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Abstract. GDL-II is a logic-based knowledge representation formalism used
in general game playing to describe the rules of arbitrary games, in particular
those with incomplete information. In this paper, we use model checking to au-
tomatically verify that games specified in GDL-II satisfy desirable temporal and
knowledge conditions. We present a systematic translation of GDL-II to a model
checking language, prove the translation to be correct, and demonstrate the feasi-
bility of applying model checking tools for GDL-II games by four case studies.

1 Introduction

The general game description language GDL, as the input language for general game-
playing systems [7], has recently been extended to GDL-II to incorporate games with
nondeterministic actions and where players have incomplete/imperfect information [20].
However, not all GDL-II descriptions correspond to games, let alone meaningful and
non-trivial games. Genesereth et al. [7] list a few properties that are necessary for well-
formed GDL games, including guaranteed termination and the requirement that all play-
ers have at least one legal move in non-terminal states. The introduction of incomplete
information raises new questions, e.g., can players always know their legal moves in
non-terminal states or know their goal values in terminal states?

Temporal logics have been applied to the verification of computer programs, and
more broadly computer systems [13,3]. The programs are in certain states at each in-
stant, and the correctness of the programs can be expressed as temporal specifications.
A good example is the temporal logic formula “AG¬deadlock” meaning the program
can never enter a deadlock state. Epistemic logics, on the other hand, are formalisms for
reasoning about knowledge and beliefs. Their application in verification was originally
motivated by the need to reason about communication protocols. One is typically inter-
ested in what knowledge different parties to a protocol have before, during and after a
run (i.e., an execution sequence) of the protocol. Fagin et al. [4] give a comprehensive
study on epistemic logic for multi-agent interactions.

Ruan and Thielscher [16] have shown that the situation at any stage of a game in
GDL-II can be characterized by a multi-agent epistemic (i.e., S5-) model. Yet, this
result only provides a static characterization of what players know (and don’t know)
at a certain stage. Our paper extends this recent analysis with a temporal dimension,
and also provides a practical method for verifying temporal and epistemic properties
using a model checker MCK [5]. We present a systematic translation from GDL-II
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into equivalent specifications in the model specification language of MCK. Verifying a
property ϕ for a game descriptionG is then equivalent to checking whether ϕ holds for
the translation trs(G). The latter can be automatically checked in MCK.

The paper is organized as follows. Section 2 introduces GDL-II and MCK. Section 3
presents the translation along with possible optimizations and a proof of its correctness.
Experimental results for four case studies are given in Section 4. The paper concludes
with a discussion of related work and directions for further research.

2 Background

Game Description Language GDL-II. A complete game description consists of the
names of (one or more) players, a specification of the initial position, the legal moves
and how they affect the position and the players’ knowledge thereof, and the terminat-
ing and winning criteria. The emphasis of game description languages is on high-level,
declarative game rules that are easy to understand and maintain. Background knowl-
edge is not required—a set of rules is all a player needs to know to be able to play
a hitherto unknown game. Meanwhile, GDL and its successor GDL-II have a precise
semantics and are fully machine-processable.

The GDL-II rules in Fig. 1 formalize a simple but famous game called Monty Hall,
where a car prize is hidden behind one of three doors and where a candidate is given
two chances to pick a door. Highlighted are the pre-defined keywords of GDL-II. The
intuition behind the rules is as follows. Line 1 introduces the players’ names (the game
host is modelled by the pre-defined role called random). Line 2 defines the four features
that comprise the initial game state. The possible moves are specified by the rules for
legal: in step 1, the random player must decide where to hide the car (line 3) and,
simultaneously, the candidate chooses a door (line 7); in step 2, random opens a door
that is not the one that holds the car nor the chosen one (lines 4–5); finally, the candidate
can either stick to their earlier choice (noop) or switch to the other, yet unopened door
(line 9 and 10, respectively). The candidate’s only percept throughout the game is to
see the door opened by the host (line 14) and where the car is after step 3 (line 15). The
remaining rules specify the state update (rules for next), the conditions for the game to
end (rule for terminal), and the payoff for the player depending on whether they got
the door right in the end (rules for goal).

