
Composability in Cognitive Hierarchies

David Rajaratnam, Bernhard Hengst, Maurice Pagnucco, Claude Sammut, and
Michael Thielscher

University of New South Wales, Australia
{daver,bernhardh,morri,claude,mit}@cse.unsw.edu.au

Abstract. This paper develops a theory of node composition in a formal frame-
work for cognitive hierarchies. It builds on an existing model for the integration of
symbolic and sub-symbolic representations in a robot architecture consisting of
nodes in a hierarchy. A notion of behaviour equivalence between cognitive hierar-
chies is introduced and node composition operators that preserve this equivalence
are defined. This work is significant in two respects. Firstly, it opens the way for
a formal comparison between cognitive robotic systems. Secondly, composition,
more precisely decomposition, has been shown to be important to many fields,
and may therefore prove of practical benefit in the context of cognitive systems.

1 Introduction

Building robots capable of interacting with humans and operating in unstructured envi-
ronments is an open challenge. Such a robot needs to combine low-level (sub-symbolic)
sensor processing with high-level (symbolic) decision making. Currently, there are two
basic approaches to this challenge. The first is to combine both symbolic and sub-
symbolic representations into a rich language, such as Belle and Levesque’s recent inte-
gration of probabilistic uncertainty into the Situation Calculus for robot localisation [4].
The second approach is to separate the required representations into interconnected sub-
systems, for example using an architecture such as the Robot Control System (RCS) [1].

The advantage of a combined representation is that it allows for formal systems
analysis. On the other hand such languages can be difficult to master and implement
efficiently. For example, while GPU based processing is required for scalable 3D Si-
multaneous Localisation and Mapping (SLAM) [15], incorporating such specialised
techniques into a rich expressive reasoner poses serious implementation challenges.

The alternative to the rich representation approach is to construct an architecture of
loosely connected sub-systems. However, while having some practical advantages, typ-
ical architecture based approaches either impose a particular representation language
or are only described informally using text descriptions and diagrams. The former
lacks the flexibility required to combine disparate reasoning techniques, while the latter
makes it difficult to formally establish properties of such a system.

The contribution of this paper is to take a step towards unifying these two ap-
proaches. We do this by extending a recently developed formal framework for integrat-
ing symbolic and sub-symbolic reasoning processes [9]. In particular, we develop a
formal notion of behaviour equivalence between two cognitive systems, and prove the-
oretical properties for node composability that preserves behaviour equivalence.

2

The rest of this paper proceeds as follows. First, we introduce related work (Sec-
tion 2) highlighting both the similarities and differences to existing research. We then
provide a summary of the main features of the formal approach developed in [9]. In
Section 4 we develop a notion of behaviour equivalence between cognitive hierarchies.
Section 5 represents the main technical contribution of this paper, where node compo-
sition operators are introduced and formally shown to satisfy behaviour equivalence. It
is further established that an arbitrary cognitive hierarchy can be reduced to a system
consisting of a single node that nevertheless is formally behaviourally equivalent to the
original. We conclude with a discussion and directions for future research.

2 Related Work

In this section we briefly highlight the different approaches to cognitive hierarchies,
focusing on issues of formalisation and representation. We also briefly examine the
varying notions of node composition that are prevalent in artificial intelligence (AI).

The use of hierarchies to build reasoning systems has a rich history in robotics and
AI. While approaches vary, they can be broadly categorised into two groups: either they
impose a particular representation language, or they are described informally.

The category of fixed language approaches include the popular cognitive architec-
tures SOAR [14] and ACT-R [3], both of which employ symbolic based representations.
Other examples include the logic-based Nilsson’s triple-tower architecture [16], and
the robot focused dual dynamic (DD) hierarchical behaviour system [12] formalised in
terms of differential equations. The weakness of fixed language systems is that the rep-
resentation language imposes limits on the type of problems that can be expressed. For
example, the languages of SOAR and ACT-R are not easily applicable for representing
the probabilistic uncertainty of robot localisation, while the differential equations used
in the DD system cannot easily be adapted to perform traditional logical inference.

