
Exploring a Learning Architecture for General
Game Playing

Alvaro Gunawan1, Ji Ruan1, Michael Thielscher2, and Ajit Narayanan1

1 Auckland University of Technology, Auckland, New Zealand
alvarogunawan@aut.ac.nz

jiruan@aut.ac.nz ??

ajitnarayanan@aut.ac.nz
2 University of New South Wales, Sydney, Australia

mit@unsw.edu.au

Abstract. General Game Playing (GGP) is a platform for developing
general Artificial Intelligence algorithms to play a large variety of games
that are unknown to players in advance. This paper describes and analy-
ses GGPZero, a learning architecture for GGP, inspired by the success of
AlphaGo and AlphaZero. GGPZero takes as input a previously unknown
game description and constructs a deep neural network to be trained
using self-play together with Monte-Carlo Tree Search. The general ar-
chitecture of GGPZero is similar to that of Goldwaser and Thielscher
(2020) [4] with the main differences in the choice of the GGP reasoner
and the neural network construction; furthermore, we explore additional
experimental evaluation strategies. Our main contributions are: confirm-
ing the feasibility of deep reinforcement for GGP, analysing the impact of
the type and depth of the underlying neural network, and investigating
simulation vs. time limitations on training.

Keywords: General Game Playing · Machine Learning · Reinforcement
Learning · Neural Networks

1 Introduction
The recent accomplishments of DeepMind’s AlphaGo [9] have reignited interest
in game-playing Artificial Intelligence, showing the effectiveness of Monte-Carlo
Tree Search (MCTS) with deep neural networks and learning through self-play.
Further work on AlphaGo Zero [11] showed that this method was effective even
without any human expert knowledge, and in fact able to defeat their previous
AlphaGo agent despite learning from effectively zero knowledge apart from the
games rules. This method of learning to play a new game was extended beyond
Go to AlphaZero [10] for learning to play Chess and Shogi with effectively the
same architecture.

In the same vein as AlphaZero, General Game Playing (GGP) proposes a
challenge: developing agents that are able to play any game, given a general
set of rules [6]. GGP uses a logical language known as Game Description Lan-
guage (GDL) to represent rules of arbitrary games. These game descriptions are
a combination of a knowledge base containing static rules and a state contain-
ing dynamic facts. This raises the natural question whether the same methods

?? Corresponding Author



2 Alvaro Gunawan , Ji Ruan , Michael Thielscher, and Ajit Narayanan

that AlphaZero uses to learn to play Go, Chess and Shogi can be applied to
general games described in GDL. This was recently addressed with Generalised
AlphaZero [4], a system that applies deep reinforcement learning to GGP. While
the overarching approach outlined by AlphaZero provides a general architecture
for a self-play learning agent, there are a few key limitations that had to be
overcome for this purpose:

– AlphaZero assumes the games are two-player, turn-taking and zero-sum.
– Neural network architectures are hand-crafted for each game, encoding fea-

tures such as board geometry.
– As a result of the specialised neural networks, the agents have some form of

implicit domain knowledge for each game.

In the domain of GGP, games are neither required to be two-player, turn-taking
nor zero-sum so that a GGP agent must be able to account for games with
any number of players, simultaneous action games and non-zero-sum games.
With regard to the second point, the agent must also be able to generate a
neural network for any given game description, without requiring any additional
modification from a human. Finally, the system should be general for any game
with no specialised domain knowledge at all. In this paper, we complement
the recent work on Generalised AlphaZero [4] as a system to overcome these
limitations in an AlphaZero-style self-play reinforcement learning agent designed
to learn games in the GGP setting. Our main contributions lie in the further
exploration of this learning architecture:

– We confirm the feasibility of deep reinforcement for GGP under different
settings, including the use of a different GGP reasoner.

– We analyse the impact of type and depth of the underlying neural network.
– We investigate simulation vs. time limitations on training.

The rest of this paper is organized as follows. Section 2 summarises related works
in applying learning to GGP including Generalised AlphaZero. Section 3 de-
scribes the architecture of our self-play reinforcement learning agent, GGPZero.
In the extensive section 4 we present the results of our experiments, showing the
agent’s capabilities in a variety of games as well as an in-depth examination in
the agent’s architecture, followed by a concluding discussion in section 5.

