′, z, s)
def
= (∀e+, e−)Causes(z, e+ ◦ f, e−, z − f ′, e+ ◦ f − f ′, e− ◦ f ′, s)

Causes(¬f, f ′, z, s)
def
= (∀e+, e−)Causes(z, e+, e− ◦ f, z ◦ f ′, e+ ◦ f ′, e− ◦ f − f ′, s)

Causes(¬f,¬f ′, z, s)
def
= (∀e+, e−)Causes(z, e+, e− ◦ f, z − f ′, e+ − f ′, e− ◦ f ◦ f ′, s)

(20)

The reader may notice how the ‘momentum,’ that is, the collections of positive and negative
effects, is guaranteed to remain consistent: If necessary, a newly established positive (resp.
negative) indirect effect is subtracted from the preceding negative (resp. positive) effects. With
this definition, (19) follows from the first causal relationship in (18), given that B 6= Table .

Based on a specification of the causal relationships of a domain, the general form of updates
which account for indirect effects is as follows:

z = State(s) ◦ ϑ+ − ϑ− ⊃ Ramify(z, ϑ+, ϑ−,Do(A(~x), s)) (21)

where

• ϑ+ are the direct positive effects of action A(~x);

• ϑ− are the direct negative effects of action A(~x);

• Ramify(z, e+, e−, s) means that State(s) is a fixpoint of iteratively applying causal rela-
tionships to state z and effects e+, e− in situation s:

Ramify(z, e+, e−, s)
def
= (∃z1, e

+
1 , e−1 ) (State(s) = z1 ∧ (z, e+, e−, z1, e

+
1 , e−1 , s) ∈ µ[Causes])

where (~x, ~y, s) ∈ µ[P ] abbreviates the following formula, which is a standard second-
order schema to axiomatize that (~x, ~y, s) belongs to the reflexive and transitive closure of
predicate P with ~y being a fixpoint:

(∀Φ) {(∀~u) Φ(~u, ~u, s) ∧ (∀~u,~v, ~w) [ Φ(~u,~v, s) ∧ P (~v, ~w, s) ⊃ Φ(~u, ~w, s) ] ⊃ Φ(~x, ~y, s)}

∧ (∀~z) (P (~y, ~z, s) ⊃ ~y = ~z)

The use of its transitive closure presupposes the underlying Causes relation to be completely
specified. To this end, we circumscribe this predicate wrt. a given axiomatization of cause-
effect pairs. If Causes occurs only as the single consequent of implications, like in (18), then
second-order circumscription is equivalent to first-order completion [Lifschitz, 1994].

Consider, for example, the following state update axiom, which replaces the preliminary
one, (15), in the light of indirect effects:

Poss(Move(r, u, v, w), s) ⊃
z = State(s) ◦On(u,w)−On(u, v) ⊃

Ramify(z,On(u,w),On(u, v),Do(Move(r, u, v, w), s))
(22)

Suppose further that (∃x)Poss(Move(Robbie, A, x,B), S0) be given. State update axiom (22)
then implies

(∃x)(∀z) [z = State(S0) ◦On(A,B)−On(A, x) ⊃
Ramify(z,On(A,B),On(A, x),Do(Move(Robbie, A, x,B), S0)) ]
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Given B 6= Table , the circumscribed causal relationships, CIRC[(18);Causes], along with the
definition of Ramify entail

(∃x) (¬Holds(Clear(B), S1) ∧Holds(Clear(x), S1))

where S1 = Do(Move(Robbie, A, x,B), S0).
A justification for this approach to the problem of indirect effects is given by [Sandewall, 1996],

where the general concept of causal propagation has been proposed as the formal foundation for
the Ramification Problem. Moreover, in a series of papers, [Peppas et al., 1999; Prokopenko et
al., 1999; Prokopenko et al., 2000], a unifying semantics is defined for a variety of approaches to
the Ramification Problem, including our concept of causal relationships.

4 Qualification in the Fluent Calculus: The Basic Approach

The Fluent Calculus and its solution to the Frame and Ramification Problems shall now be
extended so as to additionally address the Qualification Problem and in particular solve the
problem of anomalous models. Our formal approach follows the guidelines proposed at the end
of Section 2.4.

4.1 Abnormality fluents

The first step towards overcoming anomalous models is to introduce abnormality predicates as
fluents so that we can appeal to ramification in order to account for abnormal qualifications which
are caused by an action. To this end, the standard Fluent Calculus signatures of Section 3.2 are
extended by the binary function Ab(x, y) whose range is the sort fluent. As before, the first
argument, x, denotes properties like Movable(u) or Functioning(Gripper-of (r)). The second
argument, y, indicates the cause for the abnormality; e.g., fluent Ab(Movable(A),Glued) shall
denote the abnormality that block A is not movable on account of it being glued to the table.
Instances of the generic ‘abnormality’ fluent may occur in state constraints and, hence, in causal
relationships, which then define how abnormalities could arise as indirect effects. For our blocks
world formalization, for example, we introduce the following causal relationship because of the
second state constraint in (5):18

Causes(GluedToTable(x),Ab(Movable(x),Glued), z, s) (23)

That is to say, whenever some block x gets glued to the table, then this causes a qualification
of any action which requires x to be movable. Conversely, if the block is somehow freed, then
the abnormality disappears together with its cause:

Causes(¬GluedToTable(x),¬Ab(Movable(x),Glued), z, s) (24)

It may of course happen that Ab(Movable(x), y) also holds for some y other than Glued .
Such a fluent would not be affected if (24) were applied and hence x would continue to be
immovable. For convenience, we use the macros Ab(x, z) and Ab(x, s) to represent that for
some y, Ab(x, y) holds in state z resp. situation s:

Ab(x, z)
def
= (∃y)Holds(Ab(x, y), z)

Ab(x, s)
def
= Ab(x,State(s))

(25)

18 For the Fluent Calculus these state constraints need of course be rewritten using the Holds expression; see
axioms (31) below.
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4.2 Arising of abnormal qualifications

The Qualification Problem arises because in the real world any abnormality may at any time arise
without being caused by the reasoning agent himself. This aspect is formally captured by allow-
ing instances of Ab to become true during any situation transition as a side effect of the mere fact
that the very transition takes place. So doing requires additional causal relationships, which, as
opposed to those just added (c.f. (23)), describe exogenously caused abnormalities. The signature
is further extended to this end by the predicates ExogCaused(f, s) and ExogUncaused(f, s). An
instance ExogCaused(Ab(x,Exog), s) indicates that in situation s an abnormality wrt. prop-
erty x arises due to an exogenous cause; conversely, an instance ExogUncaused(Ab(x,Exog), s)
indicates that in situation s an exogenously caused abnormality wrt. x disappears.19 The
effect of exogenous causes is given by these foundational causal relationships:

ExogCaused(Ab(x,Exog), s) ⊃

Causes(z, e+, e−, z ◦ Ab(x,Exog), e+ ◦ Ab(x,Exog), e−, s)

ExogUncaused(Ab(x,Exog), s) ⊃

Causes(z, e+, e−, z − Ab(x,Exog), e+, e− ◦ Ab(x,Exog), s)

(26)

The reader may notice two distinctive properties of these indirect effects. First, they are not
conditioned on the preceding effects e+, e− because they describe changes that are not triggered
by other effects. Second, they are conditioned on the situation s since the unusual arising or
disappearance of an abnormal qualification in a particular situation does not imply that the
qualification arises or disappears in all other situations as well.