The alternative has been to describe architectures in an informal manner. The influ-
ential Robot Control System (RCS) model [1] consists only of textual descriptions and
diagrams. While the seminal subsumption architecture [7] uses finite state machines
for representing individual levels within the hierarchy [6], nevertheless the integration
of these levels into an overall system is purely informal. An informal component in-
tegration is also true of the recent SOAR extension for dealing with sensor data [13].
Unfortunately, the informal approach has a number of weaknesses. In particular, it pro-
vides no basis on which to prove properties of the system as a whole, and there is no
clear distinction between the architectural properties of an informal system and proper-
ties that arise from arbitrary implementation decisions.

Closely related to the construction of hierarchies is the notion of problem decompo-
sition, where its benefits were evident in the context of hierarchical planning [17]. The
more general notion of factored planning has been associated with the study of how
to decompose a domain into sub-domains (know as factors) that can be solved inde-
pendently and for which the solutions to each sub-domain can be combined [2, 5]. This
work is generalised in the field of general game playing, where a game is decomposed
into sub-games that are solved independently, ensuring that the combined solution
solves the original game [8]. As the dual to decomposition, behaviour composition [10]

3

considers the problem of synthesising target behaviours from existing behaviours. How-
ever, the primitive behaviours in this case operate over a common transition system (i.e.,
the encoding of the environment) where as, composition in general-game playing con-
siders composition over different transition systems. Our work is closer in intention to
that of sub-game composition in general game playing than it is to behaviour composi-
tion.

3 Formal Architecture

In this section we summarise the formalisation developed in [9]. It avoids the weak-
ness of existing formal models (discussed in Section 2) by adopting a meta-theoretic
approach to cognitive hierarchies. In essence, it formalises the interaction between cog-
nitive nodes in a hierarchy while making no commitments about the representation and
reasoning mechanism within individual nodes. As such this framework complements,
rather than competes with, existing hierarchical approaches.

3.1 Nodes

At the most basic level a cognitive hierarchy consists of a set of nodes. Nodes are tasked
to achieve a goal or maximise future value. They have two primary functions: world-
modelling and behaviour-generation. World-modelling is achieve through the mainte-
nance of a belief state. A belief state is updated from lower-level nodes through sens-
ing, which is the process of extracting observations. Behaviour-generation is achieved
through a set of policies, where a policy maps a state to a set of actions and the current
policy is determined by the actions of higher level nodes. A selected set of actions can
also update a belief state, often referred to as an expectation update.

Definition 1. A cognitive language is a tuple L = (S,A, T ,O), where S is a set of
belief states, A is a set of actions, T is a set of task parameters, and O is a set of
observations. A cognitive node is a tuple N = (L, Π, λ, τ , γ, s0, π0) s.t:

– L is the cognitive language for N , with initial belief state s0 ∈ S.
– Π a set of policies such that for all π ∈ Π , π : S → 2A, with initial policy π0 ∈ Π .
– A policy selection function λ : 2T → Π , s.t. λ({}) = π0.
– A observation update operator τ : 2O × S → S.
– An action update operator γ : 2A × S → S.

Note that Definition 1 provides a very abstract characterisation that captures only
the interaction between nodes. No restrictions are made on internal representation and
reasoning mechanisms, allowing, for example, a symbolic node to be created to encode
a logical planner, or a stochastic node to encode a Kalman filter for robot localisation.

3.2 Cognitive Hierarchy

Nodes in the model are interlinked in a hierarchy, where the lowest level node corre-
sponds to the interface to the real world, consisting of physical sensors and actuators
(Figure 1). Sensing data is passed up the abstraction hierarchy, while actions are sent
down the hierarchy, eventually resulting in physical actions.

4

Root
Node

External-
world Node

World
Modelling

Behaviour
Generation

State

Actions

Sensing function Task parameter function

Sensing function Task parameter function

Fig. 1. An example cognitive hierarchy highlighting the sensing and action graphs.

Definition 2. A cognitive hierarchy is a tuple H = (N , N0, F) s.t:

– N is a set of cognitive nodes and N0 ∈ N is a distinguished node corresponding
to the external environment.

– F is a set of function pairs 〈φi,j , ψj,i〉 ∈ F that connect nodesN i, N j ∈ N where:
• φi,j : Si → 2Oj is a sensing function, and
• ψj,i : 2

Aj → 2T i is a task parameter function.
– Sensing graph: each φi,j represents an edge from node N i to N j and forms a

directed acyclic graph (DAG) with N0 as the unique source node of the graph.
– Action graph: the set of task parameter functions forms a converse to the sensing

graph such that N0 is the unique sink node of the graph.

