
Knowledge Transfer for Deep Reinforcement Agents
in General Game Playing

Cameron McEwan and Michael Thielscher

UNSW Sydney, Sydney NSW 2052, Australia
cameronpmcewan@gmail.com, mit@unsw.edu.au

Abstract. Learning to master new games with nothing but the rules given is a
hallmark of human intelligence. This ability has recently been successfully repli-
cated in AI systems through a combination of Knowledge Representation, Monte
Carlo Tree Search, and Deep Reinforcement Learning: Generalised AlphaZero [7]
provides a method for building general game-playing agents that can learn any
game describable in a formal specification language. We investigate how to boost
the ability of deep reinforcement agents for general game playing by applying
transfer learning for new game variants. Experiments show that transfer learning
can significantly reduce the training time on variations of games that were previ-
ously learned, and our results further suggest that the most successful method is
to train a source network that uses the guidance of multiple expert networks.

1 Introduction

In General Game Playing (GGP), agents are provided at runtime with the rules of a
game they must learn [5]. Players are given formal specifications in the general Game
Description Language (GDL), thereby addressing the problem that using single games
for testing AI encourages niche programs that can only perform in one environment [6].

The most common algorithm employed by successful GGP agents is a variation
of Monte Carlo Tree Search known as the upper confidence bound on trees (UCT)
method [2]. UCT has been successfully combined with deep reinforcement learning in
AlphaGo [16], to beat eighteen-time world champion Go player Lee Sedol, and later in
AlphaZero [17], which learned to play three different board games from scratch to a su-
perhuman level. The underlying principle of combining UCT with deep reinforcement
learning was further developed to Generalised AlphaZero [7], where the two methods
were further combined with knowledge representation and reasoning in order to build
general game-playing agents that are capable of learning any game describable in GDL.

In both AlphaZero and Generalised AlphaZero, new games are learned from scratch.
Transfer learning (TL) is a technique that aims to increase the efficiency of learning sys-
tems by transferring the knowledge gained from learning one task to a new but similar
task [21]. Heretofore there has been limited success incorporating TL into agents for
GGP [19,3,11], and no research that combines deep TL and GGP. Nevertheless, the
method [3], which achieved positive transfer between completely different games, set
the precedent that positive transfer in GGP is possible.

In this paper, we investigate and show how to boost the ability of deep reinforcement
agents for general game playing by using transfer learning for new game variants. Our
contribution is three-fold:



2 C. McEwan, M. Thielscher

1. We develop a hierarchy of general game variations and strategies to best address
each level by different transfer learning strategies.

2. We investigate the efficacy of two different methods of applying transfer learning
in general game playing with deep reinforcement learning: using a network that has
been previously trained on a single game versus a network that combines multiple
expert networks, each previously trained on a different game.

3. Our analysis of the experimental results shows that guidance by multiple expert
networks is the most successful of our methods to train a source network.

2 Background

General Game Playing. General game playing was developed to address the problem
of niche game-playing AI programs that can only perform in certain environments [5,6].
The training process begins with players being provided with the rules of a game us-
ing the general Game Description Language GDL. Players have startclock seconds to
perform initial training [5]. The International General Game Playing Competition typ-
ically has a 10 minute startclock [7]. In 2014, regular competition in the related field of
General Video Game Playing (GVGAI) was established [13]. This competition shares
GGP’s basic premise that agents must be able to play previously unseen games. In con-
trast to GGP, GVGAI focuses on video games and may require agents to interpret states
from an image feed and actions from a forward network to learn to play [13].

UCT and Reinforcement Learning. The most common algorithm employed by success-
ful GGP agents is a variation on the upper confidence bound on trees (UCT) method [5].
This fundamental algorithm is a modification of Monte Carlo Tree Search (MCTS) to
improve the trade-off between exploration and exploitation, by embedding an upper
confidence bound of the expected reward in each node of the tree to guide search. UCT
was successfully combined with deep reinforcement learning (RL) in AlphaGo to beat
eighteen-time world champion Go player Lee Sedol [16]. RL is a field of machine learn-
ing that is concerned with agents learning to maximise reward. Q-learning is a common
model-free RL algorithm. Its objective is to learn the function Q(s, a) which represents
the total discounted reward for taking action a in state s over an infinite time horizon.
Deep Q-learning is a deep RL method for approximating Q(s, a) when the input space
is too large to efficiently solve. Q(s, a) is replaced by a neural network, and triples of
state, action and discounted reward are gathered and sampled to train the network. Deep
Q-learning is employed by most state-of-the-art GVGAI players [15].