4.3 Minimizing exogenously caused abnormalities

Up to this point our additions to the Fluent Calculus did not affect the monotonicity of the
solution to the Frame and Ramification Problem. A nonmonotonic feature, however, is required
for completing the basic account of the Qualification Problem. Abnormal qualifications are
minimized whenever they are not caused by an action that has been performed. This nonmono-
tonic behavior is achieved by adding appropriate default rules in the sense of [Reiter, 1980], by
which the Fluent Calculus gets embedded into a default theory. Formally, exogenous influence
on abnormalities is minimized by default rules of the following form:

δ+
Exog(x, s) =

α : ¬ExogCaused(Ab(x,Exog), s)

¬ExogCaused(Ab(x,Exog), s)

δ−Exog(x, s) =
α : ¬ExogUncaused(Ab(x,Exog), s)

¬ExogUncaused(Ab(x,Exog), s)

(27)

where the so-called prerequisites α can be arbitrary first-order formulas to further condition the
general assumption of normality. In all examples that follow, however, we tacitly assume α to
be a logical tautology, in which case it is simply omitted. As usual, a default rule with variables
represents the set of its (well-sorted) ground instances [Reiter, 1980].

As has been argued in Section 2.4, an accompanying default assumption is needed for abnor-
malities of any kind in the initial situation. Their minimization is carried out by defaults of the

19 With the focus on the Qualification Problem, we only let the fluent Ab(x,Exog) be subject to exogenous
causes in this paper. In general, the new predicates ExogCaused(f, s) and ExogUncaused(f, s) can be used
to model any kind of exogenous influence on fluents.
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following form:

δS0
(x, y) =

α : ¬Holds(Ab(x, y), S0)

¬Holds(Ab(x, y), S0)
(28)

If, for instance, the observations suggest no abnormalities, then the underlying default the-
ory has a unique extension, which includes (∀x)¬Ab(x, S0). (Recall that ¬Ab(x, s) means
¬Holds(Ab(x, y), s) for any y.) On the other hand, if, say, Holds(GluedToTable(B), S0) is
given, then the state constraint Holds(GluedToTable(x), s) ⊃ Holds(Ab(Movable(x),Glued), s)
implies Ab(Movable(B), S0) according to (25).

This completes our basic approach to the Qualification Problem by means of the Fluent
Calculus. To summarize, domains are axiomatized as default theories ∆ = (D,Σ) where D
is a set of default rules of the form (27) or (28), and Σ is a set of Fluent Calculus axioms
including a circumscribed causal relation CIRC[Ψ;Causes] where Ψ includes the foundational
relationships (26). The semantics is given by the usual definition of extensions of ∆ and the
notion of skeptical entailment following [Reiter, 1980].20 In what follows we prove that we have
solved the anomalous model problem of Section 2. We also show why this solution is not limited
to deterministic actions.

The anomalous model problem revisited

Let Dbw be the default rules (27) and (28), with prerequisite α = True , and let Σbw be the
Fluent Calculus theory consisting of the state update axioms,

Poss(Move(r, u, v, w), s) ⊃
z = State(s) ◦On(u,w)−On(u, v) ⊃

Ramify(z,On(u,w),On(u, v),Do(Move(r, u, v, w), s))

Poss(GlueToTable(r, x), s) ⊃
z = State(s) ◦GluedToTable(x) ⊃

Ramify(z,GluedToTable(x), ∅,Do(GlueToTable(r, x), s))

(29)

the action precondition axioms,

Poss(Move(r, u, v, w), s) ≡
u 6= w ∧ v 6= w ∧Holds(Clear(u), s) ∧Holds(On(u, v), s) ∧Holds(Clear(w), s)∧
¬Ab(Movable(u), s) ∧ ¬Ab(Functioning(Gripper-of (r)), s)

Poss(GlueToTable(r, x), s) ≡
Holds(Has(r,Glue), s) ∧Holds(Clear(x), s) ∧Holds(On(x,Table), s)∧
¬Ab(Movable(x), s) ∧ ¬Ab(Functioning(Gripper-of (r)), s) ∧ ¬Ab(Usable(Glue), s)

(30)

20 A formula is skeptically entailed just in case it is contained in every extension of a default theory. The
concept of an extension in Default Logic underwent a number of improvements regarding arguably undesired
features of the original definition (such as non-cumulativity, non-commitment to assumptions, non-existence
of extensions, etc.; see, e.g., [Delgrande et al., 1994]). However, the default rules needed for the Qualification
Problem are normal in the sense of [Reiter, 1980], and none of the aforementioned undesired properties holds
for normal default theories.
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the state constraints,

Holds(Clear(x), s) ≡ x = Table ∨ ¬(∃y)Holds(On(y, x), s)
Holds(GluedToTable(x), s) ⊃ Holds(On(x,Table), s)
Holds(GluedToTable(x), s) ≡ Holds(Ab(Movable(x),Glued), s)
¬Holds(On(x, x), s)
Holds(On(x, y), s) ∧Holds(On(x, y′), s) ⊃ y = y′

Holds(On(y, x), s) ∧Holds(On(y′, x), s) ⊃ y = y′ ∨ x = Table

(31)

the causal relationships CIRC[(18)∧ (23)∧ (24)∧ (26);Causes], and the unique-name axioms,21

UNA[A,B,Table] ∧UNA[On,Clear ,GluedToTable,Ab]∧
UNA[Glued ,Exog ] ∧UNA[Movable,Functioning ,Usable]

plus the foundational axioms Fstate . We then have the following result.

