
MCTS with Dynamic Depth Minimax

James Ji and Michael Thielscher

University of New South Wales, Australia
jamesx.ji@gmail.com, mit@unsw.edu.au

Abstract. Hybrid models combining Monte-Carlo Tree Search (MCTS)
with fixed depth minimax searches have shown great success as the brute
force search allow the model to navigate highly tactical domains. How-
ever, minimax is computationally expensive and unnecessary in positions
that do not require precise calculations. Ideally, we can adjust the depth
to efficiently rely on minimax only when needed. In this paper, we build
up the motivation for augmenting MCTS with dynamic depth minimax
searches. We analyse the nature of different domains to create some sim-
ple dynamic depth adjustment functions which we then benchmark to
reinforce our hypothesis that dynamic adjustments of the search depth
in MCTS-Minimax hybrids result in stronger play. For this paper we
assume that heuristics or evaluator functions are not available to the
player, e.g. as in the context of General Game Playing.

1 Introduction

MCTS describes an application of random-sampling in guiding the growth of a
decision tree [1]. It evaluates positions by back propagating the results of simu-
lations. Its evaluations become more accurate over time, eventually converging
to optimal play [2]. It came to special prominence in 2016 after Google Deep-
mind’s AlphaGo used a combination of MCTS and neural networks [3] to defeat
the 9-dan player Lee Sedol in a five-game match [4]. The inherent randomness of
MCTS makes it weak in tactical domains where it takes time to discover narrow,
decisive lines. A similar concept is referred to as traps [5], where a level-k search
trap is when the opponent has a winning refutation at most k plies deep. MCTS
has also been characterised as making optimistic moves [6], as some moves ini-
tially seem strong due to a wide range of winning lines but can be refuted with
precise play.

Baier and Winands [7, 8] discovered an effective approach to this dilemma
by embedding shallow minimax searches throughout MCTS-Minimax Hybrids.
Their models could immediately minimax the surrounding search space to detect
decisive lines of play. However, their original paper experimented only with fixed-
depth minimax searches. This meant that costly minimax searches were run
regardless of the game state, even if no decisive lines would be detected within
the search depth. If there are no decisive lines, computation is wasted.

This paper explores the motivation behind augmenting MCTS with dynam-
ically depth-adjusted minimax searches to efficiently take advantage of the tac-
tical strengths of minimax only when the position requires so. We show how the



2 James Ji, Michael Thielscher

frequency of decisive lines can be analysed and suggest some simple functions
that adjust the minimax depth accordingly. We then benchmark our dynamic
models against the strongest fixed depth models on the same domains as the orig-
inal paper. Despite the simplicity of our adjustment methods and the strength
of our opponent, we achieve strong results in many settings, demonstrating the
promise of the dynamic approach alongside the potential to further improve with
less crude adjustment methods.

2 Background

MCTS-Minimax Hybrids as first defined by Baier and Winands [7] describes
hybrid models which combine standard MCTS with UCT and minimax to sig-
nificantly outperform MCTS-Solver, a UCT variant that backpropagates proven
results [9]; we will revisit their results in section 4.1. In this paper, we will focus
on minimax embedded at the selection and expansion phase (MCTS-MS). Before
outlining the prior research in this area, we will first motivate the need for such
hybrid models. We assume the reader is familiar with MCTS and Minimax.

Tactical weakness of MCTS. Below displays a position from Chess with
White to move.

White is at a piece disadvantage but can play Re8# (Rook to e8, checkmate)
to win. However, since MCTS randomly selects children, it might initially select
Re2 (Rook to e2), say, giving Black time to defend. To add to the confusion,
the randomness of MCTS might lead Black to reply with Nc3 (Knight to c3). If
White now follows with Re8#, MCTS will backpropagate this as a win, resulting
in an incorrect evaluation of the child node, Re2.

MCTS will eventually evaluate Re8# as the clear winning move; however,
the time frame required might be beyond reasonable for the game settings.