Generalised AlphaZero. AlphaZero employed deep reinforcement learning in combi-
nation with UCT to learn to play three different board games from scratch to a super-
human level [17]. Generalised AlphaZero (GAZ) combines this method with a knowl-
edge representation and reasoning technique to handle arbitrary games specified in the
formal game description language GDL [7]. Specifically, GAZ uses propositional net-
works (propnets) [14,6] to process the GDL game rules. Moreover, various network
components were adjusted to remove the assumptions of AlphaZero to make it suitable
for use in the GGP environment: GAZ employs a single neural network to generate



Knowledge Transfer for Deep Reinforcement Agents in General Game Playing 3

Fig. 1: Structure of a Generalised AlphaZero agent.

a better approximation for the UCT heuristic than MCTS alone. The network outputs
an expected reward zi and a probability distribution πi over the action space. It then
performs a number of self-play games running MCTS simulations to train the network.
The MCTS simulations are conducted in the same way as standard UCT players with an
adapted formula for the upper confidence bound. Upon reaching a leaf node, an option
is expanded and the neural network is used to evaluate that node.

The structure of the GAZ network (shown in Figure 1) is influenced by three fac-
tors: the size of the propnet, the number of actions each player can take and the number
of players. GAZ has undergone several experimental evaluations that demonstrate it is
able to perform better than a UCT benchmark in many games, but requires significant
training time [7,8]. When evaluated on Connect-4, Breakthrough, Babel and Pacman,
the agent was successful in thwarting a UCT benchmark agent in all games but Ba-
bel. It took the GAZ agent between one and seven hours to beat UCT and 10 to 30
hours to complete a full training run on each game, significantly longer than the regular
10-minute startclock used in GGP competitions. This training time must therefore be
significantly reduced for GAZ to succeed in GGP.

Transfer Learning. The training time of a neural network is influenced by two fac-
tors, the efficiency of a training round and the learning rate of the network. Transfer
Learning (TL) is a technique that aims to increase the efficiency of learning systems
by transferring the knowledge gained from learning one task to a similar new task [21].
An important aspect is the avoidance of so-called negative transfer, which occurs when
transferring between inappropriate tasks leads to a slower, rather than faster, training
time. The performance of TL agents is best evaluated by considering the time required
to train on just the new task, or target time [20]. Other important metrics include: (1) the
time to train the new and source agents, total time; (2) the improvement of initial perfor-
mance, jumpstart; (3) the improvement of final performance, asymptotic performance;
(4) the time it takes an agent to reach a predetermined threshold, time to threshold. Deep
TL is the sub-field that concerns learning agents using deep RL methods similar to those



4 C. McEwan, M. Thielscher

used in GAZ and GVGAI. Deep TL works by copying the weights of a source network,
or networks, directly to the target network. Several decisions are then made to help
mitigate negative transfer. The source network is chosen and the layers of the network
adjusted with the weights either fixed, reinitialised or allowed to be retrained [1]. When
setting these transfer variables it is important to consider the difference between the
source and target tasks. This is particularly challenging in game playing, where goals,
actions, and domains can differ significantly between games. As a result, most research
on TL in game play focuses on game variants and groups of similar games.

Previous Work on Transfer Learning for General Game Playing

In GGP, so far there has been limited success incorporating TL into agents. Past re-
search proposed using a transfer hierarchy [19] and exploiting structural similarities in
the game tree [3,11] to pair source and target tasks. The transfer hierarchy only suc-
ceeded transferring between game variants and is therefore of limited use in GGP [19].
Despite this, the tiered testing methodology, which proposed to first test on simple
game variants before increasing the complexity of the variations, contributed a prac-
tical methodological framework for assessing transfer in games. The more successful
method [3] achieved positive transfer between completely different games. This agent
did not use deep RL, however, so its heuristic method was not considered in our agent
design. Nevertheless, these results were important as they set the precedent that positive
transfer in GGP is possible. A missing feature of all the TL approaches to GGP so far
is a way to prevent or mitigate negative transfer [9].