GDL-II is suitable for describing synchronous n-player games with randomness and
imperfect information. Valid game descriptions must satisfy certain syntactic restric-
tions, which ensure that all necessary inferences “�” in Definition 1 below are finite
and decidable; see [12] for details. In the following, we assume the reader to be familiar
with basic notions and notations of logic programming, as can be found in e.g. [11].

A state transition system can be obtained from a valid GDL-II game description by
using the notion of the stable models of logic programs with negation [6]. The syntactic
restrictions in GDL-II ensure that all logic programs we consider have a unique and
finite stable model [12,20]. Hence, the state transition system for GDL-II has a finite
set of players, finite states, and finitely many legal moves in each state. By G � p we
denote that ground atom p is contained in the unique stable model, denoted as SM(G),
for a stratified set of clauses G. In the following definition of the game semantics for
GDL-II, states are identified with the set of ground atoms that are true in them.
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1 role(candidate). role(random).
2 init(closed(1)). init(closed(2)). init(closed(3)). init(step(1)).
3 legal(random,hide_car(?d)) <= true(step(1)), true(closed(?d)).
4 legal(random,open_door(?d)) <= true(step(2)), true(closed(?d)),
5 not true(car(?d)), not true(chosen(?d)).
6 legal(random,noop) <= true(step(3)).
7 legal(candidate,choose(?d)) <= true(step(1)), true(closed(?d)).
8 legal(candidate,noop) <= true(step(2)).
9 legal(candidate,noop) <= true(step(3)).

10 legal(candidate,switch) <= true(step(3)).
11 next(car(?d)) <= does(random,hide_car(?d)).
12 ...
13 next(step(4)) <= true(step(3)).
14 sees(candidate,?d) <= does(random,open_door(?d)).
15 sees(candidate,?d) <= true(step(3)), true(car(?d)).
16 terminal <= true(step(4)).
17 goal(candidate,100) <= true(chosen(?d)), true(car(?d)).
18 goal(candidate, 0) <= true(chosen(?d)), not true(car(?d)).

Fig. 1. GMH - a GDL-II description of the Monty Hall game adapted from [21]

Definition 1. [20] Let G be a valid GDL-II description. The state transition system
(R, s0, τ, l, u, I, Ω) of G is given by

– roles R = {i | role(i) ∈ SM(G)};
– initial position s0 = SM(G ∪ {true(f) | init(f) ∈ SM(G)});
– terminal positions τ = {s | terminal ∈ s};
– legal moves l = {(i, a, s) | legal(i, a) ∈ s};
– state update function u(M, s) = SM(G∪{true(f) | next(f) ∈ SM(G∪s∪M)}),

for all joint legal moves M (i.e., where each role in R takes one legal move);
– information relation I = {(i,M, s, p) | sees(i, p) ∈ SM(G ∪ s ∪M)};
– goal relation Ω = {(i, n, s) | goal(i, n) ∈ s}.

Note that a state s contains all ground atoms that are true in the state, which includes
the “fluent atoms” true(f) in, respectively, {true(f) | init(f) ∈ SM(G)} (for the
initial state) and {true(f) | next(f) ∈ SM(G ∪ s ∪M)} (for the successor state of s
and M ), and all other atoms that can be derived from G and these fluent atoms.

Different runs of a game can be described by developments, which are sequences of
states and moves by each player up to a certain round. A player cannot distinguish two
developments if the player has made the same moves and perceptions in both of them.

Definition 2. [20] Let (R, s0, τ, l, u, I, Ω) be the state transition system of a GDL-II
description G, then a development δ is a finite sequence

〈s0,M1, s1, . . . , sd−1,Md, sd〉
such that for all k ∈ {1, . . . , d} (d ≥ 0), Mk is a joint move and sk = u(Mk, sk−1).

A terminal development is a development such that the last state is a terminal state,
i.e., sd ∈ τ . The length of a development δ, denoted as len(δ), is the number of states
in δ. By M(i) we denote agent i’s move in the joint move M . Let δ|k be the prefix of δ
up to length k ≤ len(δ).