Minimax in the selection and expansion phases. When a node satisfying
some criteria is encountered during the selection and expansion stages, a fixed-
depth minimax search is run and if possible, decisively evaluates the state. Baier



MCTS with Dynamic Depth Minimax 3

and Winands used a visit count threshold as the criterion, but they note that
any criterion can be used. This theoretically improves MCTS by guiding the
tree growth to avoid shallow losses and detect shallow wins. Such hybrids would
easily detect decisive lines such as Re8# in the Chess example. They refer to
this as MCTS-MS-d-Visit-v, where d refers to the depth of the minimax and
v refers to the visit count required for a node to trigger a minimax search.

The below figure, taken from [7], illustrates the MCTS-MS hybrid. (a) Promis-
ing nodes are selected. (b) A node satisfying the minimax criterion is selected.
(c) Minimax is run to detect proven game results. (d) If the node’s value can be
proven, the result is backpropagated. Otherwise, selection continues as normal.

In this paper, we use MCTS-MS-d-Visit-2 as the baseline hybrid model for bench-
marking. The original paper used an augmented minimax enhanced with αβ
pruning [10], and in our paper we will also use the enhanced minimax.

3 Dynamic Depth Minimax

Without an external evaluator function, as is assumed in this paper, minimax can
only back propagate useful information if it reaches terminal states. In circum-
stances where terminal states lie outside the search depth, computation resources
are simply wasted, leading to poorer performance. We hypothesise that models
combining MCTS and minimax can be improved by intelligently allocating com-
putation to minimax, relying on it more in tactical scenarios as in the Chess
example in Section 2, where it is likely to discover terminal states. We will refer
to moves that lead to a solvable position within a given maximum depth as a
terminal line. Intuitively, we should increase the minimax depth for positions
containing many terminal lines and decrease it otherwise.

3.1 Analysis of terminal lines

The problem lies in determining whether or not we are in a region with many
terminal lines. There are many ways to approach this; here, we analyse the
frequency of terminal lines in correlation to three independent variables: turn
number, branching factor and rollout length.

Test Conditions. For a given domain, MCTS-Solver played itself for 400 games
with 1 second per move. Before starting the timer for each turn, we recorded the
number of terminal lines and the aforementioned independent variables.



4 James Ji, Michael Thielscher

Fig. 1. Terminal Ratio vs Turn Number for the four games

Measurements. The terminal lines were measured by counting the number of
children which could be solved by minimax within a specified maximum depth.

Terminal Ratio. For each turn, we summed the total number of terminal lines
across all ongoing games and divided it by the number of ongoing games to
produce the terminal ratio. Note that some games will end early while others
have not reached a conclusion at a given turn number; we refer to the latter as
“ongoing games.” The current turn number was recorded. Branching factor was
recorded as the number of children of the root node. Rollout length was recorded
as the average length of 1000 simulations from the root node.

We experimented on the four domains used in the original paper [7]: Break-
through 8×8 (the original paper used a 6×6 board), Catch the Lion, Connect-4
and Othello 8×8. These domains also happen to span a wide range of characteris-
tics making them suitable for our purpose. We note that our experiments extend
beyond these four domains and can work in any 2-player turn-based setting.

3.2 Analysis and Discussion

Fig. 1–3 show the Terminal Ratio measured against turn number, average branch-
ing factor and average rollout length. Note that the x-axis does not always span
the entire possible domain because not all values appeared in the test. We eval-
uate the Terminal Ratio as 0 for such cases.

In Fig. 1, the terminal ratio of Connect4 and Breakthrough increases through-
out the game because every turn progresses the game towards the end where
terminal states are found. They drop off later on where we might expect them



MCTS with Dynamic Depth Minimax 5

Fig. 2. Terminal Ratio vs Average Branching Factor for the four games

to increase due to more terminal states being encountered. However, this is ex-
plained by the terminal ratio being an absolute measure, decreasing because
there are fewer moves to make.

Fig. 2 shows a very strong correlation between the branching factor and
Connect4 and Catch the Lion. In these games, more possible lines of play might
correlate to more tactical scenarios, with many decisive moves, which would
benefit from minimax searches.

Fig. 3 is arguably more accurate as rollout length better indicates when we
are close to terminal states. For example, turn 30 might be at the end of one
Breakthrough game and only the middle of another. With rollout length, this
variance is mitigated and we see a much stronger correlation. This is especially
true in Catch the Lion, where turn number is almost meaningless as pieces can
move backwards to negate their progress.