General Video Game Playing agents that incorporate deep TL techniques into their
architectures have had more success, achieving state-of-the-art results more efficiently
when playing several games. Like GGP, the variety of games in GVGAI limits TL,
and the most noteworthy research addresses this by generalising from multiple source
tasks to mitigate or even eliminate negative transfer [12,22]. The use of single-network
transfer and experiments with fixing, retraining, or re-initialising each network layer
were successfully applied to PuckWorld and Snake [1]: By allowing all layers of an
expert Puckworld network to retrain, the time to learn Snake could be significantly
reduced. However, these results could not be replicated training Puckworld from Snake.

Multi-network transfer methods include the Actor-Mimic Network (AMN) [12] and
Policy Transfer Framework (PTF) [22]. The seminal AMN established multi-network
transfer learning in video game playing trading off total time for resilience to negative
transfer. This powerful approach distils information from multiple expert networks into
a generic network (the mimic) that is then used as the source for transfer. Transfer with
the AMN was tested by training a mimic network on 13 source games and then using
the result as the basis of transfer to learn 7 new games. Performance improved learning
6 of the 7 new games. AMN not fully addressing the problem of negative transfer, PTF
further extends this approach by framing TL as an option learning problem in order to
facilitate the elimination of negative transfer [22]. Still, the broad, and repeated, success
of AMN makes it an ideal basis for adaptation to improve GGP agents.1

1 Other methods in GVGAI focus on transferring learned skills about visual information [18,10].
Visual information is not relevant to GGP and therefore not considered in this paper.



Knowledge Transfer for Deep Reinforcement Agents in General Game Playing 5

3 Transfer Learning in Deep RL General Game-Playing Agents

Generalised AlphaZero training too slowly to compete in traditional GGP competi-
tion [7] motivates the use of transfer learning as a potential solution. Past work on
GGP confirms that the barrier to successful knowledge transfer is prevention of nega-
tive transfer (cf. Section 2). In this section, we present a method based on the recent
success of several multi-network deep Transfer Learning solutions to prevent negative
transfer recent work in GVGAI [12]. We will describe two approaches and designs for
deep reinforcement agents to make use Transfer Learning in General Game Playing:
a single and a multi-network transfer learning method for GGP. We also distinguish
between simple and complex transfer.

3.1 Simple Network Transfer in General Game Playing

Simple network transfer occurs when the source and target network have identical
structures. Two Generalised AlphaZero networks (cf. Figure 1) have identical struc-
tures when the games they are learning have the same propnet size, number of actions
and number of players. Because the structure of the two networks is identical, transfer
happens by way of copying the weights layer-wise without any shape transformations.
Simple Network Transfer has three variables: (1) the expertise of the source network,
(2) weight transformations, and (3) the number of source networks.

Fully vs.˙ semi-trained source networks. We use the term fully trained source networks
to describe expert networks that have been trained long enough to play at optimal level
in a particular game. In contrast, semi-trained networks have only been trained for a
fraction of the time, thus learning only some of the expert behaviour. Partial training
could mitigate negative transfer, since the agent has less information to unlearn if all
of the information in a fully trained source network is tailored to a specific game. Our
agent design allows to use both fully and semi-trained agents interchangeably, with the
hypothesis that fully trained agents will work best when transferring between the most
similar game variants, and semi-trained agents will have better results in the least.

Weights. Weights can either be fixed; reinitialised, i.e. given random initial weights;
or retrained, i.e. initialised from a pre-trained model [1]. Given the history of nega-
tive transfer in game playing and the difficultly of transferring between games, fixing
weights is not an option for any layers in the agent designs. The intermediate layers are
limited to retraining only, since reinitialising these layers would be equivalent to not
performing transfer at all. The output layer for the move probabilities (cf. Figure 1) can
be retrained or reinitialised. This is because this layer directly impacts the chance of
an agent taking a particular action based on the probability distribution. If the action
layer is allowed to retrain, the network will initially repeat the behaviour of the source
network but is allowed to adjust behaviour over time. This should perform well when
the old and the new game have similar goals, so that good moves in one game tend to be
good moves in the other game too. On the other hand, reinitialising the action layer will
cause the network to choose moves randomly in its first round of training, thus encour-
aging exploration of the game tree. It is predicted that this will improve performance
when transferring to less similar games.



