
Lifting Model Sampling for General Game Playing
to Incomplete-Information Models

Michael Schofield and Michael Thielscher
School of Computer Science and Engineering

The University of New South Wales
{mschofield, mit}@cse.unsw.edu.au

Abstract

General Game Playing is the design of AI systems able
to understand the rules of new games and to use such de-
scriptions to play those games effectively. Games with
incomplete information have recently been added as a
new challenge for general game-playing systems. The
only published solutions to this challenge are based
on sampling complete information models. In doing so
they ground all of the unknown information, thereby
making information gathering moves of no value; a
well-known criticism of such sampling based systems.
We present and analyse a method for escalating rea-
soning from complete information models to incom-
plete information models and show how this enables
a general game player to correctly value information
in incomplete information games. Experimental results
demonstrate the success of this technique over standard
model sampling.

Introduction
General Game Playing (GGP) is concerned with the design
of AI systems able to take the rules of any game described
in a formal language; and to play that game effectively.

Games with perfect information have made advances due,
mostly, to the standardisation of the Game Description Lan-
guage (GDL) (Love et al. 2006) and its widespread adoption.
For example, in the AAAI GGP Competition (Genesereth,
Love, and Pell 2005). Successful players employ either:
automatically generated evaluation functions (Clune 2007;
Schiffel and Thielscher 2007); or some form of Monte Carlo
technique such as the modern UCT (Björnsson and Finnsson
2009; Méhat and Cazenave 2011).

Games with imperfect1 information have recently been
added as a new challenge for existing general game play-
ing systems (Thielscher 2010). However little progress has
been made on these types of games beyond a specification of
their rules (Quenault and Cazenave 2007; Thielscher 2011).
The only published approaches to modelling and playing in-
complete information games (Edelkamp, Federholzner, and
Kissmann 2012; Schofield, Cerexhe, and Thielscher 2012)
both use standard model sampling as a partial solution to

1GGP uses “imperfect” where general AI uses “incomplete”.
We will use “incomplete”.

this challenge. The sampled states are then used to form the
root of a separate perfect information search.

An obvious criticism of these sampling methods is that
they value information at zero because each individual sam-
ple assumes perfect information at all times (Frank and
Basin 2001). This was confirmed at the incomplete informa-
tion track of the GGP competition at the Australasian Joint
Conference on Artificial Intelligence; where three games,
NumberGuessing, BankerAndThief, BattleshipsInFog, were
specifically designed to test the ability of players to value
information. None of the competitors were able to do so.2

In this paper we propose HyperPlay-II (for: HyperPlay
with incomplete information models) as an extension of the
original model sampling technique HyperPlay (Schofield,
Cerexhe, and Thielscher 2012). This extended technique is
able to play a much larger class of games by reasoning on in-
complete information models. Our analysis and experimen-
tal results show that the new technique values information
correctly according to the expected cost/benefit, performs
information gathering moves when appropriate, is protective
of information that should remain discreet, and requires no
additional resources over its predecessor.

This paper is organised as follows. First, we recapitulate
the basics of General Game Playing and related work. We
formally present both techniques3; then we report on exper-
imental comparisons using the aforementioned games. We
conclude with a short discussion.

Related Work
The declarative game description language (GDL) has been
defined as a formal language that allows an arbitrary game
to be specified by a complete set of rules (Genesereth, Love,
and Pell 2005). It uses a logic programming-like syntax and
is characterised by a few keywords. These are highlighted in
an example shown below, in Figure 1.

Originally for complete information games, GDL has
been extended to GDL-II (for: GDL with imperfect infor-
mation) to allow for arbitrary, finite games with randomised
moves and incomplete information (Thielscher 2010).

The published approaches to designing general game
players for GDL-II show how existing complete information

2see https://wiki.cse.unsw.edu.au/ai2012/GGP.
3The new technique is built on the formalism of the old.

1 role(agent).

2 role(random).

3

4 colour(red).

5 colour(blue).

6

7 init(round(0)).

8

9 legal(random,arm(C)) :- colour(C), true(round(0)).

10 legal(random,noop) :- not true(round(0)).

11 legal(agent,noop) :- true(round(0)).

12 legal(agent,ask) :- true(round(1)).