Proposition 2 Consider the initial specification,

Holds(On(A,Table), S0) ∧Holds(Clear(A), S0) ∧Holds(Clear(B), S0)∧
Holds(Has(Robbie,Glue), S0)

(32)

Let ∆bw = (Dbw,Σbw ∪ {(32)}). Default theory ∆bw admits a unique extension, which entails
each of

1. Poss(Move(Robbie, A,Table, B), S0)

2. Poss(GlueToTable(Robbie, A), S0)

3. ¬Poss(Move(Robbie, A,Table, B), S1)

where S1 = Do(GlueToTable(Robbie, A), S0).

Proof: Suppose there exists an interpretation M for the underlying Fluent Calculus signature
which is a model of Σbw, of (∀x, s)¬ExogCaused(Ab(x), s) and (∀x, s)¬ExogUncaused(Ab(x), s),
and of

State(S0) = On(A,Table) ◦ Clear(A) ◦ Clear(B) ◦Has(Robbie,Glue)
◦On(B,Table) ◦ Clear(Table)

(33)

(Note that we have fixed an initial state in which A and B are the only blocks and both are
on the table, which is consistent with (32).) Then Σbw∪{(32)}∪{ω : : ω

ω
∈ Dbw} is consistent.

Hence, the unique extension E of ∆bw is

Th
[

Σbw ∪ {(32)} ∪ {ω :
: ω

ω
∈ Dbw}

]

where Th[Ψ] denotes the set of logical consequences of the set of formulas Ψ. Precondition
axioms (30) in conjunction with (33), the unique-name axioms, and Fstate imply that

E |= Poss(Move(Robbie, A,Table, B), S0) ∧ Poss(GlueToTable(Robbie, A), S0)

21 For convenience, we adopt from [Baker, 1989] the following notation for sets of equational axioms expressing
uniqueness of names: UNA[h1, . . . , hn]

def=
∧

i<j
hi(~x) 6= hj(~y) ∧

∧

i
[hi(~x) = hi(~y) ⊃ ~x = ~y ].
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Moreover, the second state update axiom in (29) in conjunction with causal relationship (23)
implies that E |= Holds(Ab(Movable(A),Glued), S1). From this and the first one of the pre-
condition axioms (30), it follows that

E |= ¬Poss(Move(Robbie, A,Table, B), S1)

It remains to be shown that an interpretation M exhibiting the abovementioned properties
does indeed exist. Starting from a model of the given unique-name assumptions, the foundational
axioms, and CIRC[(18) ∧ (23) ∧ (24) ∧ (26);Causes], such a model M can be obtained by
inductively assigning state terms to each ground expression State(σ). The base case is given
by (33). This initial state satisfies axiom (32) and the underlying state constraints, (31). For
the induction step, suppose State(σ) has been assigned a state term τ which satisfies the state
constraints, and consider any well-sorted ground instance α of the two actions Move(r, u, v, w)
and GlueToTable(r, x), respectively. We distinguish the following cases:

1. If {State(s) = τ} ∪ {(30),Fstate} |= ¬Poss(α, σ), then to State(Do(α, σ)) is assigned τ ;

2. else if α = GlueToTable(Robbie, ζ), then to State(Do(α, σ)) is assigned the state term
τ ◦GluedToTable(ζ) ◦ Ab(Movable(ζ),Glued);

3. else if α = Move(Robbie, ζ, η, ξ), then to State(Do(α, σ)) is assigned

(a) τ ◦On(ζ, ξ) ◦ Clear(η)−On(ζ, η) if ξ = Table ,

(b) τ ◦On(ζ, ξ) ◦ Clear(η)− (On(ζ, η) ◦ Clear(ξ)) if ξ 6= Table .

It is straightforward to verify that this assignment yields a model of the state update axioms (29)
and the state constraints (31).

The formal proof shows how the anomalous model problem is overcome: Since all defaults
are applicable, there is a unique extension, in which reasoning is performed by the standard
techniques of the Fluent Calculus. This crucial feature of our general approach applies whenever
the only abnormalities that occur are justified. Consider, for example, a slight modification of
the anomalous model problem where each of two actions A1 and A2 causes an abnormality wrt.
the executability of the other one. If A1 is performed first, then A2 will no longer be possible,
whereas if A2 is performed first, then A1 will become qualified. In both these scenarios, all
defaults apply and define a unique extension. Again the right conclusion about which action is
successful is obtained solely by the reasoning techniques for actions and effects provided by the
standard Fluent Calculus.

Non-deterministic actions and qualifications

Our approach to the Qualification Problem does not interfere with non-deterministic informa-
tion. If an abnormal qualification is among the possible (direct or indirect) effects of a non-
deterministic action, then it is not subject to minimization as it has a cause. Therefore, each
extension of the underlying default theory includes the possibility that the non-deterministic
action brings about the abnormality in question. In this way, uncertain information is treated
in the appropriate way, that is, cautiously.

The following elaboration of the blocks world shall illustrate this way of dealing with non-
deterministic actions which possibly give rise to abnormal qualifications. Consider the action of
temporarily exposing glue to the air. Chances are that so doing may have the effect that the glue

19



becomes unusable. This being a non-deterministic outcome, the action is formally described by
the following disjunctive state update axiom [Thielscher, 2000c]:

Poss(ExposeToAir(r,Glue), s) ⊃
Ramify(State(s) ◦ Ab(Usable(Glue),Dried),Ab(Usable(Glue),Dried), ∅,

Do(ExposeToAir(r,Glue), s))
∨
Ramify(State(s), ∅, ∅,Do(ExposeToAir(r,Glue), s))

(34)

Put in words, a possible result of exposing the glue to the air is that it becomes unusable; the
alternative result is that nothing changes at all. A robot can perform the new action whenever
it has glue and its gripper is functioning:

Poss(ExposeToAir(r,Glue), s) ≡
Holds(Has(r,Glue), s) ∧ ¬Ab(Functioning(Gripper-of (r)), s)

(35)

Given this knowledge, a careful robot who intends to eventually use his glue had better not
expose it to the air—despite the fact that the glue does not necessarily become unusable by
doing so. In other words, if Robbie knows at some stage that he possesses glue and there are no
hints at abnormal circumstances, then he can reasonably assume by default that he will be able
to glue to the table any block which is clear and stands on the table. Yet it would be unreasonable
if our robot relied on the conclusion that this will still be possible after having exposed the glue
to the air. The following proposition shows that our account of the Qualification Problem, and
in particular the solution to the problem of anomalous models, is correct in this respect.