6 C. McEwan, M. Thielscher

Number of source networks. In single network transfer, only one expert network is
used. Past research shows this approach could be vulnerable to negative transfer. Multi-
network transfer methods were developed to address this concern, creating a source
network using the guidance of multiple expert networks. To train a source network,
these multi-network transfer methods employ a multitask training method. The multi-
task training method developed for our proposed agent design will be detailed in Sec-
tion 3.3 below.2

3.2 Complex Network Transfer

If the source and target network have different structures, then additional variables for
transfer must be introduced to map the structure of the source network to the target net-
work. The additional variables required for what we consider complex network transfer
depend on the factors that vary between the two games. The variables are: (1) input
transformation, (2) action transformation, and (3) player transformation.

Input transformation is necessary when the size of the propnet changes. This has a
cascading effect on the size of each of the layers in the shared feature extraction. As
a result, the new network must be adapted to fit the source network within its feature
extraction layers. To maintain a resemblance to the structure of Generalised AlphaZero,
a gradual input transformation is proposed to slowly introduce the source network to the
new network. In this transformation, layers of half or double the size are added between
the input of the new network and the first layer of the source network to gradually
converge their size. The aim of these layers is to help learn how to convert the input
from the propnet to a set of features that approximate the input of the original game.
The final transformation layer is then used as the input layer to a copy of the source
network.

Action transformation is necessary when the set of actions is different between the
two games. In our agent designs, if the actions are completely different then the action
layers are reinitialised, whereas if the games share some actions then there are two
options: reinitialisation or complete action mapping. Action mapping means to map
the weights of the shared actions from the source network to the new network. This
is expected to be successful when takin an action in the new game that exists in the
previously learned game and tends to contribute to a winning strategy there, does so in
the new game too.

Finally, if there is a change in the number of players then a player transformation
will be necessary. If the number of players increases, the new player head could be
initialised with one of the existing player heads. If the number of players decreases,
then one of the player heads should not be copied.

3.3 Multitask Training for General Game Playing

Our multitask method for GGP is inspired by the success of AMN [12], which trains
based on a policy distillation and a scaled feature regression component. For GGP, we

2 It is worth noting that many of the multitask methods in GVGAI are not directly applicable to
GGP and Generalised AlphaZero because they assume specific features of the network, such
as identical input shapes and action spaces, regardless of the game being played.



Knowledge Transfer for Deep Reinforcement Agents in General Game Playing 7

use only the policy distillation component since this is considered the more successful
part of the network, with improvements to the AMN removing the feature regression
component [23,4]. The policy distillation component trains based on the KL divergence
of the multitask network compared to the expert. In the method we propose, the mimic
network retains the structure of Generalised AlphaZero, but instead of training based on
self-play it uses the KL divergence from the experience of a series of experts. During
training, the multitask network completes N rounds playing a particular game guided
by the expert on that game, before moving on to the next game and expert. This process
is repeated M times. Like in AMN, it is important to balance N as too many rounds
of training on a particular game will over-fit the multitask network. Once trained, the
multitask network is used as the source for transfer. It is important to note that this
method is limited to train on games that have the same propnet size and number of
actions.

4 Experimental Evaluation

4.1 Generic Agent Designs

We tested two generic agent designs based on the distinction between single network
agents and those that use a network trained according to the multitask training method
defined in Section 3.3. Each agent has a variety of settings that can be adjusted to set
the variables for each type of transfer.

4.2 Game Variations

Our experimental evaluation of transfer learning applied to deep reinforcement GGP
agents focuses on two types of game variation, namely, goal variation and environment
variation. Goal variation concern the winning conditions of a game. Specifically, we
investigate five such goal variations: (1) original; (2) subset, where solutions to the
original game will still win the new game but there are other paths to victory; (3) minor
goal changes, where solutions to the original game form a partial solution of the new
game; (4) superset, where some solutions to the original game will lose the new game;
and (5) inverse goal, where all winning states become losing states and vice versa.

Environment variations change the environment while retaining the “nature” of the
original game. These could be adjustments to the board, the number of players, or new
features such as obstacles on a board etc. We categorise environment variations by
whether they affect the structure of a Generalised AlphaZero network. If there is no
change to the input or action space, the change is considered minor, otherwise, i.e.
when at least one of the two is altered, it is considered major. An example of a major
change is adjusting the board size. Figure 2 ranks these variations based on similarity
and maps them to the transfer variables hypothesised to perform best.

4.3 Evaluation Methodology

We implemented the generic agent designs on Google Cloud’s Deep Learning VM Im-
age running Tensorflow 1, Python 3.7 and Cython 3.7.3 The agents were evaluated by

3 https://cloud.google.com/deep-learning-vm, accessed 01/19/21.



