
Reasoning about Continuous Processes

Christoph S. Herrmann
FG Intellektik, TH Darmstadt

Alexanderstr. 10, D-64283 Darmstadt

Michael Thielscher∗

International Computer Science Institute
1947 Center St., Berkeley, CA 94704-1198

Abstract

Overcoming the disadvantages of equidistant dis-
cretization of continuous actions, we introduce an ap-
proach that separates time into slices of varying length
bordered by certain events. Such events are points
in time at which the equations describing the sys-
tem’s behavior—that is, the equations which specify
the ongoing processes—change. Between two events
the system’s parameters stay continuous. A high-level
semantics for drawing logical conclusions about dy-
namic systems with continuous processes is presented,
and we have developed an adequate calculus to auto-
mate this reasoning process. In doing this, we have
combined deduction and numerical calculus, offering
logical reasoning about precise, quantitative system
information. The scenario of multiple balls moving
in 1-dimensional space interacting with a pendulum
serves as demonstration example of our method.

Introduction

In a vast variety of different disciplines it is required
to reason logically about physical systems that are de-
scribed by numerical equations rather than symbolical
definitions. The standard approach is to quantify the
whole scenario into a finite number of points in time
at which all system parameters are represented in vari-
ables. If there were infinitely many points at infinitely
small distances, this might be sufficient—even though
impossible to calculate. But, since discretization is al-
ways finite, a problem arises when an action or event
takes place in between two of these points. Imagine
two balls moving at constant speed into two different
directions but their courses crossing each other (Bil-
liard Scenario in (Shoham &McDermott 1988)). Imag-
ine further that these two balls will collide on their
courses at a certain point of time. Now, if the dis-
cretization does not take into regard this very point
of time then the collision is not detected and the balls
seem to be moving on into their original directions,
which results in entirely wrong final positions of the
balls. In (Shoham & McDermott 1988) this problem

∗on leave from FG Intellektik, TH Darmstadt

of not being able to predict the future without an in-
finite number of discretizations is called the extended
prediction problem.

While some work has been done to extend spe-
cific action calculi in order to deal with continu-
ous change, e.g. (McDermott 1982; Shoham 1988;
Shanahan 1990), these ideas have not yet been ex-
ploited to define a high-level action semantics serving
as basis for a formal justification of such calculi, their
comparison, and an assessment of the range of their
applicability. Such semantics have recently been devel-
oped for the discrete case (Gelfond & Lifschitz 1993;
Sandewall 1994; Thielscher 1995) and successfully ap-
plied to concrete calculi, e.g. (Kartha 1993; Doherty
& ÃLukaszewicz 1994; Thielscher 1994). However, nei-
ther of these formalisms is suitable for calculi deal-
ing with continuous processes. The Action Descrip-
tion Language (Gelfond & Lifschitz 1993) is based on
the concept of single-step actions and does not include
a notion of time. In (Sandewall 1994), the duration
of actions is not fixed, but equidistant discretization
is assumed and state transitions only occur when ac-
tions are executed—otherwise the world description is
assumed to remain stable. While in contrast the ap-
proach developed in (Thielscher 1995) allows for user-
independent events to cause state transitions, again
equidistant discretization is assumed.

In this paper, we propose a new semantics for rea-
soning about continuous change which allows for vary-
ing temporal distances between state transitions. The
described system may have non-continuous character-
istics but must be separable into continuous sections by
a finite number of discontinuities. While fluents (Mc-
Carthy & Hayes 1969) constitute the basic entities
for state descriptions in (Gelfond & Lifschitz 1993;
Sandewall 1994; Thielscher 1995), we propose the more
general notion of processes as the underlying concept
for constructing state descriptions. In contrast to flu-
ents, whose values are static except in case a state tran-
sition occurs, a process may contain parameters whose
values change continuously. Such parameters are for-
malized as functions over time. Much like fluents may
change their value during state transitions in the dis-

crete case, in the continuous case a state transition
may cause existing processes to disappear and new
processes to arise. State transitions are either trig-
gered by the execution of actions (so-called external
events, e.g., hitting an idling ball) or by interactions
between processes (so-called internal events, e.g., col-
lisions of moving balls). Both external and internal
events are specified by transition laws.

On this basis, we have developed a formal, model-
theoretic semantics for reasoning about domains in-
volving continuous change. An application example
will be used to illustrate the formalism. We more-
over have developed an adequate (wrt. our semantics)
extension of an action calculus using logic program-
ming based on an approach developed in (Hölldobler
& Schneeberger 1990). Due to lack of space, a descrip-
tion had to be omitted; it can be found in (Herrmann
& Thielscher 1996). At the end of this paper, the inter-
ested reader may in addition find an internet address
for a Prolog implementation of our calculus.

A Logic of Processes

In this section, we introduce a formal semantics for
reasoning about continuous processes, their interaction
in the course of time, and their manipulation by means
of executing actions.

Processes

While fluents form the basic components of situation
descriptions in classical, discrete approaches like sit-
uation calculus (McCarthy & Hayes 1969), we use a
generalized notion called processes as the basic enti-
ties of situation descriptions in our model of continuous
change. Any concrete process is an instance of a gen-
eral type of processes, like “continuous movement of a
physical object in a 1-dimensional space.” The type
a process belongs to determines its description com-
ponents. More precisely, each type is associated with
a so-called scheme specifying two kinds of parameters:
the static parameters, which do not change as long as
the process is in progress (like the coordinates of the
starting point or the velocity of a continuously mov-
ing object), and the dynamic parameters, whose actual
values are time-dependent and are therefore subject to
change in the course of the process (like the actual loca-
tion of a moving object). Components of the dynamic
description part are formally represented as functions
whose arguments are the static parameters plus two
time-points, namely, the starting time of the process
and the actual time:

Definition 1 A process scheme is a pair 〈C,F 〉
where C is a finite, ordered set of symbols of
size n ≥ 0 and F is a finite set of functions
f : IRn+2 7→ IR .

For example, the two components 〈C,F 〉 of a pro-
cess scheme describing continuous movement in a
1-dimensional space are as follows: C = {x0, ẋ} and

F = {x(x0, ẋ, t0, t) = x0+ẋ(t−t0)} , where x0 denotes
the starting coordinate; ẋ the velocity; t0 and t the
starting and the actual time, respectively, of the pro-
cess; and x denotes the actual location of the moving
object at time t .

Any process is an instance of some process scheme
and referred to by a (unique) name:

Definition 2 Let N be a set of symbols (called
names). A process is a 4-tuple 〈n, T , t0, ~p 〉 where

• n ∈ N ;

• T = 〈C,F 〉 is a process scheme (the type), where
C is of size n ;

• t0 ∈ IR (the starting time); and

• ~p = (p1, . . . , pn) ∈ IRn is an n-dimensional vector
over IR (the parameter vector)

For example, let Tmove denote the example scheme
from above then1

〈 Train A , Tmove , 1:00pm , (0mi, 25mph) 〉

〈 Train B , Tmove , 1:30pm , (80mi,−20mph) 〉
(1)

are two processes describing two trains starting at dif-
ferent times and, then, moving towards each other,
with different speed.2

Based on these notions, we call a set S of processes
in conjunction with a particular time-point tS ∈ IR a
situation. Value tS denotes the time when S arose.
We assume that two distinct processes occurring in
the same situation have different names, chosen from a
given set. If neither an interaction between the given
processes nor actions take place then the individual
processes are assumed to continue eternally. In this
case, S provides a description of the system being
modeled at any time t ≥ tS .

Events and Transition Laws

However, even without manipulating the ongoing pro-
cesses by means of executing actions, processes may
interact and, by doing this, destroy the harmony. In
such cases, a situation 〈S, tS〉 is only a time-limited
description, whose suitability ends as soon as interac-
tion gives rise to changes within the collection of pro-
cesses. Such a breakpoint, which causes a discontinuity
in the state of affairs, is called event . In general, an
event causes some running processes to end and some
new processes to start at a particular point in time.
For instance, an inelastic collision between two mov-
ing objects terminates, at the time they meet, both
movements and initiates two new processes where both
objects move side-by-side, possibly in a new direction
and with changed velocity.

1The following example was inspired by (Shoham & Mc-
Dermott 1988).

2The starting location of the first train, Train A, is
taken as reference point of the 1-dimensional coordinate
system; hence, the initial distance between the two trains
is 80 miles.

Generally, any non-trivial situation 〈S, tS〉 gives rise
to a variety of potential events at various time-points
t > tS . Whether such an event actually occurs de-
pends on whether the situation remains stable until the
expected occurrence of the event. It is therefore crucial
to find the very next event; only this one is guaranteed
to occur as expected. To illustrate this point, which
we call the nearest event problem, consider the situa-
tion displayed in Figure 1. While an analysis of the
movements of Balls A and B results in the expectation
that they collide, an analysis of A and C shows that
prior to this we have to check whether these two balls
collide first. If this is indeed the case then we should
compute the effect of that discontinuity first and see
whether Balls A and B still move towards each other.

A B

C

Figure 1: To predict the courses of the balls it is crucial
to determine the nearest event. In case of any collision,
will A and C collide first, or A and B?

This is reflected in the following definition:

Definition 3 An event is a triple 〈C, t, E〉 where
C (the condition) and E (the effect) are (possibly
empty) finite sets of processes and t ∈ IR is the time
at which the event is expected to occur.

Let 〈S, tS〉 be a situation then an event 〈C, t, E〉 is
potentially applicable iff C ⊆ S and t > tS . If E is a
set of events then some 〈C, t, E〉 ∈ E is applicable to
〈S, tS〉 wrt. E iff it is potentially applicable and for
each potentially applicable 〈C ′, t′, E′〉 ∈ E we have
t ≤ t′ .

While in general more than just one actually applica-
ble event may exist, we will restrict ourselves to non-
simultaneity in this first approach. As an example,
let S denote the two processes defined in (1) and let
tS = 1:30pm then the following event—describing an
inelastic collision3—is applicable to 〈S, tS〉 provided
no other event occurs in between:

〈 C = { 〈Train A, Tmove, 1:00pm, (0mi, 25mph)〉 ,

〈Train B, Tmove, 1:30pm, (80mi,−20mph)〉 } ,

t = 3:00pm ,

E = { 〈Train A, Tmove, 3:00pm, (50mi, 5mph)〉 ,

〈Train B, Tmove, 3:00pm, (50mi, 5mph)〉 }〉

(2)

Concrete events are instances of general transition
laws, which contain variables and, possibly, constraints
to guide the process of instantiation. In particular the

3This collision is to be interpreted as a coupling of trains
rather than a violent crash.

event’s time is usually determined by the instances of
other variables. For example, the transition law for
inelastic collisions of two continuously moving objects
in a 1-dimensional space is as follows (variables are
denoted by uppercase letters):

〈 C = { 〈NA, Tmove, TA0, (XA0, ẊA)〉 ,

〈NB , Tmove, TB0, (XB0, ẊB)〉 } ,

t = T ,

E = { 〈NA, Tmove, T, (Xnew, ẊA + ẊB)〉 ,

〈NB , Tmove, T, (Xnew, ẊA + ẊB)〉 } 〉

(3)

where it is required NA 6= NB , ẊA − ẊB 6= 0 ,
and xNA

= xNB
= Xnew at time T . In our

example, where the two movement differentials are
x(XA0, ẊA, TA0, T) = XA0 + ẊA(T − TA0) and

x(XB0, ẊB , TB0, T) = XB0 + ẊB(T − TB0) , this leads
to:

T = XA0−XB0−ẊATA0+ẊBTB0

ẊB−ẊA

and Xnew = XA0 + ẊA(T − TA0)
(4)

Note that in case the two objects do not head to-
wards each other, this equation will result in some
T < TA0, TB0 ; that is, the corresponding event can
never be (potentially) applicable to a situation with
time TS ≥ TA0, TB0 . The reader is invited to verify
that (2) is indeed a valid instance of (3).

On the basis of a set of events (i.e., the collection of
all ground instances of given transition laws), the be-
havior of the model, starting in a particular initial situ-
ation, can be described by repeatedly searching for ap-
plicable events and, then, calculating their impact. As
indicated, we restrict our model to non-simultaneous
events, which is reflected in the following definition:

Definition 4 Let E be a set of events and 〈S, tS〉
a situation then the successor situation Φ(〈S, tS〉) is
defined as follows:

1. If no applicable event exists in E then Φ(〈S, tS〉) =
〈S,∞〉 .

2. If 〈C, t, E〉 ∈ E is the only applicable event then
Φ(〈S, tS〉) = 〈S

′, tS′〉 where

• S′ = (S \ C) ∪ E

• tS′ = t

3. Otherwise Φ(〈S, tS〉) is undefined.

In words, if no applicable event exists then the system
has reached a stable state, which is assumed to hold
forever; else the result of an applicable event is ob-
tained by exchanging processes according to the event’s
description and adjusting the initiating time-point of
the new situation accordingly. The former represents
the assumption of persistence: Each process which is
not affected by the event continues to run in the new
situation just like it did in the preceding one. In what
follows, we implicitly assume Φ be always defined.

The repeated application of the successor situa-
tion function yields an infinite sequence of situations,

〈S0, t0〉 , Φ(〈S0, t0〉) , Φ2(〈S0, t0〉) , Then the
state of the system at a particular time-point t ≥ t0
is correctly described by the collection of processes
S where 〈S, tS〉 = Φk(〈S0, t0〉) and 〈S′, tS′〉 =
Φk+1(〈S0, t0〉) such that tS ≤ t < tS′ , for some
k ≥ 0 . For example, starting with 〈(1), 1:30pm〉 ,
the locations of the two trains, say, are determined
by (1) until 3:00pm, while after the collision the new
processes, E in (2), have to be used instead.

The above concept supports the notion of truth and
falsity of observations made during a development of
the system being modeled. Formally, an observation is
an expression of the form [t]α(n) = r where

• t ∈ IR is the time of the observation;

• α is either a symbol in C or the name of a function
in F for some process scheme 〈C,F 〉 ;

• n is a symbol denoting a process name; and

• r ∈ IR is the observed value.

Given an initial situation along with a set of events,
such an observation is true iff the following holds: Let
S be the collection of processes describing the sys-
tem at time t (determined as discussed above) then
S contains a process 〈n, 〈C,F 〉, t0, (r1, . . . , rn)〉 such
that

1. either C = {c1, . . . , ck = α, . . . , cn} and rk = r ;

2. or α ∈ F and α(r1, . . . , rn, t0, t) = r .

E.g., observation [2:15pm]x(Train B) = 65mi is true
in our example according to (1)4 while observation
[3:15pm]x(Train B) = 45mi , say, is not since the latter
does not take into account the train collision.

On this basis, we can define temporal projection as
well as postdiction problems (called chronicle comple-
tion in (Sandewall 1994)) in the standard way (Gelfond
& Lifschitz 1993; Sandewall 1994; Thielscher 1995)
using model-theoretic concepts: A model for a set
of observations Ψ (under given sets of names N
and events E) is a system development 〈S0, t0〉 ,
Φ(〈S0, t0〉) , Φ2(〈S0, t0〉) , . . . which satisfies all ele-
ments of Ψ . Such a set Ψ entails an (additional)
observation ψ iff ψ is true in all models of Ψ .

Actions

The concept of agents executing actions in a system of
continuous processes can be easily integrated into our
model by viewing actions as (artificial) events as well.
For example, the following event describes the action
of starting Train B at time 1:30pm:

〈 C = { 〈Train B, Tmove, 1:00pm, (80mi, 0mph)〉 } ,

t = 1:30pm ,

E = { 〈Train B, Tmove, 1:30pm, (80mi,−20mph)〉 } 〉

(5)

4We have x(x0 = 80mi, ẋ = −20mph, t0 = 1:30pm, t =
2:15pm) = 80mi− 20mph(2:15pm− 1:30pm) = 65mi .

In words, the process describing Train B idle at loca-
tion x0 = 80mi will be replaced by the process describ-
ing the train’s movement with velocity ẋ = −20mph .

As before, such events may be instances of more gen-
eral transition laws whose applicability is triggered by
the intention to execute some action. A most interest-
ing feature of this representation of actions is that the
time of their execution may depend on the situation
itself. For instance, the specification “Start the idling
Train B to move with velocity −20mph as soon as
Train A passes the 12.5mi mark.” can be represented
by this transition law:

〈 C = { 〈Train A, Tmove, TA0, (XA0, ẊA)〉 ,

〈Train B, Tmove, TB , (XB0, 0mph)〉 } ,

t = T ,

E = { 〈Train A, Tmove, TA, (XA0, ẊA)〉 ,

〈Train B, Tmove, T, (XB0,−20mph)〉 } 〉

(6)

where it is required ẊA 6= 0 and XA0+ẊA(T−TA0) =
12.5mi . E.g., given the first process in (1) along with
〈Train B, Tmove, 1:00pm, (80mi, 0mph)〉 , the event de-
scribed in (5) is essentially an instance of (6)—
considering the fact that the process describing
Train A is not changed in (6).

Given a set of events representing actions that are
to be executed, these are added to the ‘natural’ events
considered in the previous subsection and, then, all def-
initions concerning successor situations, developments,
and observations remain as they are.

Pendulum and Balls Scenario
In this section, we illustrate how a more complex do-
main, namely, the interaction between a pendulum
and balls that travel along a 1-dimensional space, can
be modeled on the basis of our formalism. Figure 2
shows the pendulum which will collide at angle ϕ = 0
with a ball being at position y = yC at the same
time. Since the logic part of the formalization is es-
sentially domain-independent, the task left is to find
appropriate equations describing the various possible
movements (that is, defining process schemes) and the
possible interactions (that is, defining transition laws).

For simplicity, we will neglect the damping factor of
the motion of the pendulum. The differential equation
describing it then is

m l
2 d2ϕ

dt2
= −mgl sinϕ − l

2 dϕ

dt

where l is the length of the pendulum, m is the mass
of the pendulum, and g is 9.81m

s2 . Solving the dif-
ferential results in the angle of the pendulum ϕ , the
angular velocity ϕ̇ and the angular acceleration ϕ̈ .5

ϕ(ϕmax, τ,TP0,T) = −ϕmax cos(
2π

τ
(T− TP0))

5For the sake of simplicity, we will regard the time con-
stant τ of the pendulum be given rather than its length l

(we have τ = 2π
√

l ϕmax
g sin ϕmax

).

max max= 0

(t)

x

yz

y=yc
P

A

-

Figure 2: Pendulum P and Ball A in positions
ϕP = −ϕmax and YA = 0 .

ϕ̇(ϕmax, τ,TP0,T) = ϕmax
2π

τ
sin(

2π

τ
(T− TP0))

ϕ̈(ϕmax, τ,TP0,T) = ϕmax
4π2

τ2
cos(

2π

τ
(T− TP0))

As the process scheme for the pendulum we obtain
Tpendulum = 〈C,F 〉 where C = {ϕmax, τ, yC} and
F = {ϕ, ϕ̇, ϕ̈} . E.g., if we start a pendulum with
suspension point yC = 0.3m , time constant τ = 1sec
(such a pendulum is often called second-pendulum6)
and starting angle ϕmax = 10◦ at time tP0 = 0sec
then the corresponding process becomes

〈Pendulum P, Tpendulum, 0, (10, 1, 0.3)〉 (7)

For a ball moving along the y-axis, we use a pro-
cess scheme Tmove = 〈C,F 〉 similar to the one
used in the preceding section, viz. C = {y0, ẏ} and
F = {y(y0, ẏ, t0, t) = y0 + ẏ(t− t0)} .
Based on the two process schemes, we define three

different types of events. The first is the collision of two
balls, A and B, defined by identical locations at some
time t , that is, y(yA0, ẏA, tA0, t) = y(yB0, ẏB , tB0, t) ,
similar to equations (4).

The second type of event is the collision between
any ball and the pendulum, defined by the angle of
the pendulum being zero while the ball’s position is
at the y-axis position of the pendulum, yC , at the
same time. Since in real physical systems, after such a
collision ball and pendulum would move chaotically in
3-dimensional space, we introduce an arbitrary simpli-
fication for the sake of a deterministic behavior. The
pendulum is assumed to be fixed in its y-axis and to
be of much larger mass than the ball, such that the
collision will simply be an elastic impact with a still-
standing object for the ball (reflection into opposite
direction) while the pendulum keeps moving continu-
ously. This results in the following transition law:

〈 C = { 〈NA, Tmove, TA0, (YA0, ẎA0)〉 ,

〈NP , Tpendulum, TP0, (ϕmax, τ, YC)〉 } ,

t = T ,

E = { 〈NA, Tmove, T, (YC ,−ẎA0)〉 ,

〈NP , Tpendulum, TP0, (ϕmax, τ, YC)〉 } 〉

(8)

6A second-pendulum is in its ϕ = 0 position at every
point of time (t− tP0) = 2n−1

4
sec (n ∈ IN) .

where it is required that ẎA0 6= 0 , τ 6= 0 ,

1

2

(

4(YC−YA0

ẎA
+ TA0 − TP0)

τ
+ 1

)

∈ IN

and T = YC−YA0

ẎA
+ TA0

That is, the pendulum process remains unchanged and
new parameters result for the ball. As above, if no
collision will occur we obtain a value T smaller than
the actual time.

The last type of event is simply user interaction like
inserting a new ball into the scenario or starting the
pendulum. E.g., the following event formalizes our in-
tention to start a ball from position y0 = 0m at time
t = 2sec to move with speed ẏ = 0.4m/sec :

〈 C = { } , t = 2sec , E = {〈Ball A, Tmove, 2, (0, 0.4)〉} 〉

Now, given the initial situation 〈{(7)}, 0sec〉 , the
above event designs a successor state at time t = 2sec
by adding the moving ball. Following this state tran-
sition, the transition law (8) will be fulfilled for time
t = 2.75sec as the nearest event (see previous section),
since

t = yC−yA0

ẏA
+ tA0 = 3

4
sec+ 2sec and

1
2

(

4(0.3m−0m
0.4m/sec

+2sec−1sec)

1sec
+ 1

)

= 4 ∈ IN

This results in the pendulum moving unaltered while
the ball now moves into the opposite direction, that
is, we obtain 〈Ball A, Tmove, 2.75, (0.3,−0.4)〉 as a new
process. With our approach, we can query for the oc-
currence of such discontinuities and detect further col-
lisions after this nearest event . Also, we can insert new
balls at arbitrary time and location or stop and start
the pendulum with variable velocity.

Discussion

Generalizing the concept of state descriptions as col-
lections of fluents, our approach of process separation
introduces a syntax and semantics to formalize and
reason about descriptions of continuous physical sys-
tems. In addition, in (Herrmann & Thielscher 1996)
we offer a suitable calculus that is based on logic pro-
gramming and allows for logical reasoning in terms of
meaningful expressions (e.g. collision event) as well as
precise numerical values about the processes (e.g. lo-
cation at a certain time). Hence, a process separation
model of a real world system can serve to evaluate the
proper behavior of a system that may be specified by
differential equations in our calculus.

While purely numerical approaches do not allow log-
ical reasoning about system phenomena, the so-called
Qualitative Reasoning uses qualitative descriptions to
model a system and offers a logic based on descrip-
tive attributes (Kuipers 1994). Applications of this
method model physical systems in qualitative simula-
tions (Faltings & Struss 1992). A reproach of Quali-
tative Reasoning is the absence of quantitative values.

Our process separation model allows to reason logically
about predefined events and is still based on precise
numerical values accessible to the user.

We have been able to solve the extended prediction
problem by limiting the number of future time slices in
concentrating on ‘interesting’ points in time, that is,
where events occur. Since we take all possible events
at which the system is assumed to change its parame-
ters into account, this quantization avoids the false pre-
dictions mentioned in (Shoham & McDermott 1988).
Our approach is not limited to a previously fixed num-
ber of objects in our scenarios, since we allow actions
that may start new objects to participate in our sys-
tem model. Also, the occurrence of potential events
or their amount need not be known in advance. It is
just necessary to specify the conditions under which an
event occurs and the new parameters that result from
such an event, in form of transition laws.

A previous approach to temporal reasoning about
continuous systems has introduced manifested histo-
ries vs. potential histories (Shoham 1988). In that ap-
proach the potential future courses of two balls may be
altered if a collision manifests different courses which
only works for discrete points of time as the author
admits in his “Technical Limitations.” In our calculus,
time is real-valued and not affected by this problem.

Another way to reason about physical systems us-
ing differential equations and temporal logic was in-
troduced in (Sandewall 1989). Discontinuous systems
were divided into piecewise continuous ones separated
by discontinuities. As argued in (Allen 1984), such a
representation in the form of time-points rather than
intervals bears the problem of not being able to cor-
rectly model the change of multiple parameters in one
time-point. We overcome this problem by separating
the system into multiple processes, where all parame-
ters can be adjusted for a new interval of time.

Finally, let us recall the restriction that the cur-
rent versions of our semantics and calculus do not al-
low events to occur simultaneously. In case two or
more events occur at the same time but without mu-
tual influence, this could be straightforwardly mod-
eled. But if two or more simultaneous events concern
identical objects (e.g., three balls all moving towards a
single collision) then the overall result might not sim-
ply be the combination of the results of the involved
events. Rather, such situations require more sophisti-
cated means to construct suitable state transition func-
tions. Recent solutions to this problem for the discrete
case, e.g. (Lin & Shoham 1992; Baral & Gelfond 1993;
Thielscher 1995), will help to establish an adequate
extension of our formalism; yet, this is left as future
work.

Internet Availability. For the interested reader,
we have provided PROLOG sources on our ftp-server
aida.intellektik.informatik.th-darmstadt.de
in the directory /pub/AIDA/ContProc.

References
Allen, J. F. 1984. Towards a General Theory of Action
and Time. Artif. Intell. 23:123–154.

Baral, C., and Gelfond, M. 1993. Representing concurrent
actions in extended logic programming. In Bajcsy, R., ed.,
Proc. of IJCAI, 866–871. Chambéry, France.

Doherty, P., and ÃLukaszewicz, W. 1994. Circumscribing
features and fluents. In Gabbay, D., and Ohlbach, H. J.,
eds., Proc. of the Int.’l Conf. on Temporal Logic (ICTL),
vol. 827 of LNAI, 82–100. Springer.

Faltings, B., and Struss, P. 1992. Recent Advances in
Qualitative Physics. MIT Press.

Gelfond, M., and Lifschitz, V. 1993. Representing action
and change by logic programs. J. of Logic Programming
17:301–321.

Herrmann, C. S., and Thielscher, M. 1996. On Reasoning
About Continuous Processes. Technical Report AIDA–
96–04, FG Intellektik, TH Darmstadt.

Hölldobler, S., and Schneeberger, J. 1990. A new deduc-
tive approach to planning. New Generation Computing
8:225–244.

Kartha, G. N. 1993. Soundness and completeness the-
orems for three formalizations of actions. In Bajcsy, R.,
ed., Proc. of IJCAI, 724–729. Chambéry, France.

Kuipers, B. 1994. Qualitative reasoning: modeling and
simulation with incomplete knowledge. MIT Press.

Lin, F., and Shoham, Y. 1992. Concurrent actions in the
situation calculus. In Proc. of AAAI, 590–595. San Jose,
CA: MIT Press.

McCarthy, J., and Hayes, P. J. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence.
Machine Intell. 4:463–502.

McDermott, D. 1982. A temporal logic for reasoning
about processes and plans. J. of Cog. Sci. 6:101–155.

Sandewall, E. 1989. Combining logic and differential equa-
tions for describing real-world systems. In Brachman,
R.; Levesque, H. J.; and Reiter, R., eds., Proc. of the
Int.’l Conf. on Principles of Knowledge Representation
and Reasoning. Toronto, Kanada: Morgan Kaufmann.

Sandewall, E. 1994. Features and Fluents. Oxford Uni-
versity Press.

Shanahan, M. P. 1990. Representing continuous change
in the event calculus. In Proc. of ECAI, 598–603.

Shoham, Y., and McDermott, D. 1988. Problems in for-
mal temporal reasoning. Artif. Intell. 36:49–61.

Shoham, Y. 1988. Chronological ignorance: Experi-
ments in nonmonotonic temporal reasoning. Artif. Intell.
36:279–331.

Thielscher, M. 1994. Representing actions in equational
logic programming. In Hentenryck, P. V., ed., Proc. of
the Int.’l Conf. on Logic Programming, 207–224. Santa
Margherita Ligure, Italy: MIT Press.

Thielscher, M. 1995. The logic of dynamic systems. In
Mellish, C. S., ed., Proc. of IJCAI, 1956–1962. Montreal,
Canada.