Proposition 3 Consider the initial specification,

Holds(On(A,Table), S0) ∧Holds(Clear(A), S0) ∧Holds(Has(Robbie,Glue), S0) (36)

Let Σnd
bw = Σbw ∪ {(34) ∧ (35)} and ∆nd

bw = (Dbw,Σ
nd
bw ∪ {(36)}). Default theory ∆nd

bw admits a
unique extension E, for which the following holds:

1. E |= Poss(GlueToTable(Robbie, A), S0)

2. E |= Poss(ExposeToAir(Robbie,Glue), S0)

3. E 6|= Poss(GlueToTable(Robbie, A),Do(ExposeToAir(Robbie,Glue), S0))

Proof: Suppose there exists an interpretation M for the underlying Fluent Calculus signature
which is a model of Σnd

bw, of (∀x, s)¬ExogCaused(Ab(x), s) and (∀x, s)¬ExogUncaused(Ab(x), s),
and of both

State(S0) = On(A,Table) ◦ Clear(A) ◦Has(Robbie,Glue) ◦ Clear(Table) (37)

and
State(S1) = On(A,Table) ◦ Clear(A) ◦Has(Robbie,Glue) ◦ Clear(Table)

◦Ab(Usable(Glue),Dried)
(38)

where S1 = Do(ExposeToAir(Robbie,Glue), S0). Then Σnd
bw ∪ {(36)} ∪ {ω : : ω

ω
∈ Dbw} is

consistent. Hence, the unique extension E of ∆nd
bw is

Th
[

Σnd
bw ∪ {(36)} ∪ {ω :

: ω

ω
∈ Dbw}

]
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The second precondition axiom in (30) in conjunction with (37) and Fstate implies that

E |= Poss(GlueToTable(Robbie, A), S0)

Likewise, precondition axiom (35) in conjunction with (37) and Fstate implies that

E |= Poss(ExposeToAir(Robbie,Glue), S0)

Moreover, from equation (38) and the second precondition axiom in (30) in conjunction with
Fstate it follows that

M |= ¬Poss(GlueToTable(Robbie, A), S1)

Hence, since M is a model of E ,

E 6|= Poss(GlueToTable(Robbie, A), S1)

It remains to be shown that an interpretation M with the abovementioned properties does
indeed exist. Starting from a model of the given unique-name assumptions, the foundational
axioms, and CIRC[(18) ∧ (23) ∧ (24) ∧ (26);Causes], such a model M can be obtained by
inductively assigning state terms to each ground expression State(σ). The base case is given
by (37). This initial state satisfies axiom (36) and the underlying state constraints, (31). For the
induction step, suppose State(σ) has been assigned a state term τ which satisfies the state con-
straints, and consider any well-sorted ground instance α of the three actions Move(r, u, v, w),
GlueToTable(r, x), and ExposeToAir(r,Glue), respectively. We distinguish the following cases:

1. If {State(σ) = τ} ∪ {(30), (35),Fstate} |= ¬Poss(α, σ), then to State(Do(α, σ)) is as-
signed τ ;

2. else if α = GlueToTable(Robbie, A) then to State(Do(α, σ)) is assigned the state term
τ ◦GluedToTable(A) ◦ Ab(Movable(A),Glued);

3. else if α = ExposeToAir(Robbie,Glue), then to State(Do(α, σ)) is assigned the state term
τ ◦ Ab(Usable(Glue),Dried).

It is straightforward to verify that this assignment yields a model of the state update axioms (29)
and (34), of the state constraints (31), and of equation (38).

5 Explanation and Priority

Our discussion thus far was centered around the challenge raised by the problem of anomalous
models in the context of the Qualification Problem. In this section we turn back to the basic issue
of surprising encounters of abnormal qualifications of actions; that is, abnormal circumstances
for which no cause can be found in the foregoing action sequence. In our approach to the
Qualification Problem, once all regular preconditions of an action are satisfied, the default
conclusion is made that the action in question can indeed be executed. In case the action
surprisingly fails, the axiomatization blocks some instance of a default rule when constructing
an extension of the underling default theory. In this way the theory remains consistent as it
still admits one or more extensions. Incidentally, the new set of extensions entails possible
explanations for the encountered failure. Explanation problems are thus solved deductively, just
like prediction and planning problems are.
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Suppose, for example, our robot sees block A clear and on the table, and he perceives block B
as clear, too. Suppose further that Robbie , to his own surprise, fails to move A onto B. Then
he deduces that the reason for this abnormal outcome must be that either block A was not
movable or his gripper did not function: Take the initial specification,

Holds(On(A,Table), S0) ∧ Holds(Clear(A), S0) ∧ Holds(Clear(B), S0) (39)

along with the—unexpected—observation,

¬Poss(Move(Robbie, A,Table, B), S0) (40)

The Fluent Calculus theory Σbw ∪ {(39), (40)} entails

Ab(Movable(A), S0) ∨ Ab(Functioning(Gripper-of (Robbie)), S0)

according to the first one of the precondition axioms (30). Hence, (Dbw,Σbw ∪ {(39), (40)})
admits two kinds of extensions, in one of which all defaults are applied except for some instance
of

δS0
(Movable(A), y) (41)

while the other extension is obtained by applying all defaults except for one instance of

δS0
(Functioning(Gripper-of (Robbie)), y) (42)

The default theory thus entails22

Ab(Movable(A), S0) ⊕ Ab(Functioning(Gripper-of (Robbie)), S0) (43)

A similar result is obtained if an abnormal action qualification is observed in later states: If
the robot first shuffles around a number of blocks without touching A and then turns to this
very block and fails to relocate it, then the default theory entails that an abnormality either con-
cerning Movable(A) or concerning Functioning(Gripper-of (Robbie)) was exogenously caused
at some point during the foregoing sequence of actions.

Usually, once a surprising qualification is observed, the underlying default theory gives rise
to multiple extensions. Each of them determines a possible explanation for what has happened,
which is exemplified by the particular default that has not been applied. (In our example above
it was either one instance of (41) or one instance of (42) which was not applied.) Obtaining
different extensions means that no preference is given to one or more explanations although
some may be more likely true than others. Hence the only conclusion supported by all ex-
tensions is one possibly big exclusive disjunction of atoms of the form Holds(Ab(x, y), S0) or
ExogCaused(Ab(x,Exog), s). (In our example, we obtained formula (43) as conclusion.) Con-
sidering equal all explanation attempts might be unsatisfactory insofar as the reasoning agent
often needs to know or at least conjecture what went wrong in order to re-plan the intended
future course of actions. Now, by their very nature, abnormalities are a priori unlikely to hap-
pen. Differences among their respective likelihood seem therefore negligible. The designer of an
intelligent agent may nonetheless wish to incorporate knowledge of the relative likelihood into
the axiomatization in order to help the agent quickly recover from an unexpected failure during
the execution of his plan. For example, the toy blocks in a real-world realization of the blocks
world are presumably crafted in such a way that they all are movable. So if the robot encounters

22 Below, by ψ ⊕ ϕ we denote exclusive disjunction, that is, the formula ψ ∧ ¬ϕ ∨ ¬ψ ∧ ϕ.
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a problem at some point, then chances are that the problem lies in his gripper rather than in
one of the blocks. Domain knowledge of this kind can be of great help to an autonomous agent
in guiding him through a possible sea of increasingly unlikely explanations.