4 Dynamic Depth Models and Benchmarks

In this section, we will perform some benchmarks to determine the strongest fixed
depth MCTS-MS-d-Visit-2 model for each domain. Then we will introduce some
simple dynamic depth models based on our analysis of terminal lines. Finally, we
will benchmark these dynamic depth models against the strongest fixed depth
model and analyse the results.1

1 We used a 2013 iMac, 2.7Ghz Quad-Core Intel Core i5, 16GB RAM, 1600MHz
DDR3. We played 200 games per side for each match with 1 second per move. We



6 James Ji, Michael Thielscher

Fig. 3. Terminal Ratio vs Average Rollout Length for the four games

4.1 Strongest fixed depth model

The below tables show the win-rates of MCTS-MS-d-Visit-2 against MCTS-
Solver in each domain for depths 1 to 8 to demonstrate the strength of embedding
minimax in MCTS. Results for depths above 8 were omitted for brevity due to
their low win-rates. All tables give 95% confidence bounds (cf. Baier &Winands).

1 2 3 4
Breakthrough 60.83(±4.8) 72.50(±4.4) 71.00(±4.4) 68.67(±4.5)

Catch the Lion 87.91(±3.2) 93.69(±2.4) 94.22(±2.3) 93.42(±2.4)

Connect-4 49.45(±4.9) 51.28(±4.9) 56.16(±4.9) 52.95(±4.9)

Othello 55.59(±4.9) 43.01(±4.9) 44.77(±4.9) 37.99(±4.8)

5 6 7 8
Breakthrough 28.00(±4.4) 14.00(±3.4) 18.50(±3.8) 13.00(±3.3)

Catch the Lion 92.95(±2.5) 87.59(±3.2) 58.63(±4.8) 31.36(±4.5)

Connect-4 38.97(±4.8) 31.41(±4.5) 15.35(±3.5) 17.28(±3.7)

Othello 31.55(±4.6) 20.21(±3.9) 19.90(±3.9) 9.28(±2.8)

We then determined the strongest depth for MCTS-MS-d-Visit-2 in each
domain via round robin. The below tables show the win-rates of the strongest
model for each domain against all other depths 1 to 8 to provide an idea of their
relative strength. The strongest fixed depth model in each domain is as follows:
Breakthrough: 3, Catch the Lion: 4, Connect-4: 3, Othello: 1.

played more games to differentiate close results as needed. Drawn games (which are
infrequent) are discarded. Win rates are given with 95% confidence intervals.



MCTS with Dynamic Depth Minimax 7

1 2 3 4
Breakthrough 67.25(±4.6) 63.50(±4.7) – 50.75(±4.9)

Catch the Lion 80.05(±3.9) 71.21(±4.4) 57.14(±4.8) –
Connect-4 54.96(±4.9) 48.21(±4.9) – 52.67(±4.9)

Othello – 53.28(±4.9) 50.65(±4.9) 59.63(±4.8)

5 6 7 8
Breakthrough 77.50(±4.1) 90.00(±2.9) 88.50(±3.1) 91.50(±2.7)

Catch the Lion 68.01(±4.6) 73.74(±4.3) 85.00(±3.5) 89.22(±3.0)

Connect-4 65.31(±4.7) 73.71(±4.3) 85.57(±3.4) 89.19(±3.0)

Othello 65.42(±4.7) 73.02(±4.4) 83.55(±3.6) 89.97(±2.9)

Note that occasionally the strongest model might perform slightly worse
against a model of another depth. However, they performed the best overall
in round robin. This satisfies our purpose of picking a strong fixed depth model
to benchmark against.

4.2 Adjusting dynamic depth models

Intuitively, we should adjust our depth according to our analysis, increasing
and decreasing the depth when the terminal ratio is high and low. A simple
approach involves directly correlating the minimax depth with the terminal ratio
throughout the game. The minimax depth then needs to be linearly scaled to an
appropriate range to ensure the experiment can run within the time constraints.

We created four simple depth adjustment functions which closely follow the
graphs from our analysis. We will use LS to represent a function linearly nor-
malised to the range [0, 1]. Let the graphs in Fig. 1, Fig. 2 and Fig. 3 be denoted
as functions, fturn, fbranch and froll respectively.