Definition 2 establishes how the sensing and task parameter functions connect nodes
in the hierarchy; forming sensing and action graphs. Sensing functions extract obser-
vations from lower-level nodes, while task parameter functions translate higher-level
actions into task parameters for lower level nodes. N0 models the external world.

3.3 Active Cognitive Hierarchy

The notions of a cognitive node and cognitive hierarchy capture only static components
of a system and require additional details to model dynamic operational behaviour.

Definition 3. An active cognitive node is a tuple Q = (N, s, π, a) where: 1) N is a
cognitive node with S, Π , and A being the corresponding set of belief states, set of
policies, set of actions respectively, 2) s ∈ S is the current belief state, π ∈ Π is the
current policy, and a ∈ 2A is the current set of actions.

Essentially an active cognitive node couples a (static) cognitive node with some
dynamic information; in particular the current belief state, policy and set of actions.

Definition 4. An active cognitive hierarchy is a tuple X = (H,Q) where H is a cog-
nitive hierarchy with set of cognitive nodes N such that for each N ∈ N there is a
corresponding active cognitive node Q = (N, s, π, a) ∈ Q and vice-versa.

5

The active cognitive hierarchy captures the dynamic state of the entire hierarchy at
some instance in time, where each node in the hierarchy has a current state, current
policy and current set of actions. An initial active cognitive hierarchy specifies initial
configurations for every node in the hierarchy initialised with each node’s initial belief
state and initial policy, as well as an empty set of actions.

3.4 Cognitive Process Model

In order to operate in an environment the cognitive system requires a process model
that applies the various functions of Definitions 1 and 2 to update the active cognitive
hierarchy. For brevity, in this paper we provide only the main definition and an intuitive
explanation; the interested reader is instead referred to [9] for more complete details.

Definition 5. Let X = (H,Q) be an active cognitive hierarchy withH = (N , N0, F).
The process update of X , written Update(X), is an active cognitive hierarchy:

Update(X) def
= ActionUpdate(SensingUpdate(X))

The functions SensingUpdate and ActionUpdate are intuitively easy to under-
stand. SensingUpdate passes sensing information up the cognitive hierarchy, succes-
sively updating the belief states of the nodes in the hierarchy, while ActionUpdate
passes actions down the hierarchy, causing the active policies and actions to be changed.
These actions ultimately lead to task parameter changes for nodeN0, which correspond
to signals to the robot actuators. Crucially, both SensingUpdate and ActionUpdate
update the nodes according to the partial ordering specified by the sensing and action
graphs respectively. This guarantees that the functions are well-defined, since any se-
quence of node updates that satisfies the partial ordering will produce the same result.

The above formalism completes the technical background to this paper as developed
in [9]. The remainder of this paper extends the formalism to allow for the specification
of properties of behaviour equivalence and node composition.

4 Behaviour Equivalence

In this section we introduce the notion of behaviour equivalence between two cognitive
hierarchies. This first involves establishing what it means for two cognitive systems to
be behaviourally equivalent (with respect to the real-world) at some instant in time.

Definition 6. Let X i = (Hi,Qi) and X j = (Hj ,Qj) be two active cognitive hi-
erarchies with Hi = (N i, N0, F i) and Hj = (N j , N0, F j). Then X i and X j are
behaviour equivalent iff Ti = Tj , where:

Ti =
⋃
{ψx,0(sx) | 〈φ0,x, ψx,0〉 ∈ F i for each Qx = (Nx, sx, πx, ax) ∈ Qi}

Tj =
⋃
{ψx,0(sx) | 〈φ0,x, ψx,0〉 ∈ F j for each Qx = (Nx, sx, πx, ax) ∈ Qj}

Definition 6 formalises the intuition that behaviour equivalence concerns how two cog-
nitive systems behave with respect to the external world (i.e., N0). The sets of task
parameters Ti and Tj represent the actions that are carried out by the two cognitive
systems. If the two sets are the same then the two systems perform the same actions.

6

Behaviour equivalence here is a theoretical notion, in effect saying that if we were
able to observe the behaviour of the two systems operating at the same instant in time
we would not be able to distinguish between them. This may not be possible to verify
in practice, since we cannot actually replay time. Nevertheless the conceptual meaning
is clear. We now consider how two active cognitive systems evolve over time.

