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Action theories serve as a formalism to represent and reason about domains in
which the execution of actions plays a central role. This is the case, for example,
if one wants to model an agent who interacts with its environment, i.e., the part
of the world it is able to affect. Most importantly, an autonomous agent needs
precise knowledge as to the effects of its actions in order to act purpose-oriented
and so to achieve pre-determined goals. The latter requires to draw the right
conclusions from this knowledge in view of particular situations, in which the
agent has acquired partial knowledge about the current state of the environment
and has a certain goal in mind. The most distinguishing aspect of action theories
is that the specification of actions and their effects shall be as intuitive and natural
as possible. This raises specific challenges for action theories, of which the most
famous are, in historical order, the Frame Problem, the Qualification Problem,
and the Ramification Problem.

1 Reasoning about actions

Automating commonsense reasoning about actions and their effects was among
the very first issues raised in Artificial Intelligence research. McCarthy11 ad-
vocated the belief that multifarious intelligent behavior relies on the ability
to maintain a mental model of the world and to draw the right conclusions
about observations and intentions. The modern research area of Cognitive Ro-
botics follows this paradigm in that it aims at providing autonomous robots
with a cognitive component in which the environment is represented by logi-
cal sentences. Automated reasoning thus enables the robot to draw the right
conclusions from this representation and so to act purpose-oriented. Three
fundamental challenges for formalizing actions and their effects have been re-
vealed by three decades of research in this field: The Frame Problem, the
Qualification Problem, and the Ramification Problem, respectively.

2 The Frame Problem

Introduced in the context of Situation Calculus,10 the Frame Problem concerns
the at first glance trivial but in fact highly problematic challenge to specify,
in logic, that non-affected properties of the world state are still true after
the performance of an action. To see where the difficulties lie, suppose we
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want to describe the action of toggling a light switch where the effect shall
be that if the switch is open initially, then it is closed afterwards, and vice
versa. Let toggle(x) be a term denoting the action of toggling switch x ,
and let open(x) be a unary predicate stating whether switch x is currently
open. Such predicates, whose truth-value may change in the course of time
as a consequence of performing actions, are usually referred to as fluents.
A straightforward, näıve description of our example action is given by the
implicationa

do(toggle(x)) ⊃ [¬open(x) ⊃ open(x) ] ∧ [ open(x) ⊃ ¬open(x) ] (1)

where do(a) shall indicate that action a is being performed. This specifica-
tion, however, is logically inconsistent with say, ¬open(s1) ∧ do(toggle(s1)),
i.e., the seemingly natural formalization of a situation where switch s1 is open
and is about to being toggled. This is why Situation Calculus introduces an
additional so-called situation argument to each action and fluent, thus restrict-
ing their scopes to a particular one out of many possible situations. The effect
description of Eq. (1), for instance, may accordingly be re-formulated as

[¬open(x, s) ⊃ open(x,Do(toggle(x), s)) ]

∧ [ open(x, s) ⊃ ¬open(x,Do(toggle(x), s)) ]

where term s denotes some abstract situation and Do(toggle(x), s) the suc-
cessor situation resulting from performing toggle(x) in situation s. This
representation technique, however, raises the problem of how to conclude that
some other fluent which holds in s, say, open(s2), still holds in situation
Do(toggle(s1), s). In order that this particular conclusion be granted, an
additional so-called frame axiom is required, namely,

x 6= y ∧ open(y, s) ⊃ open(y,Do(toggle(x), s))

Now, the Frame Problem concerns the need for a large number of these frame
axioms (the representational aspect of the problem)b and the necessity to
carry, one-by-one, each unchanged fluent to the next situation (the inferential
aspect).

It took more than two decades to solve the representational aspect of
the Frame Problem to the best possible extent. The approach of Reiter15 is

aThroughout the paper, variables are denoted by italic lower case letters. Variables
occurring free in formulas are to be taken as universally quantified.

bTo be more precise, if n is the number of fluents and m the number of actions of a
domain, then close to m · n frame axioms in the above style need to be introduced.
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based on pure classical logic and completely avoids the specification of frame
axioms. This is accomplished by combining, separately for each fluent, in a
single effect axiom all possibilities of how the fluent may change to true and to
false, respectively. By virtue of being bi-conditionals, these so-called successor
state axioms implicitly contain sufficient information so as to also entail any
non-change of the fluent in question. An example specification is

open(x,Do(a, s)) ≡ a = toggle(x) ∧ ¬open(x, s)

∨ ¬ [ open(x, s) ⊃ a = toggle(x) ] c

Suppose, for instance, the initial situation S0 be specified by the conjunc-
tion ¬open(s1, S0)∧ open(s2, S0), then our successor state axiom entails both
open(s1,Do(toggle(s1), S0)) and also open(s2,Do(toggle(s1), S0)), tacitly
assuming that toggle(s1) 6= toggle(s2). While the concept of successor state
axioms perfectly solves the representational aspect of the Frame Problem, it
does not at all address the inferential aspect. For it still requires, for each non-
affected fluent, separate application of one of these axioms in order to conclude
that the fluent keeps its truth-value in the resulting situation.