Turn-A LS(fturn) Simple linearly normalised function on turn number.

Turn-B LS(LS(fturn) · LS(t)) where t denotes the current turn number. This
essentially puts more weighting on later turn numbers, thus increasing minimax
depth more during later turns.

Branch-A LS(fbranch). Simple linearly normalised function on average branch-
ing factor.

Roll-A LS(froll). Simple linearly normalised function on average rollout length.

For each depth adjustment function we will create a dynamic depth model by
replacing the d in MCTS-MS-d-Visit-2 with our own depth adjustment function.
We also benchmarked multiple weightings for each depth adjustment function
like so: fdynamic · k for k ∈ Z, 1 ≤ k ≤ dmax where fdynamic denotes any depth
adjustment function and dmax denotes the maximum minimax depth used for
that domain. Since we tested multiple depths to determine the strongest fixed



8 James Ji, Michael Thielscher

depth model, it is fair to test multiple weights for our depth adjustment function.
For convenience, we named our models following the convention FUNCTION-
k. For example, the model equipped with depth adjustment function TURN-A
with weighting k = 5 is referred to as TURN-A-5.

4.3 Analysis of results

Turn-A In Connect-4 the dynamic depth model outperforms when k = 4. This
suggests that by varying the depth of the minimax searches to be mostly shallow
but occasionally going deeper than the fixed depth model (d = 3), we can achieve
stronger results, reinforcing our hypothesis of efficient minimax usage. Our model
also shows strong performance in Othello for many k. This matches our intuition
that fixed depth minimaxes would be useless early in Othello as the game only
nears completion when the board is filled. There are some promising results in
Breakthrough (k = 2, 4). Performance in Catch the Lion is poor across the board,
however. This could be due to the small board space of Catch the Lion, requiring
precise minimaxes early on to decisively maneuver into a winning position. The
tables below shows the win-rate of TURN-A-k vs the strongest fixed depth model
in each domain for 1 ≤ k ≤ dmax.

1 2 3 4 5

Breakthrough (3) 37.25(±4.7) 49.25(±4.9) 48.25(±4.9) 49.25(±4.9) 44.5(±4.9)

Catch the Lion (4) 40.83(±4.8) 43.18(±4.9) 42.82(±4.8) 39.67(±4.8) 42.79(±4.8)

Connect-4 (3) 46.24(±4.9) 41.37(±4.8) 42.66(±4.8) 51.37(±4.9) 49.87(±4.9)

Othello (1) 52.00(±4.9) 49.13(±4.9) 48.38(±4.9) 49.50(±4.9) 48.13(±4.9)

6 7 8 9 10

Breakthrough (3) 27.5(±4.4) 26.5(±4.3) 19.25(±3.9) – –

Catch the Lion (4) 33.45(±4.6) – – – –

Connect-4 (3) 45.08(±4.9) 46.87(±4.9) 42.51(±4.8) 46.61(±4.9) 32.47(±4.6)

Othello (1) 46.63(±4.9) 53.25(±4.9) 49.88(±4.9) 51.63(±4.9) 45.75(±4.9)

Turn-B By weighing the depth more so that later turns trigger deeper mini-
maxes, we achieve even stronger results in Othello, notably at k = 10. This is
due to turn number being a very strong signal in this domain since terminal lines
are only found in the end game. This reinforces our hypothesis that intelligent
usage of minimax is important. This also achieves comparable performances to
the fixed depth model in Breakthrough k = 3 and Connect-4 k = 8, 9. The ta-
bles below show the win-rate of TURN-B-k vs the strongest fixed depth model
in each domain for 1 ≤ k ≤ dmax.1 ≤ k ≤ dmax.