Definition 7. Let Hi and Hj be two cognitive hierarchies and X 0
i = (Hi,Q0

i) and
X 0

j = (Hj ,Q0
j) be their corresponding initial active cognitive hierarchies, such that

N0 is the distinguished node for both Hi and Hj . Then Hi and Hj are behaviour
equivalent with respect to a cognitive process model Γ iff for every pair of sequences
[X 0

i , . . . ,X
n
i] and [X 0

j , . . . ,X
n
j], where X k+1

x = Γ (X k
x), each corresponding pair of

active cognitive hierarchies X k
i and X k

j (0 ≤ k ≤ n) are behaviour equivalent.

Intuitively, Definition 7 establishes that two behaviourally equivalent cognitive hi-
erarchies will be interchangeable in their operations over time. It is worth noting that
because this property deals with operational systems as they evolve, therefore it is nec-
essary to reference the process model that is used for updating the active nodes.

5 Node Composition

The idea behind node composition is to replace a pair of nodes in a cognitive hierarchy
with a single node that nevertheless encapsulates the behavioural properties of the orig-
inal. Formally this takes the form of composition operators. We now introduce parallel
and sequential composition operators and establish their foundational properties.

5.1 Parallel and Sequential Composition Operators

As a technical preliminary we first provide the following convenience functions that
will be used in the definitions to follow. Given a pair p = 〈x, y〉, let fst(p) = x and
snd(p) = y. Furthermore, we overload these definitions in the obvious way when ap-
plied to a set of pairs. Namely, fst(S)={x|〈x, y〉 ∈ S} and snd(S)={y|〈x, y〉 ∈ S}.

The parallel and sequential composition operators have a number of commonalities
which we capture by introducing a partial composition operator. The definition of this
operator is somewhat lengthy and notationally heavy, however it is intuitively straight-
forward. Essentially, a new hierarchy is created that is identical to the old except that the
two nodes being composed are replaced with a single new node. The representational
aspects of the new node (i.e., the set of states, actions, task parameters, and observa-
tions) needs to combine the representational aspects of the original. The most lengthy
aspect of the definition involves updating the sensing and task parameter functions that
connect nodes. Functions in the original hierarchy that connect to at least one of the
original two nodes must be integrated into a new function for the composed node.

Definition 8 (Partial Composition). Let H = (N , N0, F) be a cognitive hierarchy,
and N i = (Li, Πi, λi, τ i, γi, s

0
i , π

0
i) and N j = (Lj , Πj , λj , τ j , γj , s

0
j , π

0
j) be two

cognitive nodes in H , where Li = (Si,Ai, T i,Oi) and Lj = (Sj ,Aj , T j ,Oj) are the
cognitive languages for N i and Nj respectively. The partial composition of N i and N j

with respect to H is a cognitive hierarchy H ′ = (N ′, N0, F
′) s.t:

7

– N ′ = N \ {N i, N j} ∪ {Nx} where Nx = (Lx, Πx, λx, τx, γx, s
0
x, π

0
x) where:

• Lx = (Sx,Ax, T x,Ox),
• Sx = Si × Sj , with initial state sx = 〈si, sj〉.
• Ax = 2Ai × 2Aj , T x = 2T i × 2T j , Ox = 2Oi × 2Oj

• γx(ax, 〈si, sj〉)
def
=

{
〈si, sj〉 if |ax| 6= 1,
〈γi(ai, si), γj(aj , sj)〉 otherwise, for ax = {〈ai, aj〉}.

– F ′ = F \ {〈φk,l, ψl,k〉 ∈ F | k ∈ {i, j} or l ∈ {i, j}} ∪
⋃
F k

k=1,...,6

where:

• F 1={〈φw,x, ψx,w〉| w is a node; 〈φw,i, ψi,w〉 ∈ F ; 〈φw,j , ψj,w〉 ∈ F} s.t:

∗ φw,x(sw)
def
= {〈φw,i(sw), φw,j(sw)〉}

∗ ψx,w(ax)
def
=

{
{} if |ax| 6= 1,
ψi,w(ai) ∪ ψj,w(aj) otherwise, where ax = {〈ai, aj〉}.