8 C. McEwan, M. Thielscher

Fig. 2: Hierarchy of game variants and strategies.

playing sets of 50 simulated games against a regular UCT agent every 50 rounds of
training. Each player had a time limit of two seconds to decide their next move, and the
first two moves of each game were randomised. This randomisation was necessary to
ensure a spread of independent tests as all of the agents used are mostly deterministic.
The randomised moves were seeded so that in each trial game all agents began with
the same two moves. This allows direct comparison between agents while retaining an
independent set of tests. UCT was chosen as a benchmark because it represents state-
of-the-art in GGP without transfer or deep reinforcement learning [5]. The parameters
of the underlying Generalised AlphaZero agent were kept constant.

Even though there are only two principled agent designs (single and multi-network),
the number of combinations of variables required to run over 60 experiments on three
different base games. Single network agents were tested with both semi- and fully
trained source networks and with weight, action, and input transformations. Multi-net-
work agents were tested with gradual input transformation and reinitialised move layers.

We tested variants of Connect-4 and Breakthrough along with the simple game Nim;
these games were chosen due to their prominence in past GGP competitions [5]. We
apply a common evaluation metric known from the literature [20], with a particular
focus on jumpstart and time to threshold as the main goal of GGP is to get the best agent
in limited time. A threshold was chosen for each game based on the winning score an
agent without transfer converged to. Thresholds varied due to the effect of the random
initial moves. Connect-4 variant thresholds ranged from 25 to 40 games, and from 40
to 45 for Breakthrough and Nim variants. As TL has no effect on the time required for
each round of training, target time is measured in rounds rather than seconds or hours.

5 Results and Discussion

Transfer Learning proved to increase the efficiency of Generalised AlphaZero (GAZ) on
most game variants. Both single and multi-network agents outperformed agents without
transfer. The multi-network design had the greatest success, outperforming agents with
single network transfer. Negative transfer was only experienced when complex transfer
was necessary and when learning superset goal variants. Successful agents had a strong
jumpstart and significant decrease in time to threshold. Consequently, the training time



Knowledge Transfer for Deep Reinforcement Agents in General Game Playing 9

for these agents went down. On some occasions, the jumpstart of the multi-network
agent outperformed a network without transfer that had trained for thousands of rounds.

5.1 Single Network Agents

Although not as successful as their multi-network counterparts, single network agents
still achieved positive transfer on a variety of the game variants. Experiments with sub-
set goal variation, minor goal changes, and minor environment changes all showed
positive transfer: Single network agents with tuned variables could improve time to
threshold significantly when learning Connect-4 Zig Zag4 (150 rounds to reaching the
threshold with transfer, vs. 400 rounds with no transfer learning), Connect-5 (500 vs.
2700), Breakthrough Suicide5 (150 vs. 1500), and Nim Variant-26 (300 vs. 500). Even
when there was no improvement to time to threshold, single network agents often had
a strong jumpstart. Figure 3 shows the jumpstart of the single network retrain agent
learning Connect-4 on a 10x8-board and Breakthrough Suicide, where the agent out-
performed GAZ for more than 250 and 600 rounds, respectively. This suggests that
expert networks contain good general information about the original game they train
on, resulting in an initial advantage playing the new game. In GGP competitions, jump-
start is an advantage. If the startclock ends within the period of jumpstart, then strong
initial performance would win.

Tuning the SNT variables had the expected results. Semi-trained agents gave net-
works a boost in time to threshold in the least similar games, like Connect-4 Inverse
Goal, and had longer time to threshold in the most similar game variants, like Connect-5.
Weight transformations to the action layer also performed as expected. Retraining gave
agents an advantage when learning games where behaving in the same was as you
would in the source game was likely to win in the target game as well. Examples in-
cluded Nim Variant-2, Connect-4 and -5 on a 10x8 board. Reinitialising yielded better
results in the least similar variants, including Connect-4 Inverse Goal, Nim Inverse Goal
and Connect-4 Miss-17.

5.2 Complex Network Transfer

Both single and multi-network agents struggled to outperform those without transfer
learning when complex transfer was necessary. Gradual input transformation failed to
reduce the input to a state representation similar to the input of the source network. As
a result, agents encountered negative transfer at the beginning, even with small changes
to the input size. The larger the change, the more negative transfer was observed. The
relatively small changes in Nim were best handled with only short periods of negative
transfer for the first 50-100 rounds of training. Learning Breakthrough on 5x6 and 4x7
boards, where the input changed in size by a few hundred nodes, agents experienced
several hundreds of rounds of negative transfer as they had been trained to expect input
in the format of the original game.