1 2 3 4 5

Breakthrough (3) 38.50(±4.8) 45.83(±4.9) 49.67(±4.9) 48.92(±4.9) 40.00(±4.8)

Catch the Lion (4) 11.50(±3.1) 31.82(±4.6) 23.06(±4.1) 18.50(±3.8) 13.57(±3.4)

Connect-4 (3) 46.70(±4.9) 46.13(±4.9) 46.17(±4.9) 46.22(±4.9) 40.32(±4.8)

Othello (1) 52.05(±4.9) 50.81(±4.9) 51.24(±4.9) 52.12(±4.9) 48.32(±4.9)



MCTS with Dynamic Depth Minimax 9

6 7 8 9 10

Breakthrough (3) 26.75(±4.3) 18.50(±3.8) 15.5(±3.5) – –

Catch the Lion (4) 11.50(±3.1) – – – –

Connect-4 (3) 44.47(±4.9) 48.33(±4.9) 49.07(±4.9) 50.68(±4.9) 42.01(±4.8)

Othello (1) 49.18(±4.9) 49.87(±4.9) 53.39(±4.9) 51.09(±4.9) 54.57(±4.9)

Branch-A Connect-4 achieves an incredibly strong result at k = 3. The reason
could be due to the linear relationship between branching factor and terminal
ratio shown in Fig. 2, suggesting the former is a strong predictor of the lat-
ter. This suggests that the fixed-depth model d = 3 was wasting unnecessary
minimax searches at the cost of performance. Results in Othello remain strong
across the board for reasons outlined earlier. The tables below show the win-
rate of BRANCH-A-k vs the strongest fixed depth model in each domain for
1 ≤ k ≤ dmax.1 ≤ k ≤ dmax.

1 2 3 4 5

Breakthrough (3) 40.00(±4.8) 41.50(±4.8) 47.00(±4.9) 48.25(±4.9) 24.50(±4.2)

Catch the Lion (4) 8.88(±3.0) 10.25(±3.0) 18.14(±3.7) 21.75(±4.0) 27.85(±4.4)

Connect-4 (3) 45.00(±4.9) 39.11(±4.8) 59.56(±4.8) 50.79(±4.9) 45.16(±4.9)

Othello (1) 54.40(±4.9) 50.55(±4.9) 50.41(±4.9) 48.53(±4.9) 48.91(±4.9)

6 7 8 9 10

Breakthrough (3) 8.25(±3.7) 10.25(±3.0) 10.50(±3.0) – –

Catch the Lion (4) 42.96(±4.9) – – – –

Connect-4 (3) 34.57(±4.7) 31.15(±4.5) 13.37(±3.3) 12.37(±3.2) 5.00(±2.1)

Othello (1) 51.11(±4.9) 48.61(±4.9) 53.51(±4.89) 53.33(±4.9) 47.83(±4.9)

Roll-A The results are disappointing for all domains apart from Othello. This
could be explained by the high variance in our average rollout length measure-
ments. Since our model minimaxed on the second visit, our average rollout length
was sampled from just two random rollouts. For fairness, sampling more rollouts
to obtain a more reliable average was not an option as it would increase com-
putation costs, making it impossible to isolate the impact of rollout lengths on
the dynamic depth model when benchmarking against the fixed depth model.
Alternatively, we could increase the visit threshold (e.g. from 2 to 10) for all
models to even the playing field. We leave this to future experimentation. The
tables below show the win-rate of ROLL-A-k vs the strongest fixed depth model
in each domain for 1 ≤ k ≤ dmax.1 ≤ k ≤ dmax.

1 2 3 4 5

Breakthrough (3) 41.25(±4.8) 40.50(±4.8) 42.00(±4.8) 35.25(±4.7) 26.00(±4.3)

Catch the Lion (4) 13.00(±3.3) 17.34(±3.7) 18.80(±3.8) 28.82(±4.4) 29.29(±4.5)

Connect-4 (3) 43.29(±4.9) 44.96(±4.9) 46.92(±4.9) 34.54(±4.6) 39.10(±4.8)

Othello (1) 52.96(±4.9) 48.64(±4.9) 49.31(±4.9) 51.60(±4.9) 50.00(±4.9)

6 7 8 9 10

Breakthrough (3) 7.75(±2.6) 3.50(±1.8) 4.75(±2.1) – –

Catch the Lion (4) 20.40(±3.9) – – – –

Connect-4 (3) 31.56(±4.6) 26.87(±4.3) 12.76(±3.3) 11.96(±3.2) 8.51(±2.7)

Othello (1) 59.40(±4.8) 41.42(±4.8) 35.22(±4.7) 34.51(±4.7) 51.08(±4.9)



10 James Ji, Michael Thielscher

Strong performance in Othello Our models achieve strong results in Othello
across the board. Othello is the perfect example of a domain where minimax
searches are wasted early game and as a result, is almost guaranteed to benefit
from dynamic depth adjustments, even with our crude adjustment functions.