2 Related Work
Research in applying reinforcement learning based approaches to GGP began
with the framework RL-GGP [1] that integrates a GGP server and a standard
framework for reinforcement learning RL-Glue. No implementation of a full agent
is provided, making it difficult to assess performance. QM-learning [14] combines
Q-learning with MCTS, and integrates it within GGP. The performance of the
agent is evaluated on three small board games. However, this method is still
effectively only an on-line search method, using Q-learning to optimise MCTS.
The recent GGP agent [3] implements an AlphaZero-style learning component
that exhibits strong performance in several games, but requiring hand-crafted
convolutional neural networks for these games. Generalised AlphaZero [4] im-
plements a Deep Reinforcement Learning framework for GGP that shows strong
performance in several games but weak performance in a cooperative game.



Exploring a Learning Architecture for General Game Playing 3

The above-mentioned restrictions of AlphaZero were overcome by extending the
policy-value network with move probabilities and expected rewards for all players
in an n-person game. Furthermore, a general propositional reasoner to process
arbitrary GDL game rules was used as input to the neural network, thus over-
coming the reliance on a board and a handcrafted neural network. In this paper
we use a similar architecture to that of [4] but with the main differences in the
choice of the GGP reasoner, the neural network construction and the experimen-
tal evaluation. In particular, we allow a manual setting of the neural network
depth to allow for further investigations into the agent’s behaviour, which was
only done in a limited manner in [4].

3 GGP Learning Agent Architecture

Game Description GDL Parser

Instantiator

Inference Engine

Fluent list

p1 actions
...

pn actions

input

output

Neural

Network

MCTS

Training
Playing

Training samples

Reasoner

Reinforcement learning

Search algorithm

Neural network

Fig. 1: Architecture of GGPZero agent.

The overall architecture of our system GGPZero consists of four main com-
ponents, each made up of smaller subcomponents. This first component is the
reasoner, which takes the GDL description and processes it to generate the neural
network and conduct inference during play. The second component is the neural
network, which is used as a policy and utility estimator for the search algo-
rithm. The third component is the search algorithm, using both neural network
estimation and MCTS for policy generation. Finally, the self-play reinforcement
learning component is used to train the neural network with training samples
generated by the search algorithm.

While GGPZero’s architecture is similar to that of AlphaZero, there are two
key differences. Firstly, as the GGP platform requires the agent to infer the
rules of a game from a GDL description without human aid, the agent requires a
reasoner to do this inference. Secondly, we use the reasoner’s instantiated fluent
and action lists to automatically generate the neural network, as we cannot rely
on hand-crafted neural network architectures for the more general setting of
GGP. Additionally, the search algorithm and reinforcement training have been
designed with the GGP setting in mind, as the games may have an arbitrary
number of players and are not strictly zero-sum. The rest of this section will
provide more detail on each individual component of the GGPZero architecture.

Reasoner The GDL parser takes as input a game described in GDL and converts
it into appropriate representations for the instantiator and the inference engine.



4 Alvaro Gunawan , Ji Ruan , Michael Thielscher, and Ajit Narayanan

The instantiator generates the sets of possible fluents (dynamic predicates that
are true for a given state) and possible actions, using the method described in
[13,12]. The inference engine is used by MCTS to infer facts about the game such
as legal moves, subsequent states, terminal conditions and utility values. There
are two main inference methods: Prolog-based and Propositional network (Prop-
net) based [8]. A Prolog-based method converts the GDL rules to an equivalent
Prolog representation and uses an off-the-shelf Prolog reasoner for inference. In
our paper, we use the Prolog-based inference engine as described in [13,12] for
its greater generality, while a Propnet-based inference method is used in Gen-
eralised AlphaZero[4]. While this is more efficient than a Prolog-based method,
Propnets are not applicable to some larger games as the grounding process can
be intractable. Additionally, to improve the efficiency of the agent, we save the
results of queries. This allows repeated visits to states during the MCTS to be
more efficient, especially as the neural network will tend to prefer certain optimal
states and actions after sufficient training.