A player i ∈ R\{random} cannot distinguish two developments δ = 〈s0,M1, s1, . . .〉
and δ′ = 〈s0,M ′

1, s
′
1 . . .〉 (written as δ ∼i δ

′) iff len(δ) = len(δ′) and for any 1 ≤ k ≤
len(δ)−1:Mk(i)=M ′

k(i), and {p | (i,Mk, sk−1, p)∈I}={p | (i,M ′
k, s

′
k−1, p) ∈ I}.
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Model Checker MCK. In this paper, we will use MCK (for: “Model Checking Knowl-
edge”), which is a model checker for temporal and knowledge specifications [5]. The
overall setup of MCK supposes a number of agents acting in an environment. This
is modelled by an interpreted system, formally defined below, where agents perform
actions according to protocols. Actions and the environment may only be partially ob-
servable at each instant in time. In MCK, different approaches to the temporal and
epistemic interaction and development are implemented. Knowledge may be based on
current observations only, on current observations and clock value, or on the history of
all observations and clock value. The last corresponds to synchronous perfect recall and
is used in this paper. In the temporal dimension, the specification formulas may describe
the evolution of the system along a single computation, i.e., use linear time temporal
logic; or they may describe the branching structure of all possible computations, i.e.,
use branching time or computation tree logic. We give the basic syntax of Computation
Tree Logic of Knowledge (CTL∗Kn).

Definition 3. The language of CTL∗Kn (with respect to a set of atomic propositionsΦ),
is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | Aϕ | Xϕ | ϕU ψ | Kiϕ.

The other logic constants and connectives �,⊥,∨,→ are defined as usual. In addition,
Fϕ (read: finally, ϕ) is defined as �U ϕ, and Gϕ (read: globally, ϕ) as ¬F¬ϕ.

The semantics of the logic can be given using interpreted systems [4]. Let S be a set,
which we call the set of environment states, and Φ be the set of atomic propositions. A
run over environment states S is a function r : N → S × L1 × . . . × Ln, where each
Li is called the set of local states of agent i. These local states are used to concretely
represent the information on the basis of which agent i computes its knowledge. Given
run r, agent i, and timem, we write ri(m) for the (i+1)-th component (in Li) of r(m),
and re(m) for the first component (in S). An interpreted system over environment states
S is a tuple IS = (R, π), where R is a set of runs over environment states S, and
π : R×N → P(Φ) is an interpretation function. A point of IS is a pair (r,m) where
r ∈ R and m ∈ N.

Definition 4. Let IS be an interpreted system, (r,m) be a point of IS , and ϕ be a
CTL∗Kn formula. Semantic entailment |= is defined inductively as follows:

– IS, (r,m) |= p iff p ∈ π(r,m);
– the propositional connectives ¬,∧ are defined as usual;
– IS, (r,m) |= Aϕ iff ∀r′ ∈ R with r′(k) = r(k) and ∀k ∈ [0..m], we have

IS, (r′,m) |= ϕ;
– IS, (r,m) |= Xϕ iff IS, (r,m+ 1) |= ϕ;
– IS, (r,m) |= ϕU ψ iff ∃m′ ≥ m s. t. IS, (r,m′) |= ψ and IS, (r, k) |= ϕ for all
k ∈ [m..m′);

– IS, (r,m) |= Kiϕ iff ∀(r′,m′) with ri(m) = r′i(m
′), we have IS, (r′,m′) |= ϕ.

Syntax of MCK Input Language. An MCK description consists of an environment
and one or more agents. An environment model represents how states of the environ-
ment are affected by the actions of the agents. A protocol describes how an agent selects
an action under a certain environment.
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Formally, an environment model is a tuple Me = (Agt,Acts,Vare, Inite, P roge)
whereAgt is a set of agents, Acts is a set of actions available to the agents, Vare is a set
of environment variables, Inite is an initial condition, in the form of a boolean formula
over Vare, and Proge is a standard program for the environment e to be defined below.

Let ActVar(Me) = {i.a | i ∈ Agt, a ∈ Acts} be a set of action variables gen-
erated for each model Me. An atomic statement in Proge is of the form x := expr ,
where x ∈ Vare and expr is an expression over Vare ∪ ActVar(Me).