Weak performance in Catch the Lion Our models achieve the worst results
in Catch the Lion. A likely explanation is that our strongest fixed depth model
in Catch the Lion is already very strong as shown in the tables at the end of
Section 4.1, where its win-rate against other fixed depth models range from a
minimum (but still very high) 57.14% to as high as 80.05%. More precise dynamic
depth functions might be needed to outperform the strongest fixed depth model.

Results vs MCTS-Solver The purpose of Fig. 4 is to show that our model
is strong generally and not only against the fixed depth model. Indeed we see
strong performances across the board from our dynamic depth models. Note that
whilst the results for Othello might seem unimpressive, the fixed depth model
also sees the same issue. As mentioned previously in this paper, this domain is
one in which minimax searches must be used very carefully as they are strictly
useless for most of the game.

5 Conclusion

Dynamic depth minimax models are promising, occasionally matching or sur-
passing the strongest fixed depth model. Their strong performance in domains
such as Othello show that intelligent minimax usage is important. However, the
key takeaway is while the strength of the fixed depth models are capped as there
is no room for change, the dynamic depth models have potential for improve-
ment. Note that we used extremely rudimentary adjusment functions and we
also benchmarked against the strongest fixed depth models. It is not a stretch
to assume that with better adjustment functions, we can achieve even stronger
performances.

We also leave to future research other novel approaches for analysing the na-
ture of terminal lines which could lead to new ideas on dynamic depth models.
In this paper, we used turn number, branching factor and rollout length. How-
ever, other heuristics such as number of pieces on the board, or even implicit
heuristics are conceivable.

References

1. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: 5th International Conference on Computer and Games, pp. 72–83 (2006)

2. Koscis, L., Szpesvári, C.: Bandit based Monte-Carlo planning. In: 17th European
Conference on Machine Learning (ECML), pp. 282–293 (2006)

3. Silver, D., Huang, A., Maddison, C., et al: Mastering the game of Go with deep
neural networks and tree search. Nature 529:484–489 (2016)



MCTS with Dynamic Depth Minimax 11

TURN-A 1 2 3 4 5

Breakthrough (3) 61.00(±4.8) 62.75(±4.7) 67.5(±4.6) 69.00(±4.5) 50.50(±4.9)

Catch the Lion (4) 84.89(±3.5) 86.87(±3.3) 92.17(±2.6) 92.17(±2.6) 90.93(±2.8)

Connect-4 (3) 52.87(±4.9) 45.19(±4.9) 52.81(±4.9) 49.46(±4.9) 56.25(±4.9)

Othello (1) 49.59(±4.9) 49.59(±4.9) 47.43(±4.9) 49.46(±4.9) 49.46(±4.9)

TURN-A 6 7 8 9 10

Breakthrough (3) 51.75(±4.9) 39.25(±4.8) 38.75(±4.8) – –

Catch the Lion (4) 92.19(±2.6) – – – –

Connect-4 (3) 46.51(±4.9) 53.68(±4.9) 46.74(±4.9) 52.69(±4.9) 48.91(±4.9)

Othello (1) 45.71(±4.9) 49.28(±4.9) 53.62(±4.9) 47.83(±4.9) 46.43(±4.9)

TURN-B 1 2 3 4 5

Breakthrough (3) 61.00(±4.8) 62.75(±4.7) 67.50(±4.6) 69.00(±4.5) 50.50(±4.9)

Catch the Lion (4) 84.00(±3.6) 93.39(±2.4) 84.00(±3.6) 95.96(±1.9) 95.88(±1.9)

Connect-4 (3) 53.41(±4.9) 47.73(±4.9) 51.14(±4.9) 60.00(±4.8) 56.82(±4.9)

Othello (1) 54.57(±4.9) 51.09(±4.9) 53.59(±4.9) 49.87(±4.9) 49.18(±4.9)