4 with a “zig zag” pattern of four pieces as an additional winning condition
5 with inverted goal
6 with stacks 2,2,10,10 instead of the original 1,5,4,2
7 with the goal to connect 2 pieces, miss the third slot, and put a piece in the fourth slot



10 C. McEwan, M. Thielscher

2
0
0

4
0
0

6
0
0

0

1
0

2
0

3
0

4
0

5
0

R
ounds

oftraining

Games won

B
reakthrough

Suicide

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

0

1
0

2
0

3
0

R
ounds

oftraining

Games won

C
onnect-4

Inverse
G

oal

1
0
0

2
0
0

3
0
0

0

1
0

2
0

3
0

4
0

5
0

R
ounds

oftraining

Games won

C
onnect-4

10x8

2
0
0

4
0
0

6
0
0

0

1
0

2
0

3
0

4
0

5
0

R
ounds

oftraining

Games won

B
reakthrough

5x6

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1
0

2
0

3
0

4
0

5
0

R
ounds

oftraining

Games won

N
im

V
ariant-2

1
0
0

2
0
0

3
0
0

4
0
0

0

1
0

2
0

3
0

4
0

R
ounds

oftraining

Games won

C
onnect-4

Z
ig

Z
ag

N
o

transfer
R

etrain
M

ultiN
et(seen)

Sem
i-trained,R

etrain
T

hreshold
A

ction
M

apping
R

einitialise
M

ultiN
et(unseen)

Sem
i-trained,R

einitialise

Fig.3:R
esults

testing
transferlearning

techniques
and

variables
across

C
onnect-4,B

reakthrough
and

N
im

variants.



Knowledge Transfer for Deep Reinforcement Agents in General Game Playing 11

5.3 Multi-Network Agents

Multi-network agents mitigated negative transfer in many more game variants than sin-
gle networks. They had much stronger jump starts. In Connect-4 Zig Zag the jumpstart
(cf. Figure 3) performed even better than the GAZ once it was fully trained. The agent
typically met thresholds in 50 rounds of training when learning games they had expert
knowledge in, and in 150 rounds of training learning new games. Of the 16 game vari-
ants multi-network agents were tested on, they outperformed all other transfer agents
in 14 variants. Negative transfer was experienced in the superset variants Connect-4
Miss-1 and Connect-4 Inverse Goal when not been previously seen by the network.
Analysis of the different variables for transfer drew the same conclusions as for the
single networks.

Choosing a large number and wide range of expert networks further mitigated neg-
ative transfer. Multi-network agents trained without any inverse variants struggled to
learn unseen inverse goals. Adding an inverse variant to the set of experts improved
this even when there were many experts; the multi-network agent trained in variants of
Nim showed no discernible negative transfer when learning variants with inverse goal.
Performance also improved with more expert networks. Increasing the number of Nim
variants used in multitask training worked best with the highest number of expert net-
works, even when the number of training rounds was kept constant. This suggests that
increasing the number of varied experts is more effective than hand picking them.

The efficiency of the multitask training and its superior performance suggests that
it is always better to train a multi-network agent rather than a single network one. The
primary concern with multi-network agents is their increased training time. The multi-
task training method defined in this research is much faster than GAZ training due to its
lack of self-play. As a result, the difference in training time between single and multi-
network agents is negligible. If a library of buffers for each of the experts is built when
they are trained, it takes just a few minutes to complete multitask training. The self-play
component of GAZ takes anywhere between 20 and 80 seconds per round of training,
so even when assuming optimal performance, adding a multitask network to the archi-
tecture takes roughly the same time as six rounds of training. Given that networks must
train for hundreds or thousands of rounds, multitask training adds a negligible amount
of time to the process but with a significant jump in performance.

6 Conclusion and Future Work

Introducing TL to the architecture of GAZ reduced the training time on game variants.
The multi-network approach was the most successful method with strong results in seen
and unseen games. Multi-network agents were much more resilient to negative transfer
across the spectrum of variants, provided a diverse set of source games was chosen.
When using single network agents, it proved prudent to consider the disparity between
game variants when setting the variables for transfer. Retraining action weights assisted
transfer to the most similar variants, whereas reinitialising action weights and using
semi-trained source networks worked best in the least. Single and multi-network strug-
gled to complete positive transfer between networks with different structures. Address-
ing this in future work is key to stable performance across a wider variety of variants.