An elegant way of expressing degrees of abnormality within our theory is given by the theory
of Prioritized Default Logic [Brewka, 1994; Rintanen, 1995]. This extension to the classical
framework supports the specification of (possibly partial) preference orderings among defaults.
On this basis, a reasoner can select those extensions of a default theory which most likely
correspond to the actual states of affairs in the world. In what follows, we confine ourselves to
the special case of default theories with only prerequisite-free, normal default rules (which are
characterized by the scheme : ω

ω
); for the general setting see, e.g., [Brewka and Eiter, 1999].

Definition 4 [Rintanen, 1995] A prioritized default theory is a triple (D,W,<) where D
and W are as in classical Default Logic and < is a partial ordering on the ground instances of
the elements in D.

If E is a closed set of formulas, then a default : ω
ω

is said to be applied in E iff ω ∈ E . Let
∆ = (D,W,<) be a prioritized default theory, then an extension E of the (standard) default
theory (D,W ) is a preferred extension of ∆ iff there is a total ordering ¿ extending < such
that the following holds for all extensions E ′ of (D,W ) and all defaults δ′ ∈ D : If δ′ is
applied in E′ \ E , then there is some δ¿δ′ which is applied in E \ E ′ .

If δ < δ′, then default δ is said to be preferred over δ′. Thus an extension E is preferred iff
for all extensions E ′, the defaults applied in E ‘compensate’ for each δ′ which is applied in E ′

but not in E . Compensation simply means that there is some default which is applied in E but
not in E′ and which is preferred over δ′ according to the given preference relation. Or rather,
since the preference relation itself may be genuinely partial, according to a total extension ¿
of <.

Let us see how this development of classical default logic provides means to specify and
reason with domain-dependent knowledge about the relative likelihood of exogenously caused
abnormalities. Recall our set of defaults Dbw and consider this preference ordering:23

δS0
(Movable(x), y) <bw δS0

(Functioning(Gripper-of (r)), y′)

δS0
(Movable(x), y) <bw δ+

Exog(Functioning(Gripper-of (r)), s)

δ+
Exog(Movable(x), s) <bw δS0

(Functioning(Gripper-of (r)), y)

δ+
Exog(Movable(x), s) <bw δ+

Exog(Functioning(Gripper-of (r)), s
′)

Put in words, it is even more unlikely, a priori, that a block is immovable than that the gripper
of a robot does not function. In other words, the latter shall always be the preferred explanation.
Notice that nonetheless the ordering is genuinely partial. For there is, for example, no preference
as to the situation in which an abnormal malfunction of the gripper arises if several possibilities
exist in that respect. The following proposition shows that this formalization allows a reasoning
agent to select preferred explanations.

Proposition 5 Let ∆pr
bw = (Dbw,Σbw ∪ {(39), (40)}, <bw ). Then all preferred extensions ∆pr

bw

entail
Ab(Functioning(Gripper-of (Robbie)), S0)

Proof: Axioms (39) and (40) in conjunction with the first one of the precondition axioms
in (30) imply that

Ab(Movable(A), S0) ∨ Ab(Functioning(Gripper-of (Robbie)), S0) (44)
23 The following generic relations shall represent all of their ground instances.
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Consequently, the (classical) extensions of (Dbw,Σbw ∪ {(39), (40)}) are obtained by either
applying all defaults in Dbw except for a single instance of δS0

(Movable(A), y) or by applying
all defaults in Dbw except for a single instance of δS0

(Functioning(Gripper-of (Robbie)), y). Let
E(y) denote the extensions of the first kind and E ′(y′) the extensions of the second kind.
From δS0

(Movable(A), y)<bwδS0
(Functioning(Gripper-of (Robbie)), y′) for all y, y′ it follows

that none of E(y) is preferred. All extensions E ′(y′) entail ¬Ab(Movable(A), S0); hence, the
claim follows by (44).

6 Strong vs. Weak Qualifications

The action qualifications we have considered so far were strong in the sense that they render
an action physically impossible. A block cannot be moved at all if stuck to the table. Or, if
the robot’s gripper does not function it is impossible even to start gluing a block to the table.
Accordingly, all instances of Ab(Movable(x), s) and Ab(Functioning(Gripper-of (r)), s) imply
the negation of a corresponding instance of the predicate Poss(a, s).

Actions may also have weak qualifications, which occur when the action can be executed but
does not result in the expected outcome: Either some of the usual effects do not materialize,
or unexpected additional effects are produced, or both. For example, the robot may succeed
with grabbing and lifting a block u which, however, is slippery and hence soon slips off the
gripper and lands on the table before it reaches the intended destination. If so, the action
Move(r, u, v, w) is possible and achieves that On(u, v) becomes false as expected but fails to
produce the other usual effect of On(u,w) becoming true. Instead the action results in the
unexpected On(u,Table).

Though conceptually different from strong qualifications, weak ones can be readily accom-
modated in our approach to the Qualification Problem as it stands. Additional instances of
Ab are used to indicate abnormal circumstances regarding weak action qualifications, like, e.g.,
Ab(Transportable(x),Slippery) denoting that block x cannot be transported over a longer dis-
tance on account of it being slippery. Minimization by means of defaults of the form (27) or (28)
is applied in the very same fashion as in case of abnormalities leading to strong qualifications.
The crucial formal difference between strong and weak qualifications is that the fluents repre-
senting the former occur in action precondition axioms while the fluents representing the latter
strengthen the antecedents of state update axioms.