13 legal(agent,wait) :- true(round(1)).

14 legal(agent,cut(C)) :- true(round(2)), colour(C).

15

16 sees(agent,C) :- does(agent,ask), true(armed(C)).

17 next(round(1)) :- true(round(0)).

18 next(round(2)) :- true(round(1)).

19 next(round(3)) :- true(round(2)).

20 next(armed(C)) :- does(random,arm(C)).

21 next(armed(C)) :- true(armed(C)).

22 next(score(90)) :- does(agent,ask).

23 next(score(100)) :- does(agent,wait).

24 next(score(S)) :- true(score(S)), not explodes.

25 next(score(0)) :- explodes.

26

27 explodes :- does(agent,cut(C)), not true(armed(C)).

28

29 terminal :- true(round(3)).

30 goal(agent, S) :- terminal, true(score(S)).

31 goal(agent, 0) :- not terminal.

32 goal(random,0).

Figure 1: GDL-II description of the ExplodingBomb game.

GDL players can be lifted to play general incomplete infor-
mation games by using models as the starting states for a
complete information search (Edelkamp, Federholzner, and
Kissmann 2012; Schofield, Cerexhe, and Thielscher 2012).
This has been motivated by set sampling (Richards and Amir
2009) and by particle system techniques (Silver and Ve-
ness 2010). Similar special case applications of sampling
to reduce incomplete to complete information can be found
in (Ginsberg 2001; Kupferschmid and Helmert 2007).

Beyond GGP, Frank and Basin (2001) have investigated
incomplete information games with a focus on Bridge, pre-
senting a ‘game-general’ tree search algorithm that exploits
a number of incomplete information heuristics. The Al-
berta Computer Poker Research Group has developed sys-
tems at the forefront of computer Poker players (Billings et
al. 2006). This is a challenging domain combining incom-
plete and misleading information, opponent modelling, and
a large state space. While not explicitly interested in GGP,
they do describe several techniques that could generalise to
this field, including miximix, fast opponent modelling, and
Nash equilibrium solutions over an abstracted state space.

Example
The GDL-II rules in Figure. 1 formalise a simple game that
commences with the random player choosing a red or blue
wire to arm a bomb. Next, the agent may choose whether
to ask which wire was used. Asking carries a cost of 10%.
Finally, the agent must cut one wire to either disarm, or det-
onate, the bomb. We use this game as our running example.

The intuition behind the GDL rules is as follows.4
Lines 1-2 introduce the players’ names. Line 7 defines the
single feature that holds in the initial game state. The pos-
sible moves are specified by the rules for keyword legal:
in the first round, random arms the bomb (line 9), then the
agent gets to choose whether to ask or wait (lines 12-13), fol-
lowed by cutting a wire of their choice (line 14). The agent’s

4A word on the syntax: We use a Prolog-style notation for GDL
rules as we find this more readable than the usual prefix notation
used at competitions. Variables are denoted by uppercase letters.

only percept is the true answer if they enquire about the right
wire (line 16). The remaining rules specify the state update
(rules for next), the conditions for the game to end (rule
for terminal), and the payoff (rules for goal).

Lifting HyperPlay
Sampling the information set grounds all unknown infor-
mation. The move selection calculations based on such a
grounding will value information gathering moves at zero;
as all the information has already been gathered. This is Hy-
perPlay’s Achilles’ heel and it motivates this work.

For example, the standard model sampling technique is
unable to correctly play the ExplodingBomb game in Fig-
ure 1 because it incorrectly extrapolates individual samples
of the information set to fact rather than treating multiple
samples in concert: One sample ‘knows’ the armed wire is
red, another ‘knows’ it is blue. Each sample then cuts the
‘right’ wire without acknowledging that it may be wrong.

To remedy this weakness we present an extended and
refined technique that includes an Incomplete Information
Simulation (IIS) in the decision making process. The IIS
reasons directly with incomplete information, exploring the
consequences of every action in its context, and uses the out-
comes to make a decision. The new technique encompasses
larger (i.e. non-singleton) subsets of the information set. The
result is that it places the correct value on knowledge and
will choose information gathering moves and information
protecting moves when appropriate.