12 C. McEwan, M. Thielscher

References
1. Asawa, C., Elamri, C., Pan, D.: Using transfer learning between games to improve deep

reinforcement learning performance and stability. URL http://web.stanford.edu/class/cs234/
past projects/2017/2017 Asawa Elamri Pan Transfer Learning Paper.pdf (2017)

2. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. The Journal of
Machine Learning Research 3, 397–422 (2003)

3. Banerjee, B., Stone, P.: General game learning using knowledge transfer. In: Proceedings of
IJCAI. pp. 672–677 (2007)

4. Czarnecki, W.M., Pascanu, R., Osindero, S., Jayakumar, S.M., Swirszcz, G., Jaderberg, M.:
Distilling policy distillation. CoRR abs/1902.02186 (2019)

5. Genesereth, M., Björnsson, Y.: The international general game playing competition. AI Mag-
azine 34(2), 107 (2013)

6. Genesereth, M., Thielscher, M.: General Game Playing. Synthesis Lectures on Artificial In-
telligence and Machine Learning, Morgan & Claypool (2014)

7. Goldwaser, A., Thielscher, M.: Deep reinforcement learning for general game playing. In:
Proceedings of AAAI. pp. 1701–1708. AAAI Press (2020)

8. Gunawan, A., Ruan, J., Thielscher, M., Narayanan, A.: Exploring a learning architecture for
general game playing. In: Proceedings of AI. pp. 294–306. Springer, Canberra (2020)

9. Hinrichs, T., Forbus, K.D.: Transfer learning through analogy in games. AI Magazine 32(1),
70–83 (2011)

10. Hsu, S., Shen, I., Chen, B.: Transferring deep reinforcement learning with adversarial objec-
tive and augmentation. CoRR abs/1809.00770 (2018)

11. Kuhlmann, G., Stone, P.: Graph-based domain mapping for transfer learning in general
games. In: Proceedings of ECML. pp. 188–200 (2007)

12. Parisotto, E., Ba, J., Salakhutdinov, R.: Actor-mimic: Deep multitask and transfer reinforce-
ment learning. CoRR abs/1511.06342 (2015)

13. Pérez-Liébana, D., Liu, J., Khalifa, A., Gaina, R.D., Togelius, J., Lucas, S.M.: General video
game AI: a multi-track framework for evaluating agents, games and content generation algo-
rithms. CoRR abs/1802.10363 (2018)

14. Schkufza, E., Love, N., Genesereth, M.: Propositional automata and cell automata: Repre-
sentational frameworks for discrete dynamic systems. In: Proc. of AI. pp. 56–66 (2008)

15. Shao, K., Tang, Z., Zhu, Y., Li, N., Zhao, D.: A survey of deep reinforcement learning in
video games. arXiv preprint arXiv:1912.10944 (2019)

16. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., et al.: Mastering the game of go
with deep neural networks and tree search. Nature 529, 484–503 (2016)

17. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., et al.: A general rein-
forcement learning algorithm that masters chess, shogi, and Go through self-play. Science
362(6419), 1140–1144 (2018)

18. Sobol, D., Wolf, L., Taigman, Y.: Visual analogies between Atari games for studying transfer
learning in RL. arXiv preprint arXiv:1807.11074 (2018)

19. Taylor, M.E., Kuhlmann, G., Stone, P.: Accelerating search with transferred heuristics. In:
ICAPS-07 workshop on AI Planning and Learning (2007)

20. Taylor, M.E., Stone, P.: Cross-domain transfer for reinforcement learning. In: Proceedings
of the ICML. p. 879–886. New York (2007)

21. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research 10, 1633–1685 (2009)

22. Yang, T., Hao, J., Meng, Z., Zhang, Z., Wang, W., et al.: Efficient deep reinforcement learning
through policy transfer. arXiv preprint arXiv:2002.08037 (2020)

23. Yin, H., Pan, S.J.: Knowledge transfer for deep reinforcement learning with hierarchical
experience replay. In: Proceedings of AAAI. p. 1640–1646. AAAI Press (2017)


	Knowledge Transfer for Deep Reinforcement Agents in General Game Playing