• F 2={〈φw,x, ψx,w〉| w is a node; 〈φw,i, ψi,w〉 ∈ F ; 〈φw,j , ψj,w〉 6∈ F} s.t:

∗ φw,x(sw)
def
= {〈φw,i(sw), {}〉}

∗ ψx,w(as)
def
=

{
{} if |ax| 6= 1,
ψi,w(ai) otherwise, where ax = {〈ai, aj〉}.

• F 3={〈φw,x, ψx,w〉| w is a node; 〈φw,i, ψi,w〉 6∈ F ; 〈φw,j , ψj,w〉 ∈ F} s.t:

∗ φw,x(sw)
def
= {〈{}, φw,j(sw)〉}

∗ ψx,w(ax)
def
=

{
{} if |ax| 6= 1,
ψj,w(aj) otherwise, where ax = {〈ai, aj〉}.

• F 4={〈φx,w, ψw,x〉| w is a node; 〈φi,w, ψw,i〉 ∈ F ; 〈φj,w, ψw,j〉 ∈ F} s.t:

∗ φx,w(〈si, sj〉)
def
= φi,w(si) ∪ φj,w(sj)

∗ ψw,x(aw)
def
= {〈ψw,i(aw), ψw,j(aw)〉}.

• F 5={〈φx,w, ψw,x〉| w is a node; 〈φi,w, ψw,i〉 ∈ F ; 〈φj,w, ψw,j〉 6∈ F} s.t:

∗ φx,w(〈si, sj〉)
def
= φi,w(si)

∗ ψw,x(aw)
def
= {〈ψw,i(aw), {}〉}.

• F 6={〈φx,w, ψw,x〉| w is a node; 〈φi,w, ψw,i〉 6∈ F ; 〈φj,w, ψw,j〉 ∈ F} s.t:

∗ φx,w(〈si, sj〉)
def
= φj,w(sj)

∗ ψw,x(aw)
def
= {〈{}, ψw,j(aw)〉}

It is worth highlighting some significant aspects of Definition 8. Firstly, the set of
states for the composed node consists of the cross-product of the set of states for the
original nodes. Hence exactly the same combination of states that can be represented
by the two nodes in the original hierarchy can also be represented by the new node.
Secondly, the set of actions (resp. task parameters and observations) of the new node
consist of the cross-product of the powerset of the same property in the original two
nodes. This is necessary to allow for the arbitrary combination of subsets of the original
set of actions (resp. task parameters and observations). Finally, some of the connections
in the old hierarchy need to be preserved while others need to be merged. F1, . . . , F6 in

8

the definition cover the cases where connector functions need to be merged. The modi-
fied functions are defined in terms of the originals in order to preserve their behaviour,
but are modified to deal with the merged representation of the new node.

We now turn to completing the definitions of the different composition operators.
The more straightforward case is the parallel composition operator. This captures the
situation where the two nodes being composed are not reachable from each other in the
cognitive hierarchy (e.g., nodes N4 and N5 in Figure 2(a)).

(a) Pre-composition (b) Post-composition

Fig. 2. Parallel composition of nodes N4 and N5 in a cognitive hierarchy. Solid lines represent
the sensing functions between nodes and dotted-lines represent the task parameter functions.

Definition 9 (Parallel Composition). Let H = (N , N0, F) be a cognitive hierarchy,
and N i = (Li, Πi, λi, τ i, γi, s

0
i , π

0
i) and N j = (Lj , Πj , λj , τ j , γj , s

0
j , π

0
j), where

Li = (Si,Ai, T i,Oi) and Lj = (Sj ,Aj , T j ,Oj), be cognitive nodes in N , that
are distinct from each other and N0, and furthermore that N i 6≤ N j and N j 6≤ N i

for the partial order ≤ induced by the sensing graph of H . The parallel composi-
tion of N i and N j with respect to H (written N i⊗H

PN j) is a partial composition
operator (Definition 8) with the additional requirements that for the composed node
Nx = (Lx, Πx, λx, τx, γx, s

0
x, π

0
x):

– Πx = {πi�πj : Sx → 2Ax | πi ∈ Πi and πj ∈ Πj}, and π0
x = π0

i �π0
j .

– λx(tx)
def
= λi(Ti)�λi(Tj), for any tx ⊆ T x,

and where Ti =
⋃

T∈fst(tx)
T and Tj =

⋃
T∈snd(tx)

T.