The Strips framework3 was an early development in response to the in-
ferential challenge raised by the Frame Problem. Strips encodes states as sets
of fluents, and the performance of actions is specified operationally, namely, by
removal and addition of certain fluents to these sets. Apparently, this avoids
investigation of any non-affected fluent. In compensation, the operational,
non-declarative nature of this approach causes the loss of both expressiveness
and flexibility of logic. With the aim of regaining the latter without losing the
computational merits of Strips, the Linear Connection Method , a precursor
of Linear Logic,5 has been developed by Bibel.1 It employs a non-classical,
resource-sensitive implication to specify the effects of actions. In so doing,
the Linear Connection Method introduces a special purpose logic which thus
requires both a non-standard semantics and a non-standard inference engine.

The Fluent Calculus,7 so named by Bornscheuer and Thielscher,2 em-
beds in pure classical logic the notion of resource-sensitivity to account for
the dynamics of state transitions. To this end, fluents are formally treated as
terms, which can be combined via the special binary function symbol “◦” to
constitute so-called state terms. An example is

¬open(s1) ◦ open(s2)

cThe first disjunct to the right of the equivalence symbol states that the only possibility
of how open(x) may become true is that switch x is toggled in a situation where open(x)
is false. The second disjunct derives from the fact that the only possibility of how open(x)
may become false is that x is toggled in a situation where open(x) holds.
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where formally the negation symbol “¬” is treated as a unary function. When
encoding a world state as a state term, it is obviously irrelevant at what position
a fluent literal occurs in that term. E.g., our example state term and the term
open(s2) ◦ ¬open(s1) represent identical states. Moreover, double application
of function ¬ should always neutralize. This intuition is formally captured by
stipulating the following equational axioms:

∀x, y, z. (x ◦ y) ◦ z = x ◦ (y ◦ z) (associativity)
∀x, y. x ◦ y = y ◦ x (commutativity)
∀x. x ◦ ∅ = x (unit element)
∀x. ¬¬x = x (double negation)

where the special constant “∅” denotes a unit element for function ◦, thus
corresponding to the empty collection of fluents. The effects of actions may
then be specified by defining a ternary predicate Result(s, a, s′) which shall
indicate that performing action a in state s results in state s′ , e.g.:

Result(s, toggle(x), s′) ≡ ∃z1 [ s = ¬open(x) ◦ z1 ∧ s′ = open(x) ◦ z1 ]

∨ ∃z2 [ s = open(x) ◦ z2 ∧ s′ = ¬open(x) ◦ z2 ]

Let, for instance, S0 = ¬open(s1) ◦ open(s2), then S0 = ¬open(s1) ◦ z1 if
and only if z1 = open(s2). It follows that Result(S0, toggle(s1), S1) where
S1 = open(s1) ◦ open(s2). Notice how non-affected fluent terms contained
in the initial state, here: fluent open(s2), are automatically included in the
resulting state, too. No extra frame axioms are required to this end, and
all unchanged fluents are carried to the new state in one step together with
the effect of the action. The representation technique of Fluent Calculus thus
copes, in pure classical logic, with both the representational and the inferential
aspect of the Frame Problem. Axiomatizations using the paradigm of Fluent
Calculus have by now been developed for a variety of ontological aspects—e.g.,
non-deterministic and concurrent actions,2 continuous change,6 and, last not
least, both the Qualification and the Ramification Problem.16 ,17

3 The Ramification Problem

The Frame Problem arises because it is generally impracticable to provide an
exhaustive description defining the result of executing an action in each possible
state of the world. Action specifications are therefore to be restricted to the
part of the world that they affect, and all other fluents are assumed to remain
stable. Yet even this approach becomes unmanageable in complex domains if
one tries to put all effects into a single complete specification. Although an
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action may cause only a small number of direct changes, they in turn may
initiate a long chain of indirect effects that can be hard to foresee. Recall,
for instance, the action of toggling a switch, which in the first place causes
nothing but a change of the switch’s position. However, the switch may be
part of an electric circuit so that say, some light bulb is turned off as a side
effect, which in turn may cause someone to hurt himself in a suddenly darkened
room by running against a chair that, as a consequence, falls into a television
set whose implosion activates the fire alarm and so on and so forth. The task,
therefore, is to design a framework to formalize action scenarios where action
specifications are not assumed to completely describe all possible effects. This
is the Ramification Problem.4

A satisfactory solution to the Ramification Problem requires the successful
treatment of two major issues. First, the universal assumption of persistence of
fluents needs to be appropriately weakened to the effect that it applies only to
those fluents which are unaffected by the action’s direct and indirect effects.
This can be achieved by keeping the strong assumption of persistence as it
stands while considering the world description obtained through its application
as a mere intermediate result.17 Indirect effects are then accommodated by
further reasoning until an overall satisfactory successor state obtains. This
method accounts perfectly both for rigorous persistence of unaffected fluents
and for arbitrarily complex chains of indirect effects.