Neural Network The neural network takes a fluent vector as input. The vector
has length equal to the total number of all fluents possible in the game, and each
index corresponds to a single fluent. For an input vector V = (a1, a2, . . . , an)
and a state consisting of fluents in the set S ⊆ {a1, ..., an}, the value of element
ai = 1 if ai ∈ S, otherwise ai = 0. The neural network outputs for each player a
normalised policy vector for player’s actions and the estimated goal value.

The neural network architecture is automatically generated based on the
game description and a network depth parameter. The input and hidden layers
are generated as fully connected layers with ReLU activation with width equal
to the number of fluents, and depth equal to the network depth parameter. For
the output layers, a number of output heads are generated equal to the number
of players. Each output head is then further split into an estimated policy and
an estimated goal value. The number of nodes in the policy output layer is equal
to the number of actions possible for the given player and the estimated goal
value is a single output node.

Unlike the large, convolutional neural network used in AlphaZero, the neu-
ral network used in GGPZero uses fully connected layers and is comparatively
small. One advantage of this approach is that games described in GDL are not
guaranteed to be easily represented with a board-like structure, such as a matrix
in the case of the CNN in AlphaZero. Additionally, we use smaller networks for
prioritizing of rapid experimentation and to identify the limits of this approach
that may then lead to the need for more complex deep learning approaches.

Search algorithm The search algorithm outputs the finalised policy vector to be
used in play and self-play reinforcement training. It uses a simultaneous action
MCTS [5] that is able to accommodate multi-player, general sum games with
simultaneous actions. Rather than using random playouts during the expansion
phase, the search algorithm uses the neural network’s estimator to evaluate the
value of a newly expanded state. Additionally, the policy generated by the neural
network is considered during the selection phase. As a result, a modified form of



Exploring a Learning Architecture for General Game Playing 5

upper confidence bound on trees U(s, a) is used as the selection strategy:

U(s, a) = Q(s, a) + Cuct · P (s, a) ·
√
N(s)

1 + N(s, a)

where Q(s, a) is the estimated goal value, P (s, a) is the estimated policy, N(s)
is a node count of state s, N(s, a) is the action count of a at s, and Cuct is a
weight constant for the exploration factor which can be set as a parameter.

Reinforcement Learning The agent is tasked with learning an optimal policy for a
game by training the neural network to improve its approximation of the function
f?(s) = (V,Ψ), where V is the estimated utility and Ψ is the estimated policy.
The neural network with weights θ is trained on the policy estimated through
MCTS(s;θ). In essence, the agent uses the neural network guided MCTS to
continuously improve the neural network only through iterations of self-play. A
single iteration of learning has 3 distinct phases:

– Self-play: generate training examples using MCTS with the current best
network weights θbest.

– Training: train the current best neural network with new examples gener-
ated during self-play.

– Evaluation: compare the performance of the newly trained network θnew

against the current best network θbest. If θnew outperforms the current θbest,
then θbest is updated by θnew.

To generate training examples for the neural network, the agent plays episodes
of self-play games against itself. The policy generated by the MCTS is used as
the training target for the policy vector, while the actual goal value at the ter-
minal state of a game play is used as the training target for the estimated goal
value. The neural network is trained by minimising the sum of the following,
across all players for a training example: (1) mean squared error between the
neural network estimated goal values and the self-play terminal goal values; (b)
cross entropy of the neural network estimated policy and the MCTS generated
policy.

4 Experimental Studies and Results

We first present an evaluation of the GGPZero agent on five games: Tic-Tac-
Toe, Connect-Four, Breakthrough, Pacman3p and Babel, followed by further
experiments to evaluate various key aspects of the architecture. The selection of
games is similar to [4] with a mixture of complexity levels and game types. We
have three benchmark agents for these evaluations: a random agent (RANDOM)
that samples uniformly from legal actions, a neural-network based agent (NN),
which uses the network of GGPZero without MCTS search, and a MCTS based
agent (MCTS). Where applicable, these benchmark agents are given the same
parameters as GGPZero.3

3 All components are implemented in Python, with Prolog components using the SWI-
Prolog interpreter with PySWIP as a bridge. We base our implementation of the
MCTS on the code provided in [7].



6 Alvaro Gunawan , Ji Ruan , Michael Thielscher, and Ajit Narayanan

All experiments are conducted on a machine with an Intel Xeon E5-1630v4
3.7 10M 2400 4C CPU, 128GB RAM and NVIDIA GeForce GTX1080 8GB.