TURN-B 6 7 8 9 10

Breakthrough (3) 51.75(±4.9) 39.25(±4.8) 34.25(±4.7) – –

Catch the Lion (4) 93.00(±2.5) – – – –

Connect-4 (3) 54.65(±4.9) 52.81(±4.9) 52.75(±4.9) 55.56(±4.9) 53.41(±4.9)

Othello (1) 48.38(±4.9) 52.11(±4.9) 51.24(±4.9) 50.81(±4.9) 52.05(±4.9)

BRANCH-A 1 2 3 4 5

Breakthrough (3) 58.67(±4.8) 68.67(±4.5) 75.33(±4.2) 68.67(±4.5) 50.67(±4.9)

Catch the Lion (4) 84.5(±3.5) 83.76(±3.6) 87.94(±3.2) 90.95(±2.8) 93.91(±2.3)

Connect-4 (3) 53.41(±4.9) 47.73(±4.9) 51.14(±4.9) 60.00(±4.8) 56.82(±4.9)

Othello (1) 50.38(±4.9) 51.43(±4.9) 48.18(±4.9) 43.51(±4.9) 42.86(±4.8)

BRANCH-A 6 7 8 9 10

Breakthrough (3) 20.00(±3.9) 14.67(±3.5) 13.33(±3.3) – –

Catch the Lion (4) 92.96(±2.5) – – – –

Connect-4 (3) 54.65(±4.9) 52.81(±4.9) 52.75(±4.9) 55.56(±4.9) 53.41(±4.9)

Othello (1) 39.01(±4.8) 35.21(±4.7) 21.92(±4.05) 19.73(±3.9) 16.08(±3.6)

ROLL-A 1 2 3 4 5

Breakthrough (3) 10.25(±3.0) 7.82(±4.0) 17.25(±3.7) 43.25(±4.9) 61.75(±4.8)

Catch the Lion (4) 86.50(±3.3) 91.90(±2.7) 92.73(±2.5) 92.15(±2.6) 90.48(±2.9)

Connect-4 (3) 9.95(±2.9) 16.36(±3.6) 31.49(±4.5) 34.29(±4.7) 38.11(±4.8)

Othello (1) 49.35(±4.9) 44.12(±4.9) 38.92(±4.8) 44.05(±4.9) 48.36(±4.9)

ROLL-A 6 7 8 9 10

Breakthrough (3) 68.00(±4.6) 57.00(±4.9) 65.25(±4.7) – –

Catch the Lion (4) 88.13(±3.2) – – – –

Connect-4 (3) 44.17(±4.9) 52.66(±4.9) 55.83(±4.9) 52.04(±4.9) 52.96(±4.9)

Othello (1) 50.42(±4.9) 46.59(±4.9) 49.03(±4.9) 50.28(±4.9) 49.02(±4.9)

Fig. 4. Win-rate of TURN-A, TURN-B, BRANCH-A, ROLL-A vs MCTS-Solver in
each domain for 1 ≤ k ≤ dmax



12 James Ji, Michael Thielscher

4. The Guardian, https://www.theguardian.com/technology/2016/mar/15/googles-
alphago-seals-4-1-victory-over-grandmaster-lee-sedol. Last accessed 9 Nov 2023

5. Ramanujan, R., Sabharwal, A., Selman, B.: On adversarial search spaces and
sampling-based planning. In: 20th International Conference on Automated Plan-
ning and Scheduling (ICAPS), pp. 242–245 (2010)

6. Finnson, H., Björnsson, Y.: Game-tree properties and MCTS performance. In:
IJCAI Workshop on General Intelligence in Game Playing Agents, pp. 23–30 (2011)

7. Baier, H., Winands, M.: Monte-Carlo tree search and minimax hybrids. In: IEEE
Conference on Computational Intelligence in Games (CIG), pp. 1–8 (2013)

8. Baier, H., Winands, M.: MCTS-Minimax hybrids. In: IEEE Transactions on Com-
putational Intelligence and AI in Games 7(2):167–179 (2015)

9. Winands, M., Björnsson, Y., and Saito, J.: Monte-Carlo tree search solver. In: 6th
International Conference on Computers and Games, pp. 25–36 (2008)

10. Knuth, D.E., Moore, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelli-
gence 6(4):293–326 (1975)