A protocol for agent i in Me is a tuple Prot i = (PVar i,OVar i,Actsi,Prog i),
where PVar i ⊆ Vare is a set of parameter variables, OVar i ⊆ PVar i is a set of
observable variables, Actsi ⊆ Acts, and Prog i is a standard program. An atomic state-
ment in Prog i is either of the form x := expr , or of the form � a� with a ∈ Actsi.

A standard program over a set Var of variables and a set A of atomic statements is
either the terminated program ε or a sequence P of the form stat1 ; . . . ; statm, where
each statk is a simple statement and ‘;’ denotes sequential composition.

Simple statement statk can be atomic statements in A; or nondeterministic branch-
ing statements of the form: if g1 → a1 [] . . . [] gm → am fi; or nondeterministic
iteration statements of the form: do g1 → a1 [] . . . [] gm → am od, where each ak
is an atomic statement in A and each guard gk is a boolean expressions over Var .

Each atomic statement ak can be executed only if its corresponding guard gk holds
in the current state. If several guards hold simultaneously, one of the corresponding
actions is selected nondeterministically. The last guard gm can be “otherwise”, which
is shorthand for ¬g1 ∧ · · · ∧ ¬gm−1. An if -statement executes once but a do-statement
can be repeatedly executed.

Semantics of MCK Input Language. Based on a set of agents running protocols in
the context of a given environment, we can define an interpreted system as follows.

Definition 5. A system model S is a pair (Me,Prot) where Me = (Agt,Acts,Vare,
Inite, P roge) and Prot a joint protocol with Prot i = (PVar i,OVar i,Actsi,Prog i)
for all i ∈ Agt.

Let a state with respect to S be an assignment s over the set of variables Vare. A
transition model over S is M(S) = (S, I, {Oi}i∈Agt,→, V ), where S is the set of
states of S; I is the set of initial states s such that s |= Inite; Oi(s) = s � OVar i is
the partial assignment given on the observable variables of agent i, → is a transition
relation on S × S;1 and a valuation function V is given by: for any boolean variable
x, x ∈ V (s) iff s(x) = true. 2

An infinite sequence of states s0s1... is an initialized computation of M(S) if s0 ∈ I ,
sk ∈ S and sk → sk+1 for all k ≥ 0. An interpreted system over S is IS(S) =
(R, π), where R is the set of runs such that each run r corresponds to an initialized
computation s0s1... with re(m) = sm, and ri(m) = Oi(s0)Oi(s1) . . . Oi(sm); and
π(r,m) = V (sm).

1 More precisely, s → s′ if s′ is obtained by executing the parallel program
Proge ||i∈Agt Prog i on s; see [14] for details.

2 For simplicity, we assume x to be boolean; this can be easily extended to enumerated type vari-
ables: Suppose x is a variable with type {e1, . . . , em}, then use m booleans x.e1, . . . , x.em
such that x.ek ∈ V (s) iff s(x) = ek.
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3 Translation from GDL-II to MCK

Our main contribution in this paper is a systematic translation from a GDL-II descrip-
tion G into an MCK description trs(G). The translation is provably correct in that the
game model derived fromG using the semantics of GDL-II satisfies the exact same for-
mulas as the model that is derived from trs(G) using the semantics of MCK. This will
be formally proved later in this section. We use the GDL-II description of the Monty
Hall game from Fig. 1, denoted asGMH , to illustrate the whole process. The translation
trs can be divided into the following steps.

hide_car(?d)

1

2

3

closed(?d)

Preprocessing. The first step is to obtain
a variable-free (i.e., ground) version of
the game descriptionG. We can compute
the domains, or rather supersets thereof,
for all predicates and functions of G by
generating a domain dependency graph
from the rules of the game description, following [19]. The nodes of the graph are
the arguments of functions and predicates in game description, and there is an edge
between two nodes whenever there is a variable in a rule of the game description that
occurs in both arguments. Connected components in the graph share a (super-)domain.
E.g., lines 2–3 in GMH give us the domain graph as above, from which it can be seen
that the arguments of both closed() and hide car() range over {1, 2, 3}.