Formalism for HyperPlay-II
We proceed by formally describing the HyperPlay-II pro-
cess. As with the original approach, the new technique re-
quires a bag of models of the information set, representing
a weighted sample. This is similar to a weighted particle fil-
ter in that all unknowns are grounded, and each model is
updated based on moves (actions) and percepts (signals).

We adopt notation for finite games in extensive form;
we refer to the original technique (Schofield, Cerexhe, and

Thielscher 2012) and we refer to (Thielscher 2011) for def-
initions that describe formally how any GDL-II description
in logic defines a finite game tree, and how joint moves (tu-
ples) and information sets are determined by the percepts
received by each role. The rigorously formal exposition is to
demonstrate the correctness of the technique and to provide
sufficient detail to enable others to replicate the method.

GDL Game
Definition 1. Let G = 〈S,R,A,Σ, v, do, sees〉 be an in-
complete information game given by a GDL-II description:
• S is a set of states, or nodes on the game tree;
• R is a set of roles in the game;
• A is a set of moves in the game, and A(s, r) ⊆ A is a set

of legal moves, for role r ∈ R in state s ∈ S;
• Σ is a set of percepts in the game, and σ ∈ Σ is a percept5,

given by the sees() function below;
• v : S ×R→ R is the payoff function on termination;
• do : S ×A|R| → S is the successor function; and
• sees : S ×A|R| → Σ|R| is the percept function.

Additionally we use the following notation:
• s0 ∈ S for the initial state and st ∈ S for the true state;
• T as the set of the terminal states;
• D = S\T as the set of decision states;
• H is the information partition of D;
• Hr ∈ H is the information set for r ∈ R;
• hr ∈ Hr is a state in the information set for r ∈ R; and
• φ(A) is a probability distribution across set A.

We have defined a game with states, roles, moves, percepts,
a successor function, and a payoff on termination; now we
must define the move vector and percept vector that facili-
tates the succession of the game.

Definition 2. Let G be a GDL-II game defined above, then:
• ar ∈ A(d, r) is a move for role r ∈ R in state d ∈ D;
• ~a = 〈a1...a|R|〉 is a move vector, one move for each role;
• 〈~a−r, ar〉 = 〈a1 . . . ar . . . a|R|〉 is a move vector contain-

ing a specific move ar for role r ∈ R;
• σ ∈ Σ given by sees(d,~a) is a percept for actions ~a in

state d ∈ D;
• ~σ = 〈σ1...σ|R|〉 is a percepts vector; and
• s = do(d,~a) and ~σ = sees(d,~a) is the natural progres-

sion of the game.

To illustrate we look at the Exploding Bomb game shown
in the GDL of Figure 1. The successor function that pro-
gresses the game from state h0 in the information set
shown in Figure 2 is: s = do(h0, 〈ask, noop〉) and the
percepts arising from those actions are 〈red, null〉 =
sees(h0, 〈ask, noop〉).

5Multpile percepts are considered to be conjoined into one.
“null” is the empty percept.

Figure 2: The game tree for the Exploding Bomb. At
Round 1 the agent has an Information Set of two states; that
is, Hagent = {h0, h1}.

Move Selection Policy
In order for a game to be played out to termination we re-
quire a move selection policy πr for each role, being an ele-
ment of the set of all move selection policies Π.
Definition 3. Let G be a GDL-II game defined above, then:
• Π : D ×R→ φ(A) is a move selection policy expressed

as a probability distribution across A;
• ~π : 〈π1, .., π|R|〉 is a tuple of move selection policies; and

• play : S × Π|R| → φ(T) is the playout of a game to ter-
mination according to the given move selection policies.

In our example, the playout of the game from state h0
to termination by two Monte Carlo players would be
play(h0, ~mc) with φ(T) = 〈0.25, 0.25, 0.25, 0.25〉.