For example, in the light of the possibility that a weak qualification occurs, the current state
update axiom for Move should be refined thus:

Poss(Move(r, u, v, w), s) ⊃
[¬Ab(Transportable(u), s) ⊃

z = State(s) ◦On(u,w)−On(u, v) ⊃
Ramify(z,On(u,w),On(u, v),Do(Move(r, u, v, w), s)) ] ∧

[Ab(Transportable(u), s) ⊃
[ v 6= Table ⊃

z = State(s) ◦On(u,Table)−On(u, v) ⊃
Ramify(z,On(u,Table),On(u, v),Do(Move(r, u, v, w), s)) ] ∧

[ v = Table ⊃ Ramify(State(s), ∅, ∅,Do(Move(r, u, v, w), s)) ] ]

(45)

Let Σwq
bw be as Σbw but with the first one of the state update axioms in (29) replaced by

axiom (45). Then the robot should conclude that moving a block has all of the usual effects
if nothing hints at an abnormal weak qualification. On the other hand, if a Move action was
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possible but the robot, upon checking the new situation, sees that the block it carried is not at
the destination, then it should conclude that a weak qualification occurred and that the block
can be found somewhere on the table. The following proposition states that these conclusions
are indeed formally supported by our axiomatization.

Proposition 6 Consider the initial specification,

Holds(On(A,B), S0) ∧Holds(Clear(A), S0) ∧Holds(Clear(C), S0) (46)

and let S1 = Do(Move(Robbie, A,B,C), S0).

1. (Dbw,Σ
wq
bw ∪ {(46)}) admits a unique extension, which entails

Poss(Move(Robbie, A,B,C), S0) ∧ Holds(On(A,C), S1)

2. (Dbw,Σ
wq
bw ∪ {(46),Poss(Move(Robbie, A,B,C), S0) ∧ ¬Holds(On(A,C), S1)}) admits a

unique extension, which entails

Ab(Transportable(A), S0) ∧ Holds(On(A,Table), S1)

Proof:

1. Let ∆wq
bw = (Dbw,Σ

wq
bw∪{(46)}). Suppose there exists an interpretation M which is model

of Σwq
bw, of (∀x, s)¬ExogCaused(Ab(x), s) and (∀x, s)¬ExogUncaused(Ab(x), s), and of

State(S0) = On(A,B) ◦ Clear(A) ◦ Clear(C)
◦On(B,Table) ◦On(C,Table) ◦ Clear(Table)

(47)

Then Σwq
bw ∪ {(46)} ∪ {ω : : ω

ω
∈ Dbw} is consistent. Hence, the unique extension E of

∆wq
bw is

Th
[

Σwq
bw ∪ {(46)} ∪ {ω :

: ω

ω
∈ Dbw}

]

Precondition axioms (30) in conjunction with (47) and Fstate imply that

E |= Poss(Move(Robbie, A,B,C), S0)

Moreover, since E |= ¬Ab(Transportable(A), S0), the first part of state update axiom (45)
applies to action Move(Robbie, A,B,C) and situation S0 and entails, in conjunction with
CIRC[(18)∧ (23)∧ (24)∧ (26);Causes], that E |= Holds(On(A,C), S1). The existence of
an interpretation M with the abovementioned properties can be proved along the line of
the proof for Proposition 2.

2. Let ∆wq
bw = (Dbw,Σ

wq
bw ∪ {(46),Poss(Move(Robbie, A,B,C), S0)∧¬Holds(On(A,C), S1)}).

From (46) and Poss(Move(Robbie, A,B,C), S0) ∧ ¬Holds(On(A,C), S1) along with the
contraposition of the first part of state update axiom (45) in conjunction with CIRC[(18)∧
(23)∧(24)∧(26);Causes], it follows that Ab(Transportable(A), S0). Hence, the second part
of state update axiom (45) applies to action Move(Robbie, A,B,C) and situation S0. In
conjunction with the other domain axioms in Σwq

bw it follows that Holds(On(A,Table), S1).
All of these conclusions hold without the need to apply any default rule, hence are contained
in all extensions of ∆wq

bw. The existence of a unique extension is proved in analogy to the
proof above.
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7 Accidents

Abnormal qualifications in our sense are persistent by default: Once an abnormality has been
observed, the agent cannot assume that it will sort itself out. Accordingly, Ab is a fluent, which
keeps its value unless it is caused to change (possibly for exogenous reasons). In this section, we
extend our theory to also cover the opposite of persistent qualifications, that is, failures which
do not normally recur. We call accidents this kind of abnormalities. An example may be that a
block just accidentally drops off the gripper without being slippery in general. It may then be
more reasonable, on encountering an anomaly, to first of all assume an accident and to do the
action again instead of searching for a more fundamental (that is, persistent) reason.

Our concept of accidents as a non-recurring phenomenon includes the assumption that the
occurrence of an accident cannot be caused by preceding actions. The problem of anomalous
models, which concerned caused abnormalities, does therefore not apply to the minimization of
accidents. Formally, we extend further the standard Fluent Calculus signature by the generic
atom Accident(a, s) to denote that an accident with action a in situation s happens. Accidents
are then assumed away by the generic default rule,

δAcc(a, s) =
α : ¬Accident(a, s)

¬Accident(a, s)
(48)

On this basis, actions which can go wrong accidentally are specified by state update axioms
which include a specification of the effect in case of an accident. For example, the action of
moving a block (c.f. (45)) shall be specified as follows in view of a potential accident:24

Poss(Move(r, u, v, w), s) ⊃
[¬Accident(Move(r, u, v, w), s) ∧ ¬Ab(Transportable(u), s) ⊃

z = State(s) ◦On(u,w)−On(u, v) ⊃
Ramify(z,On(u,w),On(u, v),Do(Move(r, u, v, w), s)) ]∧

[Accident(Move(r, u, v, w), s) ∨ Ab(Transportable(u), s) ⊃
[ v 6= Table ⊃

z = State(s) ◦On(u,Table)−On(u, v) ⊃
Ramify(z,On(u,Table),On(u, v),Do(Move(r, u, v, w), s)) ] ∧

[ v = Table ⊃ Ramify(State(s), ∅, ∅,Do(Move(r, u, v, w), s)) ] ]

(49)

The possibility to explain unexpected effects as accidents can help a planning agent quickly
recover from an observed action failure. If an accident is the best explanation, then the agent
can predict that he will succeed with simply retrying the crucial action. To this end, it should
be possible to specify, e.g., that a single accident is more likely than some exogenously caused
persistent qualification while two such accidents in a row are less likely. For example, if our robot
observes that he has dropped a block while moving it, he should first assume an accident and
just try to move the block again. If, however, he fails a second time, then the most reasonable
explanation shall be to consider the block not transportable.