Once we have computed the domains, we instantiate all the variables in G to ob-
tain all ground atoms, e.g., true(closed(1)), legal(random, hide car(1)), etc. Our
following translation operates on an equivalent variable-free version of G, which for
convenience we still refer to as G.

Deriving Environment Variables. This step derives all the environment variables Vare.
Let AT be the set of ground atoms in G. Define the following subsets of AT according
to the keywords: ATt = {h ∈ AT | h = true(p)}, ATn = {h ∈ AT | h = next(p)},
ATd = {h ∈ AT | h = does(i, a)}, ATi = {h ∈ AT | h = init(p)}, ATs = {h ∈
AT | h = sees(r, p)}, and ATl = {h ∈ AT | h = legal(r, p)}. Let p be obtained by
replacing ‘(’ and ‘,’ with ‘ ’ and by removing ‘)’ in a ground atom p. Define t as follows:

– t(init(p)) = p, t(true(p)) = p old and t(next(p)) = p;
– t(does(i, a)) = did i;
– t(p) = p for all p ∈ AT \ (ATi ∪ ATt ∪ ATn ∪ ATd).

Note that the ground atoms with keywords legal, terminal, goal are all in AT \
(ATi∪ATt∪ATn∪ATd). As an example, t(sees(i, a)) = sees i a and t(legal(i, a)) =
legal i a. The set of environment variable Vare is then {t(p) | p ∈ AT}. For conve-
nience, we denote t(A) as {t(x) | x ∈ A}.

The type of each variable did i ∈ t(ATd) is the set of legal moves of agent i plus two
additional moves,INIT and STOP, that do not appear inG, i.e., {a | legal(i, a) ∈ AT}∪
{INIT, STOP}. The type of variables in Vare \ t(ATd) is Bool.

Initial Condition. This step specifies the environment initial condition Inite, which
is an assignment over Vare. By using the semantics of G and ATi, we first compute
the initial state s0 (see Definition 1). Then for any p ∈ ATi, we add boolean expression
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“t(p) == true” to Inite as a conjunct; and for all did i ∈ t(ATd), we add “did i ==
INIT”. For the rest, add “t(p) == true” if p ∈ s0, and “t(p) == false” if p �∈ s0.

Agent Protocols. This step specifies the agents and their protocols. The names of the
agents are read off the role() facts. Let Prot i = (PVar i,OVar i,Actsi,Prog i) be
the protocol of agent i, such that PVar i = Vare, OVar i = {sees i p | sees i p ∈
t(ATs)} ∪ {did i} includes all the variables representing i’s percept and i’s move, and
Actsi = {a | legal(i, a) ∈ G} includes all the legal moves of agent i. Note that Actsi
does not include the two special moves in the protocol. The last component Progi is a
standard program of the following format:

begin do neg terminal ->
if legal_i_a1 -> <<a1>> [] legal_i_a2 -> <<a2>> [] ...
fi od end

This program intuitively means that if the current state is not terminal, then a le-
gal move is selected non-determinstically by i. The statements between do · · · od are
executed repeatedly. The variables inside <<>> represent moves.

State Transition. This step specifies the environment programProge. Each environment
variable is updated in correspondence with the rules in G. The main task is to translate
these rules into MCK statements in a correct order. In GDL-II, the order of the rules does
not matter as the stable model semantics [12,20] always gives the same unique model,
but MCK uses the imperative programming style in which the order of the statements
does matter; e.g., executing “x := 0;x := 1; ” results in a different state than “x :=
1;x := 0; ”. To take care of the order, we separate the program Proge into three parts.

The first part updates the variables in t(ATd) using the following template (for i):

if i.a1 -> did_i := a1 [] i.a2 -> did_i := a2 []
... otherwise -> did_i := STOP

fi;

The second part of Proge updates the variables in t(ATt) and t(ATn ∪ ATs). For all
p old ∈ t(ATt), an atomic statement of the form p old := p is added to ensure that the
value of p is remembered before it is updated. For any atom h ∈ t(ATn ∪ ATs), suppose
h = t(h) and Rules(h) is the set of rules in G with head h:

r1 : h⇐b11, · · · , b1j
. . . . . .
rk : h⇐bk1, · · · , bkj

where bxy is a literal over AT. Define a translation tt as follows:

– tt(does(i, a)) = did i == a;
– tt(not x) = neg tt(x); and other cases are same as t.