4.1 Game Evaluation

Performance on two-player zero-sum games The following table shows the per-
formance of GGPZero (with 20 layers and 1000 training iterations) against three
benchmark agents in three games with increasing complexity. The results are
shown in the format of (Win/Lose/Draw):

Opponent Agent (Win/Lose/Draw)

Game RANDOM NN MCTS

Tic-Tac-Toe 91 / 0 / 9 93 / 0 / 7 11 / 27 / 62

Connect-Four 97 / 3 / 0 71 / 29 / 0 56 / 43 / 1

Breakthrough 100 / 0 / 0 73 / 27 / 0 86 / 14 / 0

Table 1: Results of GGPZero on two-player zero-sum games. GGPZero and MCTS
are given the same simulation limit of 50.

GGPZero performs well in these games, and these games follow a similar
format to the games that AlphaZero were trained and played on. However, unlike
AlphaZero, the training of these agents is completely end-to-end, not requiring
hand-crafted features for any particular game. Interestingly, GGPZero performs
better on the more complex games, e.g., winning only 11% against the MCTS
agent in Tic-Tac-Toe, while winning 86% in Breakthrough. This is likely due
to the fact that the less complex games have state spaces small enough for the
other agents to still be competitive in.

Performance on non-two-player general-sum games Games such as Pacman3p
and Babel highlight the challenge presented by GGP, as they are asymmetric,
multi-player and general sum games.We show that GGPZero is able to learn to
play these games, albeit with limited performance compared to the two-player,
zero-sum case. The following table shows the goal value of the agents playing 20
games. E.g., the first row shows that role pacman is played by MCTS obtaining
score 1.96, and two ghosts are played by RANDOM, obtaining score 8, while the
third row shows that GGPZero gets score 2.34 in a similar setting. We can see
that GGPZero (with 5 layers and 300 training iterations) outperforms MCTS.

Agents pacman two ghosts pacman score two ghosts score

MCTS vs RANDOM
MCTS RANDOM 1.96 8

RANDOM MCTS 1.12 10

GGPZero vs RANDOM
GGPZero RANDOM 2.34 7
RANDOM GGPZero 0.66 10

GGPZero vs MCTS
GGPZero MCTS 1.53 10

MCTS GGPZero 0.79 10

Table 2: Total goal value of various agents playing 20 games of Pacman3p

The next experiment is on the game of Babel, a three-player, simultaneous,
cooperative tower-building game. 100 games are played for each agent acting
three roles in the game. RANDOM gets an average goal value of 0.122, MCTS



Exploring a Learning Architecture for General Game Playing 7

gets 0.777, GGPZero (with 20 layers and 100 training iterations) gets 0.443,
and GGPZero (with 20 layers and 500 training iterations) gets 0.638. We can
see GGPZero performs better than RANDOM but worse than MCTS. Similar
results are obtained in [4]. This shows a limitation of the current architecture in
dealing with this type of games.

4.2 Varying Neural Network Depth

Systematic experiments were used to investigate the effects of the Neural Net-
work depth on agent performance by varying the number of hidden layers and
the training iterations. To do so we set up agents with 1, 5, 10, 20, 50 and 100
layers and each agent plays 100 games against every other agent. We also select
20 iterations and 100 iterations as the amount of trainings are given to these
agents. These experiments were carried out with the game Connect-Four.

Fig. 2a shows that increasing the number of hidden layers causes the total
training time to increase linearly, and that training 100 iterations takes propor-
tionally more time under different layers. Fig. 2b shows the winning rate by each
agent over 500 games (100 games against each other agent). With 20 iterations
of training, the agent with 10 layers has the best winning rate, while with 100
iterations of training, the agent with 20 layers has the best winning rate. Over-
all, this shows that smaller networks generally perform better with less training,
while larger networks perform better with more training. This is likely due to
the fact that larger networks suffer from underfitting with insufficient training
while smaller networks suffer from overfitting. The former can be seen with the
100 layer agent after 20 iterations: the policy generated by the neural network
is typically a flat distribution across all actions.