Move Evaluation and Selection
Move selection requires an evaluation function eval(). We
play out the game according to a move selection policy and
use the terminal value as a measure of utility.
Definition 4. Let G be a GDL-II game defined above, then:
• φ(s) is the a priori probability that s = st;6

• eval : S ×Π|R|×R×N→ R is the evaluation function;
where

• eval(s, ~π, r, n) = 1
n

∑n
1 φ(s)×v(play(s, ~π), r) evaluates

the node s ∈ S using the policies in ~π, and sample size n.
Applying the evaluation function to move vector 〈~a−r, ari〉,
we get:
• eval(do(d, 〈~a−r, ari〉), ~π, r, n) is the evaluation; and
• argmaxari [eval(do(d, 〈~a−r, ari〉), ~π, r, n)] is a selection

process for making a move choice.

The agent has an opportunity (in round 1) to make the de-
sired move 〈ask〉. The expected value of a Monte Carlo
playout is: eval(do(h0, 〈~a−r, ask〉), ~mc, agent, 4) = 45;
whereas the expected value of a Monte Carlo playout for
the move 〈wait〉 is 50.

6State s may be uncertain; eg.
∑

h∈H φ(h) = 1 for the infor-
mation set H .

State Identification
Each state in the game tree is uniquely identified by an or-
dered list of play messages (a path) representing the moves
and percepts of all the players in the game, starting from an
initial state and ending at the state in question.

Definition 5. Let G be a GDL-II game defined above, then:
• p ∈ P is a play message from the set of all play messages

in game G;
• pr = 〈ar, σr〉 is a play message for role r ∈ R;
• ~p = 〈p1, ...p|R|〉 is a play message vector;
• ξ : S → P ∗ is a function that extracts the path of a state;
• ξ(s) = 〈~p0, ...~pn〉 is an ordered list of play messages from

initial state s0 that defines state s called a path; and
• ξr(s) = 〈pr0, ...prn〉 is an ordered list of play messages

received by role r ∈ R called an incomplete path.
It is the fact that the path is incomplete that defines the play-
ers information set Hr. If the path is complete then the in-
formation set collapses to the true state; ie. Hr = {st}.
The right most path in Figure 2 is defined by the play mes-
sages on the left. However the agent receives an incom-
plete path (right), so the true path may be ambiguous.

〈H0, B0〉 〈H0, 〉
〈E0, C0〉 〈E0, 〉
〈G0, C0〉 〈G0, 〉

The HyperPlay Technique
We see that the HyperPlay technique (Schofield, Cerexhe,
and Thielscher 2012) constructs an information set from an
incomplete path by grounding the unknown values, then se-
lects a move that maximises expected utility.

Definition 6. Let G be a GDL-II game defined above, then:
• hp : Pn → 2P

n

is the function HyperPlay that completes
a path in game G to sample the information set H; and

• hr ∈ Hr = hp(ξr(st)) where st is the true game state.

The Hyperplay function completes the incomplete path
consistent with the game description. Note the new, legal
path (right) is different to the true path shown previously.

〈H0, 〉 〈H0, A0〉
〈E0, 〉 〈E0, C0〉
〈G0, 〉 〈G0, C0〉

Definition 7. Let G be a GDL-II game defined above, then:

• argmaxari
[
|Hr|∑
j=1

eval(do(hrj , 〈~a−r, ari〉), ~mc, r, n)]

is the move selection policy πhp, where ~mc is random.

In our example, reasoning on perfect information with a
Monte Carlo move selection policy gives the following,

eval(do(hi, ask), ~mc, agent, 4)

= 0.25× (90 + 0 + 90 + 0) = 45

eval(do(hi, wait), ~mc, agent, 4)

= 0.25× (100 + 0 + 100 + 0) = 50 (selected)

Incomplete Information Simulation
For the correct valuation of information gathering moves,
the player must be able to conduct a playout with incomplete
information, as opposed to a Monte Carlo playout.

To do this we take the path for a state in the information
set and use it for an IIS with a HyperPlayer in each role. It
should be noted that this requires a playout from the initial
state, not just the state in the information set.
Definition 8. Let G be a GDL-II game defined above, then:
• replay : S × Pn × Π → S|R| is the replay of a game

consistent with the path of a state;
• replay(s0, ξi(hr), ~π) is the replay of a game, as if hr =
st and generating information sets for all roles, such that,
hp(ξi(hr))→ Hi where r is our role and i is any role;

• IIS : S×Π×R×N→ R is the incomplete information
simulation; where

• IIS(hr, ~πhp, r, n) is an evaluation using an incomplete
information simulation, and is defined as
eval(replay(s0, ξi(hr), ~πhp), ~πhp, r, n).

The IIS generates multiple paths. In row one we see what
the agent knows; row two is a model in the agent’s in-
formation set; row three shows the two incomplete paths
created by the IIS; and row four shows models from the
information sets of each of the IIS roles, which may repre-
sent a state outside the agent’s information set.

1 ξa(st) 〈H0, 〉
〈E0, 〉

2 hp(ξa(s)) → ha 〈H0, A0〉
〈E0, C0〉

3 ξi(ha) 〈H0, 〉 〈 , A0〉
〈E0, 〉 〈 , C0〉

4 hp(ξi(ha)) 〈H0, B0〉 〈H0, A0〉
〈E0, C0〉 〈D0, C0〉

The HyperPlay-II Technique
We now show a formalism for the HyperPlay-II technique.
Definition 9. Let G be a GDL-II game defined above, then:
• ari ∈ A(hr, r) is a move to be evaluated by role r;
• 〈~a−r, ari〉, is the move vector containing the move ari;
• IIS(do(hr, 〈~a−r, ari〉), ~πhp, r, n) is an evaluation; and

• argmaxari [
|Hr|∑
j=1

IIS(do(hrj , 〈~a−r, ari〉), ~πhp, r, n)]

is the move selection policy ~πhpii.

Reasoning on incomplete information using the move se-
lection policy ~πhp gives the following,

IIS(do(hi, ask), ~πhp, agent, 4)

= 0.25× (90 + 90 + 90 + 90) = 90 (selected)

IIS(do(hi, wait), ~πhp, agent, 4)

= 0.25× (100 + 0 + 100 + 0) = 50

Note the similarity with the move selection policy ~πhp
given in Definition 7. In this respect we characterise the new
technique as a nested player.

The use of the IIS extends the domain of reasoning to the
least upper bound of the information partition supH ⊆ D.
As the hp() function generates paths across an information
domain that is the closed with respect to what the other roles
can know, which arises from the information set of our role:
• hp(ξr(st)) generates the Information Set Hr; and

• hp(ξi(hr)) for hr ∈ Hr generates an Information Set Hi

for any role in the IIS.

It is both the expanded domain and the use of incomplete
information reasoning that gives the new technique an ad-
vantage over its predecessor. That is to say, there is an im-
provement in both the quantitative and qualitative aspects of
the player.

There is, however, a class of games that it cannot play. We
discuss this class of games in the limitations section, after
the experimental results.

Experiments
A series of experiments was designed to test the capabilities
of the new technique using the high-throughput computer fa-
cilities at the School of Computer Science and Engineering.

Games played at the recent Australasian Joint Conference
on Artificial Intelligence were used as inspiration for the ex-
periments to validate the claim that the new technique cor-
rectly values moves that seek or protect information. The
conference organisers specially designed games that would
challenge the state of the art of GDL-II players so as to en-
courage research and development in this field.

As with previous research, we have modelled the game
server and both players in a single thread so it could be par-
allelised across many CPUs. Each test was repeated one hun-
dred times. Error bars indicate a 99% confidence interval.

Player Resources
In each experiment the player resources were varied to
demonstrate the performance as a function of resources.
Care was taken to ensure that each player had equal re-
sources when making a move selection. This was achieved
by setting each player’s parameters such that they would
visit a similar number of states each round.

The new technique has the potential to be a ‘resource pig’
as it is a nested player. For example, a value of n = 4 in
eval(s, ~π, r, n) for the original technique in a two player
game with a branching factor of eight and a playout length
of 10 would result in 1,280 states being visited. The new
technique would visit 2,048,000 states.

However experiments showed that the new technique can
function optimally7 with the same total resources as the
original player. That is, where the original player might need
n = 16, the new player only requires n = 4. This translates
to the same number of states visited by each player.

7A player is ‘optimal’ when increasing its resources will not
lead to better play. We refer to this as ‘adequate resourcing’.

Equal Resources
Some experiments were conducted with two-player games,
pitting the original player against the new player using equal
resources. A resource index n = 4 gives the new player four
hypergames, each running an IIS with four hypergames. The
old player would get n = 16 hypergames.

A player resource index of zero represents random deci-
sion making and serves to provide a basis for improvement.

Results
The results of each experiment are given below, along with
a brief commentary on their significance.

Exploding Bomb
The old player never asks the question in this game since it
thinks it already knows the answer (due to superficial agree-
ment of its samples) and so can avoid the modest penalty. In
contrast, the new player correctly identifies that asking the
question gives the best expected outcome. Table 1 shows the
results of calculations made by each technique when choos-
ing an action. The action with the highest expected score is
chosen for each round (shown in bold). The original tech-
nique chooses randomly in round 2.

round agent does HyperPlay HyperPlay-II
1 ask 45.04 ± 0.09 90.00 ± 0.00
1 wait 49.98 ± 0.10 49.91 ± 0.64
2 cut unarmed 49.40 ± 1.19 0.00 ± 0.00
2 cut armed 50.60 ± 1.19 90.00 ± 0.00

Table 1: Experimental score calculations during the Explod-
ing Bomb decision making process

Spy vs. Spy
A simple variant of the Exploding Bomb game reverses the
information flow. In this version the arming agent—who
chooses which wire arms the bomb—also decides whether
to tell the other player which wire to cut. Withholding this
information carries a penalty of 20%. This tests the value a
player places on giving away information.

Table 2 shows experimental results in the form of cal-
culated expected outcomes (the chosen action is bold).
The original HyperPlayer always tells to avoid the penalty.
HyperPlayer-II recognises that hiding this information
yields a better expected outcome.

arming agent does HyperPlay HyperPlay-II
arm blue and tell 60.00 ± 0.15 20.00 ± 0.00
arm red and tell 60.04 ± 0.14 20.00 ± 0.00
arm blue and hide 39.98 ± 0.16 40.36 ± 1.22
arm red and hide 39.99 ± 0.14 39.45 ± 1.33

Table 2: Expected score calculations for the arming agent in
round one of the Spy vs. Spy decision making process

Figure 3: The NumberGuessing Results for HyperPlay-II.

Number Guessing
The agent must guess a random number between 1 and 16.
It can ask if the number is ‘less than X’, or can announce
it is ‘ready to guess’, then guess the number. The score is
discounted by time after the first 5 moves.

The original player always announces it is ‘ready to
guess’, but then guesses randomly resulting in a 6.25%
chance of guessing correctly. The new player only guesses
the number when all playouts agree on the result.

Binary search plays perfectly here, guessing after four
questions. In Figure 3 the new player approaches this score.

Figure 4: The Banker and Thief results.

Banker and Thief
This game tests a player’s ability to keep secrets, ie. to value
withholding information. There are two banks, a banker and
a thief. The banker distributes ten $10 notes between the two
banks. The Banker scores all the money left in his bank at the
end of the game, except his bank has a faulty alarm system.
The thief can steal all the money from the faulty bank, if they
can identify it. The challenge for the banker is not to reveal
the faulty bank by over-depositing.

Figure 4 shows that the original technique adopts a greedy
policy and places $100 in its bank, only to have it stolen.
The new technique, adequately resourced, will deposit $40
of the money in its bank, relying on a greedy thief to attempt
to steal the $60 in the other bank.

The new technique reaches optimal avg(40 + 100) at re-
source index of eight as it correctly models both roles.

Battleships In Fog
This turn-taking, zero-sum game was designed to test a
player’s ability to gather information and to be aware of in-
formation collected by its opponent. Two battleships occupy
separate grids. A player can fire a missile to any square on

Figure 5: The Battleships In Fog results.

the opponent’s grid, move to an adjacent square, or scan for
their opponent. If they scan they will get the exact location,
and their opponent will know that they have been scanned.

The original player sees no value in scanning as all of
the samples ‘know’ where the opponent is. It doesn’t value
moving after being scanned as it thinks its opponent always
knows where it is. Its only strategy is to randomly fire mis-
siles giving it a 6.25% chance of a hit on a 4x4 board. The
new player will scan for the opponent and fire a missile.

A resource index of four is sufficient for the new player
to dominate the old in this turn-taking game: HyperPlay has
a 9.4% chance of winning with a random shot (12.5% if it
goes first, half that if it plays second). This is reflected in
Figure 5. Note also that HyperPlayer-II requires only three
rounds to finish the game: scan, noop, fire.

Conclusion
The experimental results show the value HyperPlay-II places
on knowledge, and how it correctly values information-
gathering moves by it and its opponents. It is able to collect
information when appropriate, withhold information from
its opponents, and keep its goals secret. The use of the in-
complete Information Simulations is an efficacious and ef-
ficient tool for reasoning with incomplete information. A
HyperPlayer-II was easily able to outperform an equally re-
sourced HyperPlayer in all of the experiments.

We intend to explore additional features of the HyperPlay-
II technique as they pertain to general artificial intelligence.
We also intend to implement the HyperPlayer-II for the Gen-
eral Game Playing arena as a benchmark competitor for
other researchers to challenge in GDL-II games.

Limitations
There is an interesting type of games requiring what is
known as coordination without communication (Fenster,
Kraus, and Rosenschein 1995) that goes beyond what our
technique can achieve.

Consider the following cooperative variant of the Spy vs.
Spy game. Spy1 sees which wire is used to arm a bomb.
They then signal the name of a colour to Spy2, who must try
to disarm the bomb. Both win if Spy2 cuts the right wire and
lose otherwise. Clearly Spy1 has an incentive to help Spy2,
and there is one obvious way to do this: signal the colour
of the wire. The crux, however, is that the game rules can
be designed such that the colour being signalled is logically
independent of the colour of the armed wire.

Acknowledgments
This research was supported by the Australian Research
Council under grant no. DP120102023. The second author
is also affiliated with the University of Western Sydney.

References
Billings, D.; Davidson, A.; Schauenberg, T.; Burch, N.;
Bowling, M.; Holte, R.; Schaeffer, J.; and Szafron, D. 2006.
Game-tree search with adaptation in stochastic imperfect-
information games. In Proc. Computers and Games, 21–34.
Björnsson, Y., and Finnsson, H. 2009. CadiaPlayer: A
simulation-based general game player. IEEE Transactions
on Computational Intelligence and AI in Games 1:4–15.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In Proc. AAAI, 1134–1139.
Edelkamp, S.; Federholzner, T.; and Kissmann, P. 2012.
Searching with partial belief states in general games with
incomplete information. In Proc. KI, 25–36.
Fenster, M.; Kraus, S.; and Rosenschein, J. S. 1995. Co-
ordination without communication: Experimental validation
of focal point techniques. In ICMAS, 102–108.
Frank, I., and Basin, D. 2001. A theoretical and empiri-
cal investigation of search in imperfect information games.
Theoretical Computer Science 252(1-2):217–256.
Genesereth, M. R.; Love, N.; and Pell, B. 2005. General
game playing: Overview of the AAAI competition. AI Mag-
azine 26(2):62–72.
Ginsberg, M. L. 2001. GIB: Imperfect information in a com-
putationally challenging game. J. Artif. Intell. Res.(JAIR)
14:303–358.
Kupferschmid, S., and Helmert, M. 2007. A Skat player
based on Monte-Carlo simulation. In Proc. Computers and
Games, 135–147.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2006. General game playing: Game descrip-
tion language specification. Technical Report LG–2006–01,
Stanford Logic Group.
Méhat, J., and Cazenave, T. 2011. A parallel general game
player. KI-Künstliche Intelligenz 43–47.
Quenault, M., and Cazenave, T. 2007. Extended general
gaming model. In Computer Games Workshop, 195–204.
Richards, M., and Amir, E. 2009. Information set sampling
for general imperfect information positional games. In Proc.
IJCAI Workshop on GGP, 59–66.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In Proc. AAAI, 1191–1196.
Schofield, M.; Cerexhe, T.; and Thielscher, M. 2012. Hy-
perPlay: A solution to general game playing with imperfect
information. In Proc. AAAI, 1606–1612.
Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In Proc. NIPS, 2164–2172.
Thielscher, M. 2010. A general game description language
for incomplete information games. In Proc. AAAI, 994–999.
Thielscher, M. 2011. The general game playing description
language is universal. In Proc. IJCAI, 1107–1112.