The translation of Rules(h) has the following form:

h := (tt(b11) ∧ · · · ∧ tt(b1j)) ∨ · · · ∨ (tt(bk1) ∧ · · · ∧ tt(bkj))
This simplifies to h := true if one of the bodies is empty. Essentially, this is a form of
the standard Clark Completion [2], which captures the idea that h will be false in the
next state unless there is a rule to make it true. The statements with t(ATt) should be
given before those with t(ATn ∪ ATs).
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The third part deals the variables in t(AT \ (ATt ∪ ATn ∪ ATs ∪ ATd ∪ ATi)). Pick
such an atom h and take Rules(h). The literals in the body of these rules are translated
differently from the last case, as h refers to the current instead of the next state. Define
a new translation tt′ as follows:

– tt′(true(p)) = p and all other cases are identical to tt.

The translation ofRules(h) is similar to the above by replacing tt by tt′. The statements
in the third part are ordered according to the dependency graph. If h′ depends on h, then
the statement of tt′(h) must appear before that of tt′(h′). The fact that GDL rules are
stratified ensures that a desirable order can always be found.

Optimizations. The above translation can be further optimized to make the model
checking more efficient by reducing the number of variables.

(1) Using definitions. The variables in t(AT \ (ATt ∪ ATn ∪ ATd ∪ ATi)) (refer to
the third part of the State Transition step) can be represented as definitions to save
memory space for variables. The assignment statement h := expr is swapped with
definition define h = expr. MCK replaces h using the boolean expression expr during
its preprocessing stage, so h does not occupy memory during the main stage.

(2) Removing static atoms. We distinguish three special kinds of atoms in GDL-II:
those (a) appearing in the rules with empty bodies, (b) never appearing in the heads
of rules, (c) only appearing in the rules with (a) and (b). Under the GDL-II semantics,
atoms in (a) are always true, those in (b) are always false, and those in (c) do not change
their value during gameplay. Therefore we can replace them universally with their truth
values. E.g., consider the following rules:

succ(1,2). succ(2,3).
next(step(2)) <= true(step(1)), succ(1,2).
next(step(3)) <= true(step(2)), succ(2,3).

Both succ(1, 2), succ(2, 3) are always true, so we replace them using their truth
values. Then we can further simplify this by removing the “true” conjuncts universally
(and by removing the rules with a “false” conjunct in the body):

next(step(2)) <= true(step(1)). next(step(3)) <= true(step(2)).

(3) Converting booleans to typed variables. The atoms in AT \ ATd are translated to
booleans in our non-optimized translation. There often are sets of booleansB such that
at each state exactly one of them is true. We can then convert the booleans in B into one
single variable vB with the type {b1, . . . , b|B|}, where |B| is the size of B. This results
in a logarithmic space reduction on B: 2|B| is reduced to |B|. Reusing the example just
discussed, we can create a variable vstep with type {1, 2, 3}.

Translation Correctness

The above completes the translation from G to trs(G). As our main theoretical result,
we show as follows that our translation is correct: first the game model derived from a
GDL-II description G is proved to be isomorphic to the interpreted system that is de-
rived from its translation trs(G), then a CTL∗Kn formula is shown to have an equivalent
interpretation (i.e., the same truth value) over these two models.

We first extend the concept of finite developments in Definition 2 to infinite ones.
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Definition 6 (Infinite Developments and GDL-II Models). Let 〈R, s0, t, l, u, I, g〉 be
the state transition system of a game description G, and δ = 〈s0,M1, s1, . . . ,Md, sd〉
a finite terminal development ofG, then an infinite extension of δ is an infinite sequence
〈s0,M1, s1, . . . ,Md, sd,Md+1, sd+1, . . .〉 such that Md+k is the joint move where all
players take a special move STOP and sd+k = sd for all k ≥ 1.