– τx(ox, 〈si, sj〉)
def
= 〈τ i(Oi, si), τ j(Oj , sj)〉, for any ox⊆ Ox, si ∈ Si, sj ∈ Sj ,

and where Oi =
⋃

O∈fst(ox)
O and Oj =

⋃
O∈snd(ox)

O.

where the composition πx = πi�πj is defined for πi ∈ Πi and πj ∈ Πj as:

πx(〈si, sj〉)
def
= {〈πi(si), πj(sj)〉}, for any si ∈ Si, sj ∈ Sj .

There are a number of aspects to the parallel composition operator (Definition 9)
that are worth highlighting. Firstly, the restriction that the two nodes being composed
are not comparable under the sensing (or action) graph’s partial ordering means that the
two nodes are unrelated and the result (sensing or actions) of one node will not influ-
ence the results of the other node. This makes the definition of various node functions
simpler. Secondly, the set of policies of the composed node are the cross-product of

9

the policies of the two original nodes, and each composed policy simply applies the
underlying policy to the appropriate component.

We now consider the more complicated case where the nodes to be composed are
related by the partial ordering and therefore the results of one node effects the behaviour
of the other node (e.g., nodes N4 and N5 in Figure 3(a)).

(a) Pre-composition (b) Post-composition

Fig. 3. Sequential composition of nodes N4 and N5 in a cognitive hierarchy. Solid lines represent
the sensing functions between nodes and dotted-lines represent the task parameter functions.

Definition 10 (Sequential Composition). Let H = (N , N0, F) be a cognitive hier-
archy, and N i=(Li,Πi,λi, τ i, γi, s

0
i , π

0
i) and N j =(Lj ,Πj ,λj , τ j , γj , s

0
j , π

0
j), where

Li = (Si,Ai, T i,Oi) and Lj = (Sj ,Aj , T j ,Oj), be cognitive nodes in N , that are
distinct from each other and N0, and furthermore, N j ≤ N i for the partial order ≤
induced by the sensing graph ofH and there does not exist a distinct nodeNk such that
N j ≤ Nk and Nk ≤ N i. The sequential composition of N i and N j with respect to H
(written N i⊗H

S N j) is a partial composition operator (Definition 8) with the additional
requirements that for the composed node Nx = (Lx, Πx, λx, τx, γx, s

0
x, π

0
x):

– Πx = {πi�tj : Sx → 2Ax |tj ⊆ T j and πi ∈ Πi}, and π0
x = π0

i �{}.
– λx(tx)

def
= λi(Ti)�Tj , for any tx ⊆ T x,

and where Ti =
⋃

T∈fst(tx)
T and Tj =

⋃
T∈snd(tx)

T.

– τx(ox, 〈si, sj〉)
def
= 〈τ i(Oi ∪ φj,i(s′j), si), s′j〉, for any ox ⊆ Ox, si∈ Si, sj ∈ Sj ,

and where Oi =
⋃

O∈fst(ox)
O,

and s′j = τ j(Oj , sj) such that Oj =
⋃

O∈snd(ox)
O.

where the composition πx = πi�tj is defined for πi ∈ Πi and tj ⊆ T j as:

πx(〈si, sj〉)
def
= {〈πi(si), λj(ψi,j(πi(si)) ∪ tj)(sj)〉}, for any si ∈ Si, sj ∈ Sj .

The definition of the sequential composition operator is more complicated than the
parallel case because of the need to capture the interaction between the original two
nodes. For example, consider the construction of the policies for the sequentially com-
posed node in Figure 3. Every action taken in N4 will (potentially) change the policy
for N5. This behaviour needs to be preserved by the composition operator. So when the
policy is applied for the composed node N9, internally the behaviour that is applied to
the N5 component of the composed state depends on the result of the N4 component
of the composed state. A similar dependency exists for the sensing update operator.

10

5.2 Properties

We now consider the properties of the composition operators. Firstly, it is necessary to
establish that they are in fact well-defined and generate valid cognitive hierarchies.

Lemma 1. For a cognitive hierarchy H = (N ,N0,F) and nodes N i,N j ∈ N , the
compositions N i⊗H

PN j and N i⊗H
S N j are well-defined cognitive hierarchies, when

applied subject to the restrictions for parallel and sequential composition respectively.