The second issue that needs to be addressed in the context of the Rami-
fication Problem arises from the observation that indirect effects typically are
consequences of additional, general knowledge of domain-specific dependen-
cies among fluents—but not all such purely logical consequences correspond
to indirect effects in reality.18 ,9 As an example, imagine an electric circuit
consisting of two switches and a light bulb serially connected so that light is
on if and only if both switches are closed. This may be formally described by
the logical expression light ≡ ¬open(s1)∧¬open(s2). Suppose, now, the first
switch is toggled in a state where open(s1), ¬open(s2), and ¬light hold.
Then, besides the direct effect of open(s1) becoming false, one also expects
that the light bulb turns on. This indirect effect is inspired by the formula just
mentioned, which includes the implication ¬open(s1) ∧ ¬open(s2) ⊃ light.
However, despite this being the intuitively expected result, the mere knowl-
edge of the relationship between the switches and the bulb is not sufficient.
For the above formula, light ≡ ¬open(s1) ∧ ¬open(s2), also entails the im-
plication ¬open(s1) ∧ ¬light ⊃ open(s2), which suggests that instead of the
light being turned on, the indirect effect of toggling the first switch is that
the second one jumps its position—a result which is clearly counter-intuitive.
Incorporating a suitable notion of causality solves this problem.17 So-called

5



causal relationships formalize statements like the following:

The (direct or indirect) effect that open(s1) becomes true causes
the indirect effect light, provided ¬open(s2) holds.

Subsequent to the computation of all direct effects of an action in a particular
state of the world, causal relationships are applied, one-by-one, to accommo-
date additional, indirect effects. In this way, the concept of causal relationships
copes with both the aforementioned aspects of the Ramification Problem.

4 The Qualification Problem

Once in a while actions in daily life turn out to be unexecutable although
they have been successfully performed in similar situations countless times
before. These unexpected failures arise because executability of actions often
depends on a multitude of additional conditions one is usually not aware of.
The reason for this unawareness is that most of these conditions are so likely to
be satisfied that they are simply assumed away as long as there is no evidence
to the contrary. Suppose, as an example taken from daily life, someone intends
to take her car for a ride. Then usually she does not first make sure that no
potato in the tail pipe prevents her from starting the car, despite the fact that
a clogged tail pipe necessarily renders this action impossible.

On the other hand, ignoring unlikely action disqualifications prima facie

also means to being able to handle situations where the prior assumption of ex-
ecutability turns out wrong. The general challenge, therefore, is to weaken the
assumption that actions are guaranteed to producing the expected effect once
all specified preconditions are satisfied. Becoming an assumption by default ,
it is to be made as long as there is no evidence to the contrary. Developing
a formal account of this concept within the framework of a formal action the-
ory is the Qualification Problem.12 Solving it is necessary in view of applying
action theories to real-world environments, which do not conform with the ide-
alistic view in that most if not all actions are potentially subject to unlikely,
or abnormal , disqualification.

Assuming away abnormal action disqualifications by default naturally im-
plies that if further knowledge hints at the presence of an unexpected ob-
stacle, then one has to withdraw the previous conclusion that the action in
question is qualified. Thus the entire process is intrinsically nonmonotonic.
As a consequence, McCarthy proposed to employ the nonmonotonic frame-
work of so-called circumscription,13 with the aim of minimizing abnormal
disqualifications.14 Lifschitz,8 however, showed that straightforward global
minimization of these abnormalities is inadequate since it fails to suitably
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account for action disqualifications that are brought about as side effects of
performing other actions—such as the deliberate introduction of a potato into
the tail pipe.

Solutions to the Ramification Problem furnish a ready approach to the
Qualification Problem which accommodates these abnormalities which natu-
rally occur for reasons of causality.16 To this end, each unlikely disqualification
is initially assumed away, if possible, but may later occur as indirect effect of
some action. For instance, a causal relationship formalizing the statement

The (direct or indirect) effect that in pipe(x) becomes true causes
the indirect effect disqual(start).

helps us obtain a disqualification of starting the car (fluent disqual(start))
as a side effect of inserting an object x into the tail pipe (which supposedly
makes fluent in pipe(x) become true). The aforementioned initial assump-
tion of ‘normality’ to the largest possible extent can be obtained by means of
a formal model preference criterion, which allows to distinguish those models
of a scenario description which propose the least number of abnormalities.

Aside from providing means to assume away abnormal disqualifications by
default while properly taking into account possible causes for these disqualifica-
tions, the successful treatment of the Qualification Problem should include the
proliferation of conceivable explanations in case an action surprisingly turns
out unexecutable. It may of course happen, though, that a reasoning agent is
still unable to perform an action even if it has explicitly excluded, to the best
of its knowledge, any imaginable preventing cause. However surprising this
might be, it just proves that the agent lacks omniscience. A disqualification
which is inexplicable in this sense is called miraculous. Accounting for the
potential occurrence of miraculous abnormalities, too, is part of the Qualifica-
tion Problem. This can be achieved by an additional minimization step, which
gives rise to a refined model preference criterion.
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