Given a GDL-II description G, the game model GM(G) is a tuple (D, {∼i |i ∈
Agt}), where D is the set of infinite developments δ such that either δ is an infinite
development without terminal states, or δ is an infinite extension of a finite terminal de-
velopment; and ∼i is agent i’s indistinguishability relation defined on the finite prefixes
of δ|k as in Definition 2.

For a given δ, let δ(k) denote the k-th state sk; δ(k)M the k-th joint move Mk; and
(δ, k) the pair (Mk, sk).

Definition 7 (Isomorphism). Let GM = (D, {∼i |i ∈ Agt}) be a game model and
IS = (R, π) an interpreted system. GM is isomorphic to IS if there is a bijection w
between the ground atoms of GM and the atomic propositions of IS , and a bijection z
betweenD and R satisfying the following: z(δ) = r iff for any ground atom p: p ∈ δ(k)
iff w(p) ∈ π(r, k), and does(i, a) ∈ δ(k)M iff did i == a is true in (r, k).

Intuitively, z associates a point (δ, k) in a development to a point (r, k) in a run
such that they coincide in the interpretation of basic and move variables. The following
proposition is the first step in showing the correctness of our translation.

Proposition 1. Given a GDL-II descriptionG, let trs be the translation from GDL-II to
MCK, then the game modelGM(G) is isomorphic to the interpreted system IS(trs(G)).

For the technical details of the proof we must refer to [17].
Let w be a bijection from the set of ground atoms of G to the set of atomic propo-

sitions of CTL∗Kn and w−1 be its inverse. The semantics of CTL∗Kn over GDL-II
Game Models can be given as relation GM(G), (δ,m) |= ϕ in analogy to the semantics
of CTL∗Kn over interpreted systems; e.g., GM(G), (δ,m) |= p iff w−1(p) ∈ δ(m), and
GM(G), (δ,m) |= Kiϕ iff for all states (δ′,m′) of GM(G) that satisfy δ|m ∼j δ

′|m′

we have GM(G), (δ′,m′) |= ϕ.
The following proposition then shows that checking ϕ against a game model of G is

equivalent to checking ϕ against the interpreted system of trs(G).

Proposition 2. Given a GDL-II description G, let trs be the translation from GDL-II
to MCK; ϕ a CTL∗Kn formula over the set of atomic propositions in trs(G); and w, z
the bijections from the isomorphism between GM(G) and IS(trs(G)) then:

GM(G), (δ,m) |= ϕ iff IS(trs(G)), (z(δ),m) |= ϕ.

This follows from Proposition 1 by an induction on the structure of ϕ and completes
the proof of our main result.

Our optimization techniques do not affect the isomorphism. So we can follow a sim-
ilar argument as Proposition 1 and 2 to show that the optimized translation is correct.



Model Checking for Reasoning about Incomplete Information Games 255

4 Experimental Results

We present experimental results on four GDL-II games from the repository at general-
game-playing.de: Monty Hall (MH), Krieg-TicTacToe (KTTT), Transit, and Meier.
Same games were also used in Haufe and Thielscher [9]. MCK (v1.0.0) runs on In-
tel 3.3 GHz CPU and 8GB RAM with GNU Linux 2.6.32.

Temporal and epistemic specifications. The temporal logic formulas can be used to
specify the objective aspects of a game. The following three properties represent the
basic requirements from [7]. (Let Legali and Goali be the set of legal moves and goals
of i respectively.)

AF terminal (1)

AG(¬terminal →
∧

i∈Agt

∨

p∈Legali

p) (2)

∧

i∈Agt

¬AG¬goal i 100 (3)

Property (1) says that the game always terminates. Property (2) expresses playability: at
every non-terminal state, each player has a legal move. Property (3) expresses fairness:
every player has a chance to win, i.e., to eventually achieve the maximal goal value
100. These properties apply both to GDL and GDL-II games. The next three properties
concern the subjective views of the players under incomplete-information situations,
hence are specific to GDL-II games.

∧

i∈Agt

G(terminal → Kiterminal) (4)

∧

i∈Agt

G (¬terminal →
∧

p∈Legali

(Kip ∨Ki¬p)) (5)

∧

i∈Agt

G (terminal →
∧

p∈Goali

(Kip ∨Ki¬p)) (6)

Property (4) says that once the game has terminated, all players know this. Property (5)
says that any player always knows its legal moves in non-terminal states; and property
(6) says that in a terminal state, all players know their outcome.