Proof Sketch. By inspection. The signatures satisfy the requirements of a cognitive node
(Definition 1) and hierarchy (Definition 2). The restrictions on applying N i⊗H

PN j and
N i⊗H

S N j ensures that the resulting sensing/action graphs are appropriate DAGs. ut
Now we establish that the composition operators satisfy the property of behaviour

equivalence. We do this separately for each composition operator.

Theorem 1. Let H = (N , N0, F) be a cognitive hierarchy and Ni and Nj be nodes
in H that satisfy the requirements of the parallel composition operator (i.e., Ni and
Nj are distinct and unrelated under the sensing graph partial ordering). Then H and
N i⊗H

PNj are behaviour equivalent with respect to the cognitive process model Update.

Proof Sketch. LetHc=Ni⊗H
PNj and letX 0=(H,Q0) andX 0

c=(Hc,Q0
c) be the initial

active cognitive hierarchies for H and Hc respectively. Now let X i+1 = Update(X i)
andX i+1

c =Update(X i
c). We can show by induction that for all i thatX i+1 is behaviour

equivalent to X i+1
c . Proving the base case requires comparing Q0 and Q0

c to ensure
that the set of task parameters of Q0 and Q0

c w.r.t. N0 are the same (Definition 6). The
induction step requires following every aspect of the application of the Update function
to confirm that the two cognitive hierarchies are updated so as to preserve the beliefs
and actions of the original hierarchy. This is lengthy but essentially straightforward. ut

Theorem 2. Let H = (N , N0, F) be a cognitive hierarchy and nodes N i and N j be
nodes in H that satisfy the requirements of the sequential composition operator (i.e.,
that N i and N j are distinct, N j ≤ N i and there is no distinct node Nk where N j ≤
Nk and Nk ≤ N i under the sensing graph partial ordering). Then H and N i⊗H

S N j

are behaviour equivalent with respect to the cognitive process model Update.

Proof Sketch. The proof follows the same pattern as the parallel case (Theorem 1). ut
Theorems 1 and 2 establish that the application of the parallel and sequential compo-

sition operators does indeed preserve behaviour equivalence. But a composed cognitive
hierarchy is just another cognitive hierarchy. Consequently, the composition process
can potentially be repeated and it is not difficult to see that this process can be repeated
successively until the hierarchy consists of only a single non-N0 node.

Theorem 3. Let H = (N , N0, F) be an arbitrary cognitive hierarchy. Then there
exists a cognitive hierarchy H ′ = (N ′, N0, F

′) such that H and H ′ are behaviour
equivalent with respect to cognitive process model Update and |N ′| = 2.

Proof Sketch. Trivial for |N | = 2. For other cases successively construct cognitive hi-
erarchies by applying the parallel or sequential composition operators until a behaviour
equivalent hierarchy of size 2 is reached. Showing that this is possible reduces to a graph
property of a DAG that allows one or the other composition operator to be applied. ut

11

6 Discussion

The formal properties established in this paper have a number of interesting conse-
quences. In the first place, the fact that any cognitive hierarchy is equivalent to a hierar-
chy with only two nodes (Theorem 3) establishes that the size of the cognitive hierarchy
is unrelated to its behaviour. Rather the choice of the hierarchy is influenced by other
factors such as the designers familiarity with a particular representational language,
or theoretical and practical computational concerns, such as being able to apply pre-
existing tools and techniques in components of a node.

Secondly, while our composition formalism does not in itself provide a method to
automatically decompose existing systems it does provide some understanding about
what sorts of features to look for in determining whether or not decomposition is pos-
sible. If the belief state of an existing node can be factored into two orthogonal com-
ponents (of size N and M) and if the updating of these components can be performed
either independently or sequentially then decomposition will likely follow. Importantly
this could have computational benefits; for example instead of searching over anN×M
state space the combined search for the two nodes would be over anN+M state space.
This is one of the key motivations that has lead to the study of decomposition in other
AI fields (e.g., factored planning [5], general game playing [8]), and in hierarchical
reinforcement learning (HRL) [11].

7 Conclusion and Future Work

In this paper we developed a theory of node composition for a formal model of cognitive
hierarchies. Two node composition operators were defined and shown to satisfy a no-
tion of behaviour equivalence. The property of behaviour equivalence was established
with respect to changes manifested by a cognitive system on an external environment.
Such a definition is very general because it makes no reference to the internal state or
representation used by a particular cognitive system. Hence, for example, two cognitive
systems could be implemented using very different algorithms and techniques but could
nevertheless satisfy the property of behaviour equivalence.

A second development of this paper was to establish that for any cognitive hierarchy
there is an equivalent one consisting of only a single node (excluding the node that rep-
resents the external world). Furthermore, the combination of the parallel and sequential
node composition operators was shown to be sufficient to capture this property.

Finally, we argued that the results developed in this paper can serve as a tool to
bridge between cognitive systems. This opens up interesting directions for future re-
search to validate these ideas. In particular it is our intention to examine the extent to
which a system modelled using a rich expressive language that can deal with both sym-
bolic and sub-symbolic information, such as the language introduced in [4], can be func-
tionally decomposed into a behaviourally equivalent system consisting of a hierarchy
of nodes with simpler individual representations; potentially separating the symbolic
and sub-symbolic components. This would allow a system modelled formally using an
expressive language, from which formal properties can be established, to then be effi-
ciently implemented as a provably equivalent system consisting of decomposed nodes
that can take advantage of existing high-performance tools and techniques.

12

Acknowledgements This material is based upon work supported by the Asian Office of
Aerospace Research and Development (AOARD) under Award No: FA2386-15-1-0005.
This research was also supported under Australian Research Council’s (ARC) Discov-
ery Projects funding scheme (project number DP 150103035). Michael Thielscher is
also affiliated with the University of Western Sydney.

Disclaimer Opinions, findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of the AOARD.

References

1. Albus, J.S.: Engineering of Mind: An Introduction to the Science of Intelligent Systems.
Wiley (2001)

2. Amir, E., Engelhardt, B.: Factored planning. In: Proc. of IJCAI. pp. 929–935. Morgan Kauf-
mann (2003)

3. Anderson, J.R.: Rules of the Mind. Lawrence Erlbaum Associates Inc (July 1993)
4. Belle, V., Levesque, H.J.: Robot location estimation in the situation calculus. Journal of

Applied Logic 13(4), 397–413 (2015)
5. Brafman, R.I., Domshlak, C.: Factored planning: How, when, and when not. In: Proc. of

AAAI. pp. 809–814 (2006)
6. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics

and Automation 2(1), 14–23 (Mar 1986)
7. Brooks, R.A.: Elephants don’t play chess. Robotics and Autonomous Systems 6 pp. 3–15

(1990)
8. Cerexhe, T.J., Rajaratnam, D., Saffidine, A., Thielscher, M.: A systematic solution to the

(de-)composition problem in general game playing. In: Proc. of ECAI. pp. 195–200 (2014)
9. Clark, K., Hengst, B., Pagnucco, M., Rajaratnam, D., Robinson, P., Sammut, C., Thielscher,

M.: A framework for integrating symbolic and sub-symbolic representations. In: Proc. of
IJCAI. pp. 2486–2492 (2016)

10. De Giacomo, G., Sardiña, S.: Automatic synthesis of new behaviors from a library of avail-
able behaviors. In: Proc. of IJCAI. pp. 1866–1871 (2007)

11. Hengst, B.: Hierarchical approaches. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement
Learning: State of the Art, Adaptation, Learning, and Optimization, vol. 12. Springer (2011)

12. Jaeger, H., Christaller, T.: Dual dynamics: Designing behavior systems for autonomous
robots. Artificial Life and Robotics 2(3), 108–112 (1998)

13. Laird, J.E., Kinkade, K.R., Mohan, S., Xu, J.Z.: Cognitive robotics using the soar cognitive
architecture. Cognitive Robotics AAAI Technical Report WS-12-06 pp. 46–54 (2012)

14. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An architecture for general intelligence.
Artif. Intell. 33(1), 1–64 (Sep 1987)

15. Lee, D., Kim, H., Myung, H.: GPU-based real-time RGB-D 3D SLAM. In: Proc. Ubiquitous
Robots and Ambient Intelligence (URAI). pp. 46–48. IEEE (2012)

16. Nilsson, N.: Teleo-reactive programs and the triple-tower architecture. Electronic Transac-
tions on Artificial Intelligence 5, 99–110 (2001)

17. Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artificial Intelligence 5(2),
115 – 135 (1974)