Domain knowledge of the relative likelihood of abnormalities and accidents that takes this
form goes beyond the expressiveness of Prioritized Default Logic used in Section 5. There,
preferences among defaults are defined in isolation. Consequently, if a default has higher priority
than another one, this preference holds regardless of which other defaults apply. We therefore

24 For the sake of simplicity, we assume that an accident with the action Move has the deterministic effect that
the block ends up somewhere on the table. A non-deterministic state update axiom could be used to specify
that the block may also accidentally land on top of any clear block.
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generalize Prioritized Default Logic to allow for context-dependent preferences among defaults
as follows:

Definition 7 A set-prioritized default theory is a triple ∆ = (D,W,≺) where D and W
are as in classical Default Logic and ≺ is a partial ordering on the power-set of the ground
instances of the elements in D.

An extension E of the (standard) default theory (D,W ) is a preferred extension of ∆ iff
there is no extension E ′ such that appD(E′ \E) ≺ appD(E \E′) where appD(E) denotes the
defaults from D that are applied in E .

Put in words, in a set-prioritized default theory a preference relation is specified on sets of
defaults. An extension E is preferred just in case there is no extension E ′ such that the
defaults applied in E ′ \ E are given priority over the defaults applied in E \ E ′.

As an example, consider the following set-preference ordering:25

{δS0
(Transportable(u), y)}≺bw {δAcc(Move(r, u, v, w), s)}

{δ+
Exog(Transportable(u), s)}≺bw {δAcc(Move(r, u, v, w), s′)}

{δAcc(Move(ri, u, vi, wi), si)}≥2≺bw {δS0
(Transportable(u), y)}

{δAcc(Move(ri, u, vi, wi), si)}≥2≺bw {δ
+
Exog(Transportable(u), s)}

where {δAcc(Move(ri, u, vi, wi), si)}≥2 stands for any set of instances of δAcc(Move(ri, u, vi, wi), si)
with two or more elements. Hence, assuming away an initial or exogenously caused abnormal-
ity wrt. block u being transportable is preferred over assuming away a single accident when
moving u. The preference is reversed in case the observations cannot be explained by a single
accident with the same block.

Let Σacc
bw be as Σwq

bw but with state update axiom (45) replaced by (49), and let Dacc
bw be

Dbw augmented by (48), with prerequisite α = True . The following proposition shows that this
domain axiomatization exhibits the intended behavior: After failing to move a block it can be
predicted that a retry will be successful, but if the failure repeats, then the block is inferred to
not being transportable.

Proposition 8 Consider the initial specification,

Holds(On(A,B), S0) ∧Holds(Clear(A), S0) ∧Holds(Clear(C), S0) (50)

and let S1 = Do(Move(Robbie, A,B,C), S0) and S2 = Do(Move(Robbie, A,Table, C), S1).

1. Consider the observation,

Poss(Move(Robbie, A,B,C), S0) ∧Holds(On(A,Table), S1) (51)

Then ∆1 = (Dacc
bw ,Σacc

bw ∪ {(50), (51)},≺bw ) admits a unique preferred extension, which
entails

Poss(Move(Robbie, A,Table, C), S1) ∧Holds(On(A,C), S2)

2. Consider the additional observation,

Poss(Move(Robbie, A,Table, C), S1) ∧Holds(On(A,Table), S2) (52)

Let ∆2 = (Dacc
bw ,Σacc

bw ∪ {(50), (51), (52)},≺bw ), then all preferred extensions of ∆2 entail

Ab(Transportable(A), S0)

25 As above, the following generic relations shall represent all of their ground instances.
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Proof:

1. Observation (51) and state update axiom (49) in conjunction with the circumscribed causal
relationships in Σbw imply that

Accident(Move(Robbie, A,B,C), S0) ∨ Ab(Transportable(A), S0)

Consequently, the (classical) extensions of ∆1 are obtained by applying all elements of
Dacc

bw except for either a single instance of δS0
(Transportable(A), y) or the single default

δAcc(Move(Robbie, A,B,C), S0). Let E(y) denote the extensions of the first kind, then

appDacc

bw

(E(y)) = Dbw \ {δS0
(Transportable(A), y)}

Likewise, let E′ denote the extension of the second kind, then

appDacc

bw

(E′) = Dbw \ {δAcc(Move(Robbie, A,B,C), S0)}

From {δS0
(Transportable(A), y)}≺bw {δAcc(Move(Robbie, A,B,C), S0)} for all y it fol-

lows that E′ is preferred but none of E(y). Moreover, E ′ entails

¬Ab(x, s) ∧ [ s 6= S0 ⊃ ¬Accident(a, s) ]

The claim follows from the precondition axioms in (30) and state update axiom (49).

2. Observations (51) and (52) and state update axiom (49) in conjunction with the circum-
scribed causal relationships in Σbw imply that

[Accident(Move(Robbie, A,B,C), S0) ∨ Ab(Transportable(A), S0) ] ∧

[Accident(Move(Robbie, A,Table, C), S1) ∨ Ab(Transportable(A), S1) ]

Consequently, the (classical) extensions of ∆2 are E(y) (for some y), E ′, and E′′,
defined by

appDacc

bw

(E(y)) = Dbw \ {δS0
(Transportable(A), y)}

appDacc

bw

(E′) = Dbw \ {δAcc(Move(Robbie, A,B,C), S0), δ
+
Exog(Transportable(A), S1)}

appDacc

bw

(E′′) = Dbw \ {δAcc(Move(Robbie, A,B,C), S0),

δAcc(Move(Robbie, A,Table, C), S1)}

Since {δAcc(Move(Robbie, A,B,C), S0), δAcc(Move(Robbie, A,Table, C), S1)} is given pri-
ority over {δS0

(Transportable(A), y)} for all y, extension E ′′ is not preferred. Also, since
{δ+

Exog(Transportable(A), S1)}≺bw {δAcc(Move(Robbie, A,Table, C), S1)}, extension E ′ is
not preferred. The claim follows because all of the remaining extensions, E(y), entail that
Ab(Transportable(A), S0).
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8 Discussion

The problem of anomalous models has been the crucial barrier towards extensive approaches to
the Qualification Problem, which in turn constitutes an important theoretical challenge towards
the design of artificial intelligent agents for real-world environments. We have proposed a formal
account of the Qualification Problem which solves the problem of anomalous models based on
an established predicate logic formalism for reasoning about actions. The theory provides the
formal foundations for specifying real-world agents capable of making useful predictions as well
as explaining and recovering from unexpected action failures. It has been shown how the basic
solution can be extended so as to deal with qualitative knowledge of the relative likelihood of
the various explanations for abnormal qualifications. Furthermore, it has been illustrated how
weak qualifications and accidents can be expressed, that is, unexpected effects and non-recurring
action failures, respectively. We have built our theory on the Fluent Calculus as a solution to the
Frame and Ramification Problem. As a result we now have a uniform formalism which success-
fully copes with all three classical problems in reasoning about actions. Moreover, extensions
of the Fluent Calculus deal with concurrent actions and continuous change [Thielscher, 2000b;
Thielscher, 2001] or with sensing actions [Thielscher, 2000d]. Staying within classical logic, these
techniques are compatible with our default rules for modeling abnormal qualifications.