ϕ MH KTTT Transit Meier Meier′ ϕ MH KTTT Transit Meier Meier′

(1) 0.47 1864.81 12.17 6.41 8079.52 (4) 0.60 22847.06 14.91 7.00 NA
(2) 0.48 3528.14 7.54 9.75 13192.91 (5) 0.56 22643.12 14.39 23.28 NA
(3) 0.67 303.04 11.02 17.06 15056.29 (6) 0.43 5498.03 45.15 11.01 NA

The table above shows the runtimes (in seconds) on five translations. The first four
translations use all three optimization techniques on the four games. The last translation,
Meier′, is partially optimized with the third technique applied only for the variables in
t(ATs). As a consequence, Meier′ uses 126 booleans for what in the fully optimized
Meier is represented by 4 enumerated type variables of a size equivalent to about 22
booleans, i.e., the state space of Meier is only (1/2)104 of the state space of Meier′. The
time is measured in seconds and “NA” indicates that MCK did not return a result after
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10 hours. A comparison of the two translations of Meier shows that our optimization
can be very effective. Somehow surprisingly, the result shows that the game Meier is
not well-formed as it does not satisfy property (1). The last three properties were also
checked by Haufe and Thielscher [9], but for Transit, their approach could not prove
or disprove these properties; in contrast, our approach obtains the results fully. Note
that although we only show the experiment results for four games, our approach is not
a specialised solution for these four games only. It is general enough to deal with all
GDL and GDL-II games.

5 Related Work and Further Research

There are a few papers on reasoning about games in GDL and GDL-II. Haufe et al. [8]
use Answer Set Programming for verifying temporal invariance properties against a
given game description by structural induction. Haufe and Thielscher [9] extend [8]
to deal with epistemic properties for GDL-II. Their approach is restricted to positive-
knowledge formulas unlike ours, which can handle more expressive epistemic and tem-
poral formulas.

Ruan et al. [15] provide a reasoning mechanism for strategic and temporal prop-
erties but restricted to the original GDL for complete information games. Ruan and
Thielscher [16] examine the epistemic logic behind GDL-II and in particular show that
the situation at any stage of a game can be characterized by a multi-agent epistemic
(i.e., S5-) model. Ruan and Thielscher [18] provide both semantic and syntactic char-
acterizations of GDL-II descriptions in terms of a strategic and epistemic logic, and
show the equivalence of these two characterizations. The current paper does not handle
strategies but is able to provide practical results by using a model checker.

Kissmann and Edelkamp [10] instantiate GDL descriptions and utilise BDDs to con-
struct a symbolic search algorithm to solve single- and two-player turn-taking games
with complete information. This is related to our work in the sense that we also do
an instantiation of GDL descriptions and uses the BDD-based symbolic model check-
ing algorithms of MCK to verify properties. But our approach is more general and in
particular handles games with incomplete information.

Other existing work is related to our paper in that they too deal with declarative lan-
guages. Chang and Jackson [1] show the possibility of embedding declarative relations
and expressive relational operators into a standard CTL symbolic model checker. Wha-
ley et al. [22] propose to use Datalog (which GDL is based upon) with Binary Decision
Diagrams (BDDs) for program analysis.

We conclude by pointing out some directions for further research. Firstly our results
suggest that the optimization we have applied allows us to verify some formulas quickly,
but it is still difficult to deal with a game like Blind TicTacToe. However a hand-made
version of this game (with more abstraction) in MCK does suggest that MCK has no
problem to cope with the number of reachable states in this game. So the question is,
what other optimization techniques can we find for the translation? Secondly, we would
like to investigate how to make MCK language more expressive by allowing declarative
relations such as shown in [1]. Our current translation maps GDL-II to MCK’s input,
and MCK internally encodes that into BDDs for symbolic checking. So a more direct
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map from GDL-II to BDDs may result in a significant efficiency gain. Thirdly, we want
to explore the use of bounded model checking as MCK has implemented some model
checking algorithms for this.
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