1510 20 50 100

0.5

1

1.5

2

·104

Number of layers

T
ra

in
in

g
ti

m
e

(s
ec

o
n
d
s)

20 iterations

100 iterations

(a)

1 5 10 20 50 100
0

20

40

60

80

100

Number of hidden layers

G
a
m

es
w

o
n

(%
)

1 5 10 20 50 100
0

20

40

60

80

100

Number of layers

G
a
m

es
w

o
n

(%
)

(b) Top: 20 iterations. Bot-
tom: 100 iterations.

Fig. 2: (a): Training time for GGPZero with varying number of hidden layers.
(b): Winning rate of GGPZero with varying number of hidden layers.



8 Alvaro Gunawan , Ji Ruan , Michael Thielscher, and Ajit Narayanan

4.3 Convolutional Neural Network Experiments

While the agent with a fully-connected neural network showed good performance
when playing against the benchmarks, we would like to investigate the stabil-
ity of the training method with regard to winning outcomes. We tested the
agents with different training iterations, under the assumption that an agent
with more iterations will have more success than an agent with fewer iterations.
Fig. 3 shows that the agent with a convolutional neural network increases its win
rate to above 60% with increasing iterations, whereas a fully connected network
reaches optimal win rate of just under 54% relatively early in learning with more
fluctuations later on. This is likely due to the fully connected network overfitting
its parameters.

For zero-sum games such as Connect-Four, we would ideally prefer an agent
that increases in performance with additional training. As Connect-Four is solved,
we know that there is an optimal strategy for the game. While GGPZero will
most likely be unable to learn this optimal strategy with the limited training
time that it is provided, we would like to see the agent continuously improve,
eventually converging to the optimal strategy towards the limit.

100 300 500 700 900

44

46

48

50

52

54

Agent training iterations

G
a
m

es
w

o
n

(%
)

(a) Fully connected network

50 300 550 800 1000

40

50

60

Agent training iterations

G
a
m

es
w

o
n

(%
)

(b) Convolutional network

Fig. 3: Winning rates by agents with different training iterations in Game
Connect-Four.

4.4 Effects on Simulation-limited and Time-limited MCTS

In this section, we compare the effects of simulation and time limitation on the
GGPZero and MCTS during the game play. For the following experiments, we
use the game Breakthrough as it has a large state space and branching factor.
For GGPZero, we look at 5 versions with training iterations from 200 to 1000.

Simulation Limited In the prior experiments and test games, we use a simula-
tion limited variant of MCTS. When selecting an action to play, the agents (both



Exploring a Learning Architecture for General Game Playing 9

50 100 150 200 250 300

5

10

15

20

Simulation limit

G
a
m

es
w

o
n

(o
u
t

o
f

2
0
)

200 iterations

400 iterations

600 iterations

800 iterations

1000 iterations

50% winrate

(a) Simulation-limited

0.5 1 1.5 2 2.5 3

5

10

15

20

Time limit (seconds)

G
a
m

es
w

o
n

(o
u
t

o
f

2
0
)

200 iterations

400 iterations

600 iterations

800 iterations

1000 iterations

50% winrate

(b) Time-limited

Fig. 4: GGPZero winning rate against MCTS with increasing time and simula-
tion limits with varying amounts of training iterations on Breakthrough games.

GGPZero and MCTS) perform a limited number of simulations, expanding the
search tree. After completing these simulations, the action policy is then gener-
ated. We use this variant of MCTS to reduce the impact of the inference engine’s
efficiency on the performance of the agent, allowing both GGPZero and MCTS
agent to search a similar amount of the game states. Increasing the simulation
limit allows the agents to search more extensively, potentially leading to better
performance at the cost of slower action selection. This is especially evident with
the MCTS agent, as the playout phase requires extensive use of the inference
engine. GGPZero is able to circumvent this computationally taxing operation
by using the neural network.

Fig. 4a shows the GGPZero’s winning rate against MCTS when simulation
limit varies from 50 to 300. For GGPZero with 1000 training iterations, it clearly
outperforms the MCTS when the simulation limit is low, but loses out when the
limit increases. A similar trend can be seen for GGPZero with 600 and 800
iterations. This result is not entirely unexpected as the strategy generated by
the MCTS agent begins to approach the Nash equilibrium when the number
of simulations performed increases. While for GGPZero with lower training it-
erations, the winning rate stays relatively flat and is generally worse than the
MCTS. This suggests that when GGPZero’s training is insufficient, the MCTS
component inside GGPZero is not as effective as the pure MCTS agent due to
the limitation of the neural network.

Time Limited In the usual GGP format, actions must be selected under a limited
time budget ranging between 10 to 90 seconds, depending on the complexity of
the game. As a result, most GGP agents favour using a time-limited variant
of MCTS, performing as many simulations as possible in a limited time frame
before generating their action policies. In the next set of experiments, we set time
limits from 0.5 seconds to 3 seconds to examine the effects of time limit. Fig.
4b presents GGPZero’s winning rate against MCTS under different time limit.
For the GGPZero with 1000 training iterations, it significantly outperforms the
MCTS agent when the time limit is short, but performs worse when the time



10 Alvaro Gunawan , Ji Ruan , Michael Thielscher, and Ajit Narayanan

limit increases. Similar trend is shown in GGPZero with 600 or 800 iterations,
but less so in GGPZero with 200 or 400 iterations. These results are consistent
with the simulation-limited case in Fig. 4a.

We further examined the simulation numbers under different time limits and
during different stage of the game play. Fig. 5a shows that as the time limit
increases, the average number of simulations of the MCTS agent does not in-
crease as rapidly as that of the GGPZero. Despite that, the MCTS agent still
performs better when given a longer time limit. Note that GGPZero with differ-
ent training iterations performs similar numbers of simulations within the same
time limit. This is due to the fact that the neural network can be seen as an
O(1) operation regardless of the amount of training; there is no trade-off with
regard to efficiency when using a more trained agent.

0.5 0.75 1 1.25 1.5
0

100

200

300

Time limit (seconds)

A
v
er

a
g
e

n
u

m
b

er
o
f

si
m

u
la

ti
o
n

s

GGPZero

MCTS

(a) Average simulations per time
limit

0 10 20 30 40 50
0

100

200

300

Number of moves made (states)

A
v
er

a
g
e

n
u

m
b

er
o
f

si
m

u
la

ti
o
n

s

GGPZero 0.5 sec (vs GGPZero 1.5 sec)

GGPZero 1.5 sec (vs GGPZero 0.5 sec)

MCTS 0.5 sec (vs MCTS 1.5 sec)

MCTS 1.5 sec (vs MCTS 0.5 sec)

GGPZero 1.5 sec (vs MCTS 1.5 sec),

MCTS 1.5 sec (vs GGPZero 1.5 sec)

(b) Average simulations over the
course of a game

Fig. 5: Average number of simulations completed by agents

In the time limited scenario, another aspect to consider is the varying amount
of time required to perform search at different stage of the game. Although in
Fig. 5a we see that the MCTS agent has significantly less average simulations
throughout the course of a game, we see in Fig. 5b that as the game progresses,
the average number of simulations tends to increase for all agents. This is likely
due to the search more likely visiting terminal states as it progresses through
the game, causing simulations to finish earlier. In the case of the MCTS agent,
this early stopping by finding terminal states presents a significant reduction in
simulation time, as it does not require the search to enter the playout phase.

To conclude, in both the simulation-limited and time-limited settings, we
see that GGPZero with enough training significantly outperforms the standard
MCTS agent when given a strict simulation or time limit. However, this dif-



Exploring a Learning Architecture for General Game Playing 11

ference in performance diminishes and eventually is reversed once these limits
are large enough. From these observations, we can view the trained neural net-
work as a form of compression, replacing the computationally expensive playout
phase with a neural network. The quality of this compression is in part affected
by the amount of training provided to the agent but also by the architecture of
the neural network itself. As we saw in subsection 4.3, the convolutional neu-
ral network had better and more stable performance than the fully connected
neural network when given sufficient training. The final comment is that the
neural network with limited training can also be a limiting factor for the MCTS
component in the GGPZero, as when giving a longer time limit, the pure MCTS
agent can always outperform the GGPZero as in our experiments.

5 Conclusion and Future Work

We described GGPZero, an AlphaZero-style self-play reinforcement learning
agent and implementation, designed to learn games in the GGP setting. While
the architecture was inspired by the recent Generalised AlphaZero [4], the main
differences are in the choice of GGP reasoner and the neural network construc-
tion; furthermore we carried out systematic experimental evaluation of various
aspects of the use of deep reinforcement learning for GGP. Our main contribu-
tion is in the exploration of this learning architecture: confirming its feasibility,
the impact of neural network depth, types of network, and simulation vs. time
limitation on training. The experiments with network architectures have shown
that the agent scales well in terms of both efficiency and effectiveness. More
powerful hardware will allow us to take advantage of deeper neural networks.
These more complex network architectures have been shown to be more effective
for games such as Connect-Four, given sufficient training.

To further improve the overall performance of the agent, the current imple-
mentation could be improved by parallelising several components. Firstly, train-
ing could be parallelised to allow for multiple games to be played concurrently,
allowing for either faster training times or more extensive training within the
same timescale. Secondly, the MCTS itself could be parallelised [2] — however,
the selection of which parallelisation method to use must be investigated within
the context of the agent’s architecture.

Another possible improvement to the agent is to use larger and deeper net-
work sizes for all games. As the experiments show, deeper networks with more
training tended to have better performance than shallower networks. The current
trends in machine learning seem to indicate that larger networks are a reasonable
approach for improving overall performance, given sufficient training is available.

The Babel results show that the agent is capable of learning and playing
games that are not zero-sum, turn-taking or two-player. This means that GGP-
Zero is able to generalise beyond the games that AlphaZero was able to play.
However, we also see that a pure MCTS agent still outperforms GGPZero in this
game. Further investigation is required into the nature of the training method
itself, as it may have limitations when learning to play more general games.



12 Alvaro Gunawan , Ji Ruan , Michael Thielscher, and Ajit Narayanan

While the current method for generating neural network architectures is gen-
eral, it still requires a separate neural network for each game. This method is
still effective in playing games, but can be argued to not be truly general, as each
network is specialised for each game. A more general neural network architecture
that can be used for any game would be ideal, but two key challenges still stand:
(1) what kind of general game state representation can be used for the input
to the neural network and (2) what is the appropriate learned and generalized
representation for transfer to another architecture?

References

1. Benacloch-Ayuso, J.L.: RL-GGP. http://users.dsic.upv.es/∼flip/RLGGP (2012)
2. Chaslot, G.M.B., Winands, M.H., van den Herik, H.J.: Parallel monte-carlo tree

search. In: International Conference on Computers and Games. pp. 60–71. Springer
(2008)

3. Emslie, R.: Galvanise zero. https://github.com/richemslie/galvanise zero (2017)
4. Goldwaser, A., Thielscher, M.: Deep reinforcement learning for general game play-

ing. In: AAAI. pp. 1701–1708 (2020)
5. Lanctot, M., Lisỳ, V., Winands, M.H.: Monte carlo tree search in simultaneous

move games with applications to Goofspiel. In: Workshop on Computer Games.
pp. 28–43. Springer (2013)

6. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: Game description language specification (2008)

7. Nair, S.: A simple alpha(go) zero tutorial. https://web.stanford.edu/∼surag/posts/
alphazero.html (2017)

8. Schkufza, E., Love, N., Genesereth, M.: Propositional automata and cell automata:
Representational frameworks for discrete dynamic systems. In: Australasian Joint
Conference on Artificial Intelligence. pp. 56–66. Springer (2008)

9. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of Go with deep neural networks and tree search. Nature 529(7587),
484 (2016)

10. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanc-
tot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815 (2017)

11. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of Go without
human knowledge. Nature 550(7676), 354 (2017)

12. Vittaut, J.N., Méhat, J.: Efficient grounding of game descriptions with tabling. In:
Workshop on Computer Games. pp. 105–118. Springer (2014)

13. Vittaut, J.N., Méhat, J.: Fast instantiation of GGP game descriptions using prolog
with tabling. In: ECAI. vol. 14, pp. 1121–1122 (2014)

14. Wang, H., Emmerich, M., Plaat, A.: Monte carlo q-learning for general game play-
ing. CoRR abs/1802.05944 (2018), http://arxiv.org/abs/1802.05944

http://users.dsic.upv.es/~flip/RLGGP
https://github.com/richemslie/galvanise_zero
https://web.stanford.edu/~surag/posts/alphazero.html
https://web.stanford.edu/~surag/posts/alphazero.html
http://arxiv.org/abs/1802.05944

	Exploring a Learning Architecture for General Game Playing 