Based on our approach to the Qualification Problem, the logic program developed in [Martin
and Thielscher, 2001] copes with the Qualification Problem in the action programming language
Flux (the Fluent Calculus Executor) [Thielscher, 2000a]. The system allows to plan under the
default assumption that actions succeed as they normally do, and to reason about these as-
sumptions in order to recover from unexpected action failures. The system has been successfully
applied to the high-level control of robots.

The focus in this paper has been on the Fluent Calculus as a particular predicate logic for-
malism. The underlying principles of our theory, however, are sufficiently general to not depend
on this choice. The solution to the problem of anomalous models outlined in Section 2.4 rather
promises feasible in any other formalism which is sufficiently expressive in that it includes solu-
tions to both the Frame and the Ramification Problem.

Assuming away by default abnormal qualifications of actions is an inherently nonmonotonic
process. In [Lifschitz, 1993], a property called restricted monotonicity has been claimed generally
desirable in theories of actions. A formalism possesses this property if adding observations to a
domain description increases the set of entailed observations. However, when being confronted
with the Qualification Problem, restricted monotonicity is not desirable, since an unexpected
observation should cause the planning agent to withdraw certain normality assumptions. Con-
sequently, our theory does not satisfy this property, thanks to the use of Default Logic.

An alternative to our solution of the problem of anomalous models might be provided by the
concept of chronological ignorance [Shoham, 1987; Shoham, 1988]. Roughly speaking, the crucial
idea is to assume away, by default, abnormal circumstances, and simultaneously to prefer mini-
mization of abnormalities at earlier timepoints.26 Our approach to the Qualification Problem and
minimizing chronologically share the notion of directedness: By minimizing chronologically, one
tends to minimize causes rather than effects—which is the right thing to do—simply because in
general causes precede effects. It has been shown elsewhere (e.g., [Kautz, 1986; Sandewall, 1993;
Stein and Morgenstern, 1994]) that the applicability of chronological minimization is intrin-
sically restricted to reasoning problems which do not involve indeterminate information, that

26 This explains the naming: Potential abnormal qualifications are ignored whenever possible, and this is done
in chronological order.
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is, non-deterministic actions or incomplete state knowledge. The refined method of prioritized
chronological minimization [Bell, 1998; White et al., 1998] aims at overcoming these restrictions.
Roughly speaking again, the crucial idea is to chronologically minimize with an additional pref-
erence ordering on atoms: First, event occurrences are minimized, then event abnormalities,
and finally affectations of fluents. In particular, by minimizing potential affectations instead of
actual changes the problem of non-deterministic actions is overcome [Sandewall, 1994]. There
are three main conceptual differences between our framework and the theory of [Bell, 1998],
which is built on the idea of prioritized chronological minimization. First, a nonmonotonic and
temporal variant of Kleene’s three-valued logic is used together with a special semantics tailored
to chronological minimization. In contrast, our approach builds on the general framework of De-
fault Logic and its standard semantics. Second, the tasks of prediction and explanation require
different reasoning mechanisms, namely, deduction vs. abduction, while predicting, planning,
and explaining are uniformly dealt with in our theory. Finally, we were interested in build-
ing our approach to the Qualification Problem on an existing solution to the technical Frame
Problem.

Our account of the Qualification Problem shares with Motivated Action Theory (MAT) [Stein
and Morgenstern, 1994; Amsterdam, 1991] the insight that an appropriate notion of causality
is necessary when assuming away abnormalities. In this framework, occurrences of actions and
events are assumed away by default while taking into consideration the possibility that they
are caused (or, in other words, motivated , hence the name). This minimizing unmotivated
events and our minimizing non-caused abnormal qualifications are somehow complementary
while based on similar principles. Problems with MAT have been pointed out in [Ortiz, 1999]

concerning the applicability to both the explanation problem and the Ramification Problem,
due to the fact that effects of unmotivated events are defined as unmotivated, too. This aspect
has been improved in Explanatory Update Theory (UAT), which combines MAT with a theory
of information change to minimize information loss between states [Ortiz, 1999]. Aside from
addressing other problems, a fundamental difference to our framework is that UAT solves the
Frame Problem on the semantic level via a special-purpose Kripke-style semantics.

Finally, it should be mentioned that we gave emphasis only to the representational aspect
of the Qualification Problem. It has been pointed out, e.g., in [Elkan, 1995], that there is also
an important computational aspect to this problem. Our analysis in this paper was driven by
the problem of anomalous models, which is a purely representational issue, and—to state the
obvious—the computational aspect cannot be pursued without an appropriate representation of
the problem. The challenge of the computational Qualification Problem is to find a computa-
tional model that enables the agent to reason without even considering all possible qualifying
causes for his actions—unless some piece of knowledge hints at their presence. A way to tune
our representation towards the computational aspect is to introduce predicates of the form
Norm(A(~x), s), meaning that no abnormal qualification of the respective action A(~x) holds in
situation s, along with a suitable definition like

Norm(Move(r, u, v, w), s) ≡
¬Ab(Movable(u), s) ∧ ¬Ab(Functioning(Gripper-of (r)), s)

(53)

With this addition, action precondition axioms need only mention the atomic condition of nor-
mality in addition to the regular preconditions, as in

Poss(Move(r, u, v, w), s) ≡
u 6= w ∧ v 6= w ∧Holds(Clear(u), s) ∧Holds(On(u, v), s) ∧Holds(Clear(w), s)
∧Norm(Move(r, u, v, w), s)
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The generic default rule,
: Norm(a, s)

Norm(a, s)

then allows to jump to the conclusion that a be executable provided all regular preconditions
are met. Still, on the other hand, in order that this assumption be justified, its consistency as
regards the corresponding definition, like (53), must be guaranteed. In a standard automated de-
duction system, this in turn involves consideration (and exclusion) of all the potential qualifying
abnormal circumstances. A solution to the computational aspect of the Qualification Problem
thus requires a different computational model, presumably based on some parallel architecture,
by which all related state constraints are ignored unless they are explicitly ‘activated’ by some
piece of information. Although this was not an issue in this paper, the foundations have been
laid.
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tonomous systems. In B. Fronhöfer, editor, Workshop on Reasoning about Action & Change at IJCAI,
pages 21–36, Chambéry, August 1993.